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Preface

This book is intended to serve as the textbook for a first-year graduate course in econometrics.
It can be used as a stand-alone text, or be used as a supplement to another text.

Students are assumed to have an understanding of multivariate calculus, probability theory,
linear algebra, and mathematical statistics. A prior course in undergraduate econometrics would
be helpful, but not required.

For reference, some of the basic tools of matrix algebra, probability, and statistics are reviewed
in the Appendix.

For students wishing to deepen their knowledge of matrix algebra in relation to their study of
econometrics, I recommend Matrix Algebra by Abadir and Magnus (2005).

An excellent introduction to probability and statistics is Statistical Inference by Casella and
Berger (2002). For those wanting a deeper foundation in probability, I recommend Ash (1972)
or Billingsley (1995). For more advanced statistical theory, I recommend Lehmann and Casella
(1998), van der Vaart (1998), Shao (2003), and Lehmann and Romano (2005).

For further study in econometrics beyond this text, I recommend Davidson (1994) for asymp-
totic theory, Hamilton (1994) for time-series methods, Wooldridge (2002) for panel data and discrete
response models, and Li and Racine (2007) for nonparametrics and semiparametric econometrics.
Beyond these texts, the Handbook of Econometrics series provides advanced summaries of contem-
porary econometric methods and theory.

As this is a manuscript in progress, some parts are quite incomplete, in particular the later
sections of the manuscript. Hopefully one day these sections will be fleshed out and completed in
more detail.
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Chapter 1

Introduction

1.1 What is Econometrics?

The term “econometrics” is believed to have been crafted by Ragnar Frisch (1895-1973) of
Norway, one of the three principle founders of the Econometric Society, first editor of the journal
Econometrica, and co-winner of the first Nobel Memorial Prize in Economic Sciences in 1969. It
is therefore fitting that we turn to Frisch’s own words in the introduction to the first issue of
Econometrica for an explanation of the discipline.

A word of explanation regarding the term econometrics may be in order. Its defini-
tion is implied in the statement of the scope of the [Econometric] Society, in Section I
of the Constitution, which reads: “The Econometric Society is an international society
for the advancement of economic theory in its relation to statistics and mathematics....
Its main object shall be to promote studies that aim at a unification of the theoretical-
quantitative and the empirical-quantitative approach to economic problems....”
But there are several aspects of the quantitative approach to economics, and no single

one of these aspects, taken by itself, should be confounded with econometrics. Thus,
econometrics is by no means the same as economic statistics. Nor is it identical with
what we call general economic theory, although a considerable portion of this theory has
a defininitely quantitative character. Nor should econometrics be taken as synonomous
with the application of mathematics to economics. Experience has shown that each
of these three view-points, that of statistics, economic theory, and mathematics, is
a necessary, but not by itself a suffi cient, condition for a real understanding of the
quantitative relations in modern economic life. It is the unification of all three that is
powerful. And it is this unification that constitutes econometrics.

Ragnar Frisch, Econometrica, (1933), 1, pp. 1-2.

This definition remains valid today, although some terms have evolved somewhat in their usage.
Today, we would say that econometrics is the unified study of economic models, mathematical
statistics, and economic data.

Within the field of econometrics there are sub-divisions and specializations. Econometric theory
concerns the development of tools and methods, and the study of the properties of econometric
methods. Applied econometrics is a term describing the development of quantitative economic
models and the application of econometric methods to these models using economic data.

1.2 The Probability Approach to Econometrics

The unifying methodology of modern econometrics was articulated by Trygve Haavelmo (1911-
1999) of Norway, winner of the 1989 Nobel Memorial Prize in Economic Sciences, in his seminal
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paper “The probability approach in econometrics”, Econometrica (1944). Haavelmo argued that
quantitative economic models must necessarily be probability models (by which today we would
mean stochastic). Deterministic models are blatently inconsistent with observed economic quan-
tities, and it is incohorent to apply deterministic models to non-deterministic data. Economic
models should be explicitly designed to incorporate randomness; stochastic errors should not be
simply added to deterministic models to make them random. Once we acknowledge that an eco-
nomic model is a probability model, it follows naturally that the best way to quantify, estimate,
and conduct inferences about the economy is through the powerful theory of mathematical statis-
tics. The appropriate method for a quantitative economic analysis follows from the probabilistic
construction of the economic model.

Haavelmo’s probability approach was quickly embraced by the economics profession. Today no
quantitative work in economics shuns its fundamental vision.

While all economists embrace the probability approