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EVALUATING INTERVAL FORECASTS*
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McGill University, Canada

A complete theory for evaluating interval forecasts has not been worked out
to date. Most of the literature implicitly assumes homoskedastic errors even
when this is clearly violated, and proceed by merely testing for correct uncondi-
tional coverage. Consequently, I set out to build a consistent framework for
conditional interval forecast evaluation, which is crucial when higher-order
moment dynamics are present. The new methodology is demonstrated in an
application to the exchange rate forecasting procedures advocated in risk
management. -

1. INTRODUCTION

The vast majority of research in economic forecasting centers around producing
and evaluating point forecasts. Point forecasts are clearly of first-order importance.
They are relatively easy to compute, very easy to understand, and they typically
guide the immediate action taken by the forecast user. For example, the production
manager in a firm wants a forecast of sales in order to decide on production, the
chief financial officer wants a forecast of portfolio returns in order to decide on
rebalancing, and the central bank governor wants a forecast of inflation in order to
carry out monetary policy.

Quickly the question arises: should the user be content with a point forecast?
Quite clearly she should not. By nature, point forecasts are of limited value since
they only describe one (albeit important) possible outcome. Interval forecasts are
equally important—and often neglected—aids. They indicate the likely range of
outcomes, thereby allowing for thorough contingency planning. Thus, the production
manager can check the hypothetical inventory holdings under various probable sales
conditions, the chief financial officer can assess the effects on the solvency of the
firm of a range of possible portfolio returns, and the central bank governor can plan
policy actions contingent on likely inflationary developments.?
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ZA survey of actual interval forecasts, provided by professional forecasters of macroeconomic
time series, can be found in Croushore (1993).
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Faced with the task of calculating interval predictions, the applied forecaster can
build on a large literature, which is summarized in Chatfield (1993). However, when
the forecast user wants to evaluate a set of interval forecasts produced by the
forecaster, not many tools are available. This paper is intended to address the
deficiency by clearly defining what is meant by a ‘good’ interval forecast, and
describing how to test if a given interval forecast deserves the label ‘good.’

One of the motivations of Engle’s (1982) classic paper was to form dynamic
interval forecasts around point predictions. The insight was that the intervals should
be narrow in tranquil times and wide in volatile times, so that the occurrences of
observations outside the interval forecast would be spread out over the sample and
not come in clusters. An interval forecast that fails to account for higher-order
dynamics may be correct on average (have correct unconditional coverage), but in
any given period it will have incorrect conditional coverage characterized by clus-
tered outliers. These concepts will be defined precisely below, and tests for correct
conditional coverage are suggested.

Chatfield (1993) emphasizes that model misspecification is a much more impor-
tant source of poor interval forecasting than is simple estimation error. Thus, my
testing criterion and the tests of this criterion are model free. In this regard, the
approach taken here is similar to the one taken by Diebold and Mariano (1995). This
paper can also be seen as establishing a formal framework for the ideas suggested in
Granger et al., (1989).

Recently, financial market participants have shown increasing interest in interval
forecasts as measures of uncertainty. Thus, I apply my methods to the interval
forecasts provided by J.P. Morgan (1995). Furthermore, the so-called ‘Value-at-Risk’
measures suggested for risk measurement correspond to tail forecasts, that is,
one-sided interval forecasts of portfolio returns. Lopez (1996) evaluates these types
of forecasts applying the procedures developed in this paper.

The remainder of the paper is structured as follows. Section 2 establishes a
general efficiency criterion along with a more narrowly defined but more easily
applied conditional coverage criterion for interval forecasts. Section 3 establishes
some simple tests of the univariate conditional coverage criterion. Section 4 intro-
duces various extensions to the benchmark univariate case. Finally, Section 5
analyzes, in an application to daily exchange rate returns, the interval forecast from
J.P. Morgan (1995), along with two competing forecasts.

2. THE FRAMEWORK FOR CONDITIONAL COVERAGE TESTING

2.1. Defining A Testing Criterion. The objective of this section is to define a
general criterion of goodness for an out-of-sample interval forecast of a given time
series. In order to acknowledge the finding in the current literature that model
misspecification is the most important source of poor interval forecasts, this paper
makes no assumptions on the underlying data generating process. The aim is to
develop tests of the forecasting methodology being applied—regardless of what it
might be—not of any hypothesized underlying true conditional distribution.
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The primitives of the analysis are the following: Observe a sample path, {y,}",, of
the time series y,. Also available is a corresponding sequence of out-of-sample
interval forecasts, {(L,,_(p),U,,— (p)}_,, where L,,_,(p), and U,,_(p) are the
lower and upper limits of the ex ante interval forecast for time ¢ made at time ¢ — 1
for the coverage probability, p.

Given the realizations of the time series and the interval forecasts, the indicator
variable is defined as,?

DerFmNITION 1. The indicator variable, I,, for a given interval forecast,
(Ly-+(p), Uy, (p)) for time ¢, made at time ¢ — 1, is defined as,

1, ify,E[L,|,_1(p),Um41(p)]
' 0, ifyé& [Lt|z~1(p)7Ut|141(p)] '

With this definition, I am ready to establish the general testing criterion for
interval forecasts as follows:

DEFINITION 2. Say that the sequence of interval forecasts, {(L,,_,(p),
Uyi- (PMYL |, is efficient with respect to information set V,_,, if E[L|¥,_,]=p, for
all ¢.

In the definition of conditional efficiency the indicator variable is combined with a
general conditioning set. This approach enables me to form tests of the interval
forecasts without relying on any distributional assumptions on the process being
forecasted. This is important in most applications in economics where any kind of
distributional assumption is highly questionable. In value-at-risk (VAR) applications,
the underlying returns series is nonstationary by construction, since the portfolio is
typically changing over time. Furthermore, VAR forecasts are often plagued by
misspecification due to time-varying covariances and options risk approximations, so
that abstaining from distributional assumptions is crucial.

Notice also that standard evaluation of interval forecasts (e.g., Baillie and Boller-
slev 1992, and McNees 1995) proceeds by simply comparing the nominal coverage,
YT |L/T to the true coverage, p. In my framework this corresponds to testing for
conditional efficiency with respect to the empty information set, ¥, _, = (J, that is,
testing that E[I,]=p, for all z. But, I am not content with this unconditional
hypothesis. In the presence of higher-order dynamics, testing the conditional effi-
ciency of the sequence is important.

VAR estimates have been mentioned as an application of interval forecasting,
where the intervals are one-sided.* By a one-sided or open interval, I mean that
(L,,—(p), U,;,_ (p))is equal to either (L, ,_(p), + =), as in VAR, or (=, U,,,_(p)).

*In this section attention is restricted to symmetric intervals; the asymmetric case is treated in
Section 4.2.
*See Kupiec (1995) and Lopez (1996) for the details.
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With these terms appropriately defined, the analysis of one-sided intervals corre-
sponds exactly to that of two-sided intervals.

2.2.  An Operational Testing Criterion. Now I want to make the criterion for
out-of-sample interval forecasts operational, and develop easily implementable test-
ing procedures. To construct a readily applied test, consider the information set that
consists of past realizations of the indicator sequence, ¥,_, ={I,_,I,_,,I,_5,..., ,}.
The following result is then easily established,

LeMMA 1. Testing E[L|V, _1=E[LI|I,_,I,_,,1,_,,...,]]=p, forall t, is equiva-
lent to testing that the sequence {1,} is identically and zndependently distributed Bernoulli

with parameter p. Write {1, )~ Bern( D).

Proof. If E[L|V,_,1=E[LII,_,,1,_,,1,_5,.. Il] = p, then, by the definition of
the expectation of a blnary (©, 1) variable, Pr(L|I,_, 1, 5,1, _5,...,1,)=p for all .

d
This implies both independence and that Pr(/,) = p, for all ¢. Thus, {I,} ~ Bern( D),
V¢. The converse is obvious. Q.E.D.

For precision, note the following.

DEFINITION 3. Say that a sequence of interval forecasts, {(L,,_(p), U, (pIX= 1,
has correct conditional coverage if {/, y~ Bern( p), VYt

Consider now a given sequence of interval forecasts. The sequence could be
constructed from a parametric or nonparametric statistical time series model, or be
composed from entirely judgmental forecasts or anything else. The idea is to test the
i.i.d. Bern(p) hypothesis for the sequence of interval forecasts in order to get an
indication of how close the actual coverage is to the correct conditional coverage.’

3. A LIKELIHOOD RATIO FRAMEWORK FOR CONDITIONAL
COVERAGE TESTING

This section develops an easily applied and unified framework for testing the
conditional coverage hypothesis. It can be done conveniently in a likelihood ratio
testing framework. The following specifies an LR test of correct unconditional
coverage, an LR test of independence, and an LR test that combines the two to form
a complete test of the conditional coverage.

3.1. The LR Test of Unconditional Coverage. Consider the indicator sequence,
{1}, constructed from a given interval forecast. To test the unconditional cover-
age, the hypothesis that E[I,] =p should be tested against the alternative E[I,]+# p,

> Testing for the Bernoulli property has an interesting parallel in the statistics literature on
quality control where the fraction of nonconforming articles in a sample is investigated. Refer to
Grant and Leavenworth (1988) for the details.
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given independence.® The likelihood under the null hypothesis is simply

L(p;1,1,,....Ip)=(1 ”P)nopnl’

and under the alternative
L(m; 1,1, Ip) =(1—7)"7m,

Testing for unconditional coverage can be formulated as a standard likelihood
ratio test,

R asy
LR, = —2log[L(p; I}, I,....I7) /L(#; I, Ly, ..., I)] ~ x*(s — 1) = x*(1),

where #r=n,/(n,+n,) is the maximum likelihood estimate of 7, and s =2 is the
number of possible outcomes of the sequence.

This procedure tests the coverage of the interval but it does not have any power
against the alternative that the zeros and ones come clustered together in a
time-dependent fashion. In the test above, the order of the zeros and ones in the
indicator sequence does not matter, only the total number of ones plays a role.

It was stressed above that simply testing for the correct unconditional coverage is
insufficient when dynamics are present in the higher-order moments. The two tests
presented below make up for this deficiency. The first tests the independence
assumption, and the second jointly tests for independence and correct coverage, thus
giving a complete test of correct conditional coverage.

3.2. The LR Test of Independence. Now I test the independence part of my
conditional coverage hypothesis. Independence will be tested against an explicit
first-order Markov alternative.’

Consider a binary first-order Markov chain, {Z,}, with transition probability matrix

11— T
H1=[ o1 01],

l—my 7y

where ;= Pr(I,=j|I,_ = i). The approximate likelihood function for this process
is

LI, 1, Iy =(1— 77'Ol)nm”'glm(l - 7711)’11077111“,

where n;; is the number of observations with value i followed by j. As is standard, I
condition on the first observation everywhere.® It is then easy to maximize the
log-likelihood function and solve for the parameters, which are simply ratios of the

% Kupiec (1995) and McNees (1995) apply similar tests of unconditional coverage.

" Complementary tests based on autocorrelations can be found in Granger et al., (1989), and in
tests based on runs in Christoffersen (1996). Notice also the analogy to categorical data analysis, e.g.,
Andersen (1994).

8 The exact likelihood ratio tests including the first observation can be found in Christoffersen
(1996).
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counts of the appropriate cells:
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Consider now the output sequence, {[,}, from an interval model. I estimate a
first-order Markov chain model on the sequence, and test the hypothesis that the
sequence is independent by noting that

1—7
H2=[ 2 7"2],

1-mw, m,
corresponds to independence. The likelihood under the null becomes
L(My; I, 1, ) = (1 — ary) "0t 0 front ),

and the ML estimate is I, = 7, = (ng; + n41)/(ngg + nyg + gy + 111
From Hoel (1954) I have the following standard result: the LR test of indepen-
dence is asymptotically distributed as a x? with (s — 1) degrees of freedom, that is,

LR,g= —2log[ L(T1y; I, Iy, I) /L(TL;5 Iy, L, .. 1)

~ X ((s = 1)?) = x2(1).

Again, I am working with a binary sequence, so s = 2. Notice that this test does not
depend on the true coverage p, and thus only tests the independence part of my
hypothesis. This is, of course, a limitation, but it provides for interesting testing of
the dynamics in interval forecast without testing for the true error distribution, as in
the example in Section 5. The LR, 4 test is also useful for testing the appropriate-
ness of Bonferroni region forecasts in the multivariate case (see Section 4.1).
However, ultimately I would like to test jointly for independence and correct
probability parameter, p. This is done below.

3.3. The Joint Test of Coverage and Independence. The above tests for uncondi-
tional coverage and independence are now combined to form a complete test of
conditional coverage. In effect, the null of the unconditional coverage test will be
tested against the alternative of the independence test. Consequently, I need to find
the distribution of

LR = —2log[L(p; I, Iy, ..., I;) /L({1;; I, I, 1)
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and have the following result:

PROPOSITION.  The distribution of the LR test of conditional coverage is asymptoti-
cally x* with degrees of freedom s(s — 1), that is,

LR = —2log[L(p: Iy, Ly, 1) /L(T1 3 1), Iy, Iy

< X(s(s = D) =x*(2).

PROOF. See the Appendix.

Notice that if I condition on the first observation in the test for unconditional
coverage the result is that 7r = 7, = I1,. This in turn implies that, when ignoring the
first observation, the three LR tests are numerically related by the following identity,

LR . .=LR +LR; .

This LR framework enables joint testing of randomness and correct coverage while
retaining the individual hypotheses as subcomponents. Furthermore, these tests are
easy to carry out.

4. EXTENSIONS TO THE BASIC FRAMEWORK

4.1. The Multivariate Case: Region Forecasts and Bonferroni Bands. The exten-
sion of the testing procedures in Section 3 to evaluation of multivariate forecasts
presents no conceptual difficulties. I am given a sample of an m-variate time series,
{Y}L_,, and a sequence of out-of-sample region forecasts,

{Ry—r(P}1_

where the desired coverage, p, of the region is prespecified. R,,_,(p) € R™ is the
region forecast for time ¢ made at time ¢ — 1. Again, define the indicator variable I,
by

1, if YteRtlt—l(p)

I, = . .
' 0’ if Yt $Rtlt—1(p)

It follows that the testing procedure for the multivariate case is identical to the
univariate case, so at the theoretical level nothing further needs to be said. As a
practical matter, however, the region forecasts can be difficult to compute and
interpret, and often the forecaster relies on Bonferroni’s method for constructing
the joint forecast regions. This method splices together a conservative joint forecast
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region from m (one for each time series) individual interval forecasts {(L; ,,_ (1 —
72U - (1 — TD}2, where 7= (1 — p)/m. The resulting joint forecast region has a
coverage of at least p,

Pr(Y, <€ (Ll,t|l'1(1 —7),Up g o(1— T)) XX (Lm,t|t—1(1 - T)rUm,t\t—l(l - 7)))

>1—-—mr=p.

From an evaluation perspective, these Bonferroni bands are interesting in that my
methods allow for separate tests of independence and coverage. Since the coverage
will most likely be incorrect, I test independence separately from coverage: the
LR;,q test is useful for this purpose. Rejecting a Bonferroni region forecast in the
LR test should not lead one to the conclusion that the forecast is bad, if what is
rejected is that the coverage is too large.

4.2. Testing for Asymmetries in the Tail Probabilities. In the previous tests, I did
not make explicit whether the realizations that fell outside the predicted interval
were in the upper or lower tail of the conditional distribution. If the conditional
distribution is symmetric and the predicted intervals are symmetric, this is not
critical. On the other hand, if one is concerned about the calibration of each tail
individually, or want an asymmetric interval, the framework needs to be generalized
as developed below.

Let o, and «, be the desired lower and upper tail probabilities, respectively.
Then in my previous notation, 1 —p = a; + «,, and the old set-up corresponds to
q =00, = (1 —p)/2

Now, define

1, ify, SLt|r—1( @)
St= 2, if Lt]t—l(al) <)’,<U;|1—1(au)
3, if YtZUtp—l(au)

Under the null that the interval forecast is correctly calibrated, the transition
matrix for S, is

o l—o—a, «
My=|eo 1-o—q, «a

o l—o—a, «
the alternative of independence, but incorrect coverage is
m l—m—m,

n,=|\m 1-m—-m,
m l—m—-—m,
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and the full alternative allowing for first-order dependence and incorrect coverage is

Ty 1—my—my, Ty

Hl =\ Tmi 1- Tl ™ T Tu |-
Tl 1- Tl ™ Myu Ty

The three LR tests can then be used again. The test of unconditional coverage is

LR, = —2log[ L(1y; ,,S,...., S7) /L(11,55,,5,.,..., Sr )]

asy
~x*(s =1 =x*(2),
where s = 3 is the number of states. The test of independence is

LR;pq = —2log[ L(11,;8,,S,,....87) /L(11;5.8,,8,,...,87)]

asy 2
~ XA (s =17 =x%(4).
And the test for conditional coverage is

LR, = —2log[ L(1y; S, S,..... S7) /L(11;; 8., S,..... )]

~ x2(s(s = 1)) = x*(6).

4.3. Expanding the Information Set. Suppose an interval forecast is rejected
using the tests above. One would then like to find out what was causing the
rejection. In the tests derived above, the independence of future realizations of the
indicator sequence was only tested with respect to the past values of I,. This
restriction makes for easily applied tests of conditional coverage and simple inde-
pendence. However, one might want to put the interval forecasts through some
closer scrutiny and test if a realization outside the predicted interval is associated
with certain values of other variables, or combinations of these. Consider the
following binary regression framework.

I want to test for the sensitivity of the interval forecast to a ¢ by one vector of
observed variables, Z,_,. Z,_, could, of course, include y,_; and I,_;. Then I have

\ptAl = {Zt—l;Z,‘z,...,Zl}.

Under the null hypothesis that the current estimates are efficient with respect to this
information set, I estimate the relation,

L=a+B'f(Z, 1) +¢,
where f(-): R7 - RE
LEMMA 2. Testing for the null hypothesis of interval forecast efficiency, E[1|V,_,]1=

p, versus the alternative E[1|V,_,1=a+ B'f(Z,_)), is equivalent to testing, [« B']=
[p 0], where 0 is a k by one vector of zeros.
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The test of interval forecast efficiency with respect to the information set ¥,_,
can be considered a joint test of independence (slopes equal zero), and correct
unconditional coverage (constant term equals p). This framework allows for interest-
ing inference on the interval forecast methodology used. A significantly positive S,
coefficient indicates that the corresponding regressor is not efficiently applied in the
current methodology: the probability of getting a realization outside the predicted
interval is indeed dependent on f,(Z,_,).

Notice that under the null, the error term will indeed be homoskedastic,

_ | 1—p, with probability p
“= -p, with probability 1 — p’

thus, standard inference procedures apply. In closing, note that a natural alternative
to the regression approach would be to apply the J-test from Hansen’s (1982) GMM
framework. My general criterion E[[,|W¥,_,]=p implies

E[(L-p)f(Z_ )] =0, q=12...,0-1

which gives me & moment restrictions for each lag of Z,.

5. APPLICATION: INTERVAL FORECASTING OF
DAILY EXCHANGE RATES

Now turn to an empirical application of the methodology developed above. One of
the main points of this paper is the important difference between conditional and
unconditional interval coverage. Therefore, let us assess one’s ability to discern
between the two in a realistic finite sample setting. This is done in a simple Monte
Carlo experiment, tailored to the subsequent exchange rate application.

In the application, I test a particular real-life interval forecast where the differ-
ence between conditional and unconditional coverage is crucial, namely the interval
forecast for daily financial time series provided by J.P. Morgan (1995). The perfor-
mance of this particular interval forecasting methodology is assessed using four daily
exchange rate returns.

5.1. Static Interval Forecasts of Simulated GARCH Processes. The first step is to
get some evidence on how powerful the LR; , tests are in rejecting inappropriate
interval forecasts under realistic finite-sample conditions. To this end, imagine a
univariate time series generated by Bollerslev’s (1986) Gaussian GARCH(1,1) model,

Yt‘Qt—INN(O’ht)’ ht=a)—l—ay,2,1+,8ht_1.

Now, consider a static interval forecast of this time series based on the quantiles of
the unconditional distribution,

>

oo

where F(-) is the unconditional, time-invariant cdf of y,.



EVALUATING INTERVAL FORECASTS 851

Figure la shows a typical realization of the GARCH process (a = 0.1, g = 0.85,
»=0.05) along with the static interval forecast. By construction, this interval
forecast will have close to perfect unconditional coverage, and thus it will pass the
unconditional interval forecast evaluation test, LR .. However, this is obviously not
a good conditional interval forecast, but I want to be able to reject it as such.

Even though the unconditional coverage is correct, in each period the conditional
coverage is,

Ft|t—l(U(p)) —E|t—1(L(p))

= ®(U(p)/yh,) —®(L(p)/yh,)=2®(U(p)/\h,) —1=p,#p.

The conditional coverage, p,, is not constant over time. Since 4, exhibits positive
autocorrelation, so too will p,. For the particular example in Figure 1b, which shows
{p,} for the GARCH realization and static interval forecast from Figure 1a, the
first-order autocorrelation coefficient is 0.94. As p, in real applications is unob-
served, I hope to detect the misspecification of the static interval forecast by testing
for dependence in {I,} over time.

M [W‘

!

it L

AT .tll“u ﬂ.

3 —
-4 —
_5 L | 1 | | | | | |
100 200 300 400 500 600 700 800 900 1000
FIGURE 1A

GARCH(1,1) WITH STATIC 75 PER CENT INTERVAL FORECASTS™*

* Figure 1a shows a Gaussian GARCH(1,1) revalization of length 1000, along with the static 75 per
cent interval forecasts, i.e. the 12.5 per cent and 87.5 per cent quantiles of the unconditional
distribution. The parameter values of the process are, @ =0.1, 8 =0.85, and = 0.05.
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FIGURE 1B

CONDITIONAL COVERAGE OF STATIC 75 PER CENT INTERVAL FORECAST'

Figure 2 shows the power of the LR, test to reject the static interval forecasts
when the data is generated by a GARCH process. I have let the actual coverage
probability, p, vary between 0.50 and 0.95. The GARCH parameter configuration
corresponds to that of Figure la. The sample size varies between 250 and 2,000 in
increments of 250, and the number of Monte Carlo replications is 1,000. The shape
of the power plots illustrates that—given a certain sample size—dependence is the
hardest to reject when p is either quite small (close to 0.50) or quite large (close to
0.95). When p is small, the GARCH effects do not have much impact on the true
interval forecasts. When p is large, the alternative becomes harder to distinguish
from the null, as the number of switches between zero and one, even under the null,
is quite small (as n,/T is small). Figure 2 also illustrates the need for sizable
samples. This is quite natural since I am trying to draw inference about the tails of
the distribution; a similar point is made for unconditional tests by Kupiec (1995).

5.2. Interval Forecasting of Daily Exchange Rates. Keeping in mind the sample
sizes required for discerning between conditional and unconditional coverage, let us
put the interval evaluation tests to use in a real-life application. I am interested in
testing the performance of a forecasting methodology suggested by J.P. Morgan’s
(1995) RiskMetrics, a new framework for risk measurement. The simple, very
tractable methods suggested therein have been found to work well for variance

T Figure 1b shows the actual conditional coverage of the static 75 per cent interval forecasts from
the top panel.
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Rejection Frequency

Sample Size, T

Coverage, p, of Interval

FIGURE 2

POWER OF LR;yp TEST AGAINST GARCH DEPENDENCE MONTE CARLO REJECTION FREQUENCY OF
STATIC INTERVAL FORECASTS*

forecasting (Boudoukh et al., 1995). But these same models are also used to produce
interval forecasts, so I want to evaluate them on their own merits.
The interval forecast suggested by J.P. Morgan is,

(Ly=1(P):Uy—i(p)) = (@_1(1%1;)(7“@1(1%)%)

where

0}2 =(1-» Z /\iytzflfi = /\U'zz—l +(1- A)ytzfl'
i=0

i=

Thus, the RiskMetrics forecasts are based on an exponential smoothing model for
the squares combined with a standard Gaussian density for the innovations. For

*The figure shows the simulated probabilities of rejecting a static interval forecast using the
LR;,4 test when the true DGP is a Gaussian GARCH(1,1) with parameters « = 0.1, 8= 0.85, and
o= 0.05. The significance level is 5 per cent. The coverage, p, of the interval forecasts varies
between 50 and 95 per cent. The sample sizes run from 250 to 2,000 in intervals of 250. The number
of Monte Carlo replications is 1,000.
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daily data, the persistence parameter, A, is fixed at 0.94. The parameter of the
forecasting model is simply calibrated at that given value. Notice that the exponential
model from RiskMetrics corresponds to a particular IGARCH model without drift,
thatis, a+ B=1, B= A, and w=0.

Consistent with most of the literature on exchange rate prediction (see Diebold
and Nason 1990), J.P. Morgan does not model any conditional mean dynamics in its -
forecast. The time varying interval is simply placed around a constant mean.

J.P. Morgan’s interval is tested along with two peers. The first is constructed from
an estimated GARCH(1,1) model with Student’s t innovations (Bollerslev 1987). The
second is a simple static forecast such as the one in Figure la, based on the
in-sample empirical quantiles. I employ daily mid-market (average of bid and offer)
log-differences in the British pound, German mark, Japanese yen and Swiss franc
vis-a-vis the U.S. dollar, and have a total of 4,000 observations from January 1980 to
May 1995.° The experiment entails first estimating the parameters necessary (includ-
ing the empirical quantiles, but not A) to form the three forecasts on the first 2,000
observations. Then I fix the parameters, including the empirical fractiles, and do
out-of-sample interval forecasting and forecast evaluation on the last 2,000 observa-
tions.

The results of the testing are presented in Figure 3—6. Each figure has three
panels. The three lines in each panel give the values of the relevant LR statistics for
each of the competing forecasts. The long dashes give the LR value for the
RiskMetrics forecast, the solid line for the GARCH-t interval forecasts, and the
short dashes for the static forecast. The horizontal, solid line in each panel
corresponds to the 5 per cent critical value of the relevant y? distribution. Any LR
statistic above this value is statistically significant at the 5 per cent level.

The top panel of Figure 3—6 shows the value of the LR statistic, that is, the
complete test of conditional coverage. The middle panel shows the LR . statistic,
the test of unconditional coverage. Finally, the bottom panel shows the LR; 4
statistic, the test of independence. By the decomposition property of these statistics,
the values'in the middle and bottom panels for each forecast sum to the value in the
top panel.

The main results for the three competing interval forecasts can be summarized as
follows:

(i) The exponential interval forecast from RiskMetrics passes the indepen-
dence test, across coverage rates and across exchange rates. It passes the
unconditional coverage test for certain coverage rates, typically p = 0.8 —
0.9, but fails in most other cases. For the complete test of conditional
coverage, the rejections of unconditional coverage lead to rejection of the
forecast outside the 0.8 — 0.9 range of coverages.

(ii) The static interval forecasts fail the independence test in most cases. The
tests for unconditional coverage, on the other hand, are passed in general.
This indicates that the unconditional distribution does not seem to change
over the course of the sample. However, the rejection of independence

® The data source is Datastream International.
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FIGURE 3

BRITISH POUND: LIKELIHOOD RATIO STATISTICS OF CONDITIONAL COVERAGE, UNCONDITIONAL COV-
ERAGE, AND INDEPENDENCE*

* The top panel shows the LR statistics of conditional coverage for three interval forecasts: The
long dash is J.P. Morgan’s exponential RiskMetrics forecast, the solid line is the GARCH(1,1)-t
forecast, and the short dash is the static forecast. The solid horizontal line represents the 5 per cent
significance level of the appropriate x? distribution. The test values are plotted for coverages
ranging between 50 and 95 per cent. The middle and bottom panels show the corresponding values
of the LR tests of unconditional coverage and independence, respectively.



856

CHRISTOFFERSEN

LR Statistic

50
40 — - = = RiskM
——— GARCH-t
30 — e Static —
00— . TS~ _ , —
R L L TP T~ Seae eemetecencanen */ 7
10 — . \\A -.‘-.-.. / |
0 ———— —_——ll O~ __-
0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
LRy Statistic
50
40 — = — — RiskM ]
——— GARCH-t
30 e Static —
20— TN~
10 — =~ ~a
0 Py bl e ———
0.50 0.55 0.60 0.65 0.70 0.75
LRjpd Statistic
50
40 — — — — RiskM _
——— GARCH-t
30 — e Static —
20 — .. -
10 — SeaemeeTTTIIII I L .. JOPP T —
‘ —_ - —ant
0 L———==
0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

Coverage, p, of Interval

FIGURE 4

GERMAN MARK: LIKELIHOOD RATIO STATISTICS OF CONDITIONAL COVERAGE, UNCONDITIONAL COV-
ERAGE, AND INDEPENDENCE*

*The top panel shows the LR statistics of conditional coverage for three interval forecasts: The
long dash is J.P. Morgan’s exponential RiskMetrics forecast, the solid line is the GARCH(1,1)-t
forecast, and the short dash is the static forecast. The solid horizontal line represents the 5 per cent
significance level of the appropriate x? distribution. The test values are plotted for coverages
ranging between 50 and 95 per cent. The middle and bottom panels show the corresponding values
of the LR tests of unconditional coverage and independence, respectively.
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FIGURE 5

JAPANESE YEN: LIKELIHOOD RATIO STATISTICS OF CONDITIONAL COVERAGE, UNCONDITIONAL COVER-
AGE, AND INDEPENDENCE™*

* The top panel shows the LR statistics of conditional coverage for three interval forecasts: The
long dash is J.P. Morgan’s exponential RiskMetrics forecast, the solid line is the GARCH(1,1)-t
forecast, and the short dash is the static forecast. The solid horizontal line represents the 5 per cent
significance level of the appropriate y? distribution. The test values are plotted for coverages
ranging between 50 and 95 per cent. The middle and bottom panels show the corresponding values
of the LR tests of unconditional coverage and independence, respectively.
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FIGURE 6

SWISS FRANC: TIKELIHOOD RATIO STATISTICS OF CONDITIONAL COVERAGE, UNCONDITIONAL COVER-
AGE, AND INDEPENDENCE*

*The top panel shows the LR statistics of conditional coverage for three interval forecasts: The
long dash is J.P. Morgan’s exponential RiskMetrics forecast, the solid line is the GARCH(1,1)-t
forecast, and the short dash is the static forecast. The solid horizontal line represents the 5 per cent
significance level of the appropriate x? distribution. The test values are plotted for coverages
ranging between 50 and 95 per cent. The middle and bottom panels show the corresponding values
of the LR tests of unconditional coverage and independence, respectively.
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leads to a rejection of conditional coverage for these flat forecasts in most
cases. The notable exceptions are for the Swiss franc (across coverage
rates), and for p = 0.95 (across exchange rates). In the case of the Swiss
franc, there is not much evidence of conditional variance dynamics in the
prediction sample period. ,

(iii) Finally, the interval forecasts from the GARCH-t model perform the best
overall. The independence test is passed everywhere, and the uncondi-
tional coverage is captured in most cases also. The only exceptions to this
is for p =0.95, where the unconditional coverage is rejected in some
cases.

The performance across interval forecasts for the case where p =0.95 is quite
interesting as the static forecast seems to outperform the two dynamic forecasts.
Table 1 reports the nominal coverage rates for the various forecasts and exchange
rates. It is evident that the GARCH-t forecast is rejected when p = 0.95 because it is

TABLE 1
COVERAGE RATES AND AVERAGE WIDTHS OF INTERVAL FORECASTS*

British Pound  50.00 55.00 60.00 65.00 70.00 75.00 80.00 85.00 90.00 95.00

RiskMetrics  55.60 60.30 64.50 69.60 73.80 78.00 81.30 8490 8930 93.15
Garch(1,1)-t 5255 5795 6230 66.55 7260 76.75 81.65 8625 91.15 96.10
Static 5175 5700 6190 6690 7225 76.75 81.55 8620 9030 94.70

RiskMetrics 0.90 1.01 1.12 1.24 1.38 1.53 1.71 192 219 2.61
Garch(1,1)-t 0.84 0.95 1.06 1.18 1.32 1.48 1.66 189 220 271
Static 080  0.92 1.04 1.17 1.31 1.48 1.68 1.91 227 283

German Mark  50.00 55.00 60.00 6500 70.00 7500 80.00 85.00 90.00 95.00

RiskMetrics 5550 60.15 6445 6940 7380 7790 8155 8535 8925 93.30
Garch(1,1)-t 5020 5555 6095 6575 71.10 7640 8030 86.65 91.55 96.95
Static 50.70 5630 61.20 66.00 7150 75.75 80.30 8545 9025 96.15

RiskMetrics 0.92 1.03 1.15 1.28 1.41 1.57 1.75 196 224 267
Garch(1,1)-t 083 094 1.05 1.18 132 148 1.68 192 226 285
Static 079 090 1.02 1.16 1.33 1.48 1.67 199 235 3.12

Japanese Yen  50.00 55.00 60.00 65.00 70.00 75.00 80.00 85.00 90.00 95.00

RiskMetrics 57.10 6230 6630 7090 75.00 7890 82.65 85.75 89.05 93.05
Garch(1,1)-t 5040 5570 61.00 6550 70.70 76.05 81.15 8545 90.85 96.30
Static 51.20 5645 6140 67.00 7245 7725 8175 8540 9025 95.05

RiskMetrics 0.86 0.97 1.08 1.19 1.32 1.47 1.64 1.84 2.10 2.50
Garch(1,1)-t 0.74 0.84 0.94 1.05 1.18 1.33 1.52 1.75 2.09 2.68
Static 0.72 0.82 0.93 1.05 1.18 1.37 1.56 1.79 2.16 2.79

Swiss Franc 50.00 55.00 60.00 65.00 70.00 75.00 80.00 85.00 90.00 95.00

RiskMetrics 54.00 5875 64.10 6920 73.70 78.00 81.30 8525 8945 92.80
Garch(1,1)-t 5020 5550 60.85 66.65 7220 7690 81.85 8635 91.55 96.95
Static 5040 5590 6120 6585 7185 77.55 8140 86.90 91.10 95.75

RiskMetrics 1.01 1.13 1.26 1.40 1.55 1.72 192 216 246 294
Garch(1,1)-t  0.94 1.06 1.19 132 1.48 1.66 1.87 214 250 312
Static 090 1.02 1.16 1.29 1.48 1.69 191 226 266 335

* For each exchange rate panel and each true coverage rate, p = 50 to 95 per cent, the top half of
the panel shows the nominal coverage rate and the bottom half of the panel shows the average width
of the interval prediction over the sample.
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too cautious. The RiskMetrics forecast, on the other hand, is too confident and gives
a nominal coverage below the desired 0.95 probability level. It is also interesting to
note that while the nominal coverage for the GARCH-t forecast is everywhere
higher than for the static forecast, the average width of the GARCH-t forecast is
smaller everywhere.

The observation made in Chatfield (1993) that out-of-sample interval forecasts
tend to be too narrow in practice does not hold in this application. If anything, these
forecasts tend to be too wide. In almost all instances, the GARCH-t and static
forecasts are either correct on average, or a little too wide. The RiskMetrics
forecasts are too wide for all coverage rates up to 0.90, but then too narrow for 0.90
and 0.95. Thus, the Gaussian innovation assumption fails at small as well as at large
coverage rates.

In conclusion, while the independence test is passed in general by the two
dynamic forecasts, there is room for improvement in specifying the innovations
distribution where the empirical quantiles forecast performs better. Superior perfor-
mance might be achieved by combining the parametric, dynamic variance specifica-
tion, with a (nonparametric) empirical quantiles approach for the innovations, as is
done in Engle and Gonzalez-Rivera (1991).

6. SUMMARY AND DIRECTIONS FOR FUTURE RESEARCH

This paper has introduced a general conditional efficiency criterion for evalu-
ating interval forecasts. An easily applied version of this criterion—conditional
coverage—is also presented. I suggest a likelihood ratio test of conditional coverage
that decomposes into subtests of independence and unconditional coverage, respec-
tively, and is easy to carry out. The separate evaluation of higher-order dynamics and
the distributional assumption, which these tests offer, is interesting and useful. It is
constructive in that it can indicate whether the dynamics or the innovation distribu-
tion (or both) is misspecified. Extensions of the basic set-up, to including general
information sets, asymmetric intervals and multivariate time series, are provided.

In an application to daily exchange rates it is shown that the calibrated interval
forecast from RiskMetrics, J.P. Morgan’s risk measurement methodology, passes the
tests for certain coverage rates, but fails for most others. Interval forecasts from an
estimated GARCH-t pass the tests in most cases; both in terms of getting the
dynamics right, and getting the nominal coverage right. It is interesting that both
dynamic, parametric forecasts are often rejected in favor of static interval forecasts
when the desired coverage rate is high. In this case, the RiskMetrics forecast turns
out to be overly confident, while-the GARCH-t forecast is overly cautious. Combin-
ing a simply dynamic variance specification with a nonparametric error distribution
is likely to present a favorable alternative.

Financial market participants and regulators have recently shown increasing
interest in interval forecasting. The so-called Value-at-Risk measures suggested for
risk measurement (e.g., Kupiec and O’Brien 1995) correspond to appropriately
defined one-sided interval (or tail) forecasts of portfolio returns. Lopez (1996)
evaluates these types of forecasts by applying the procedures developed in this
paper, along with the methods suggested in Kupiec (1995), and Crnkovic and
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Drachman (1996). The latter work is similar in spirit to Diebold et al., (1998), who
build on the ideas set forth in this paper to design a framework for density forecast
evaluation.

In the Value-at-Risk setup, where attention is confined to the lower tail of the
distribution, new challenges face the forecast evaluator who is concerned with
testing conditional coverage. The loss of information from having only a one-sided
interval forecast can be serious when volatility dynamics are present. This problem,
along with investigating the relevance of variance dynamics for risk managers in
general, is the topic of current research (Christoffersen and Diebold 1997).

APPENDIX
DISTRIBUTION OF THE LR TEST OF CONDITIONAL COVERAGE

Conditional on the first observation, the likelihood function for a first-order
Markov chain with s states is L =117 ; 7r/}s. Consider testing the null hypothesis that
m;; = m;. The ML estimates under the alternative are r;; =n;;/n;, with n, = X;_n,;.
I want to find the distribution of —2log()), where A =L(m;)/L(7;). Bartlett
(1951) shows that the transition counts, n;;, are asymptotically normally distributed
so that

ij>

L ~clAl"?exp(—3[n~ p) Aln — ),

where [n — u] is the vector of the linearly independent variables n;; — u;;, with p;;
being the expected value of n;;. Using this result in the expression for A provides:

el A% exp( = 3 [n — p°] A°[n — p°])
cl A" exp(—3[n — i) Aln - 1])

’

where the parameters have been replaced by their ML estimates. This can then be
written as

A

A A
—2log(A) ~ lOg(%/‘l‘;T) +[n—pu] 4[n - p°] +[n—p) A[n - p].

Under the null, 7;; converges to ;; = ;, thus, | A| converges to | A°), and T get

—2log(A) ~ [n = u°]'A%[n — pu°] + [n — ] A[n — &].

It can be shown that fi;;=n,;, so that the second term in this expression will
vanish, and what is left is —2log(A) ~ [n — u°)' 4A%n — 1.
The typical element in [n— u°] is w;; =n;; — m;n;. Notice that there are s— 1

i
independent restrictions of the form X}_, n;;=n; = Xj_, n;,, and in addition, X} ;n;;

J
=n. Thus, there are only s> —s=s(s — 1) independent variables in the quadratic

form, and I get
~2log(A) ~ x*(s(s — 1)).

In the binary case, s =2, and I get a x2(2) distribution.
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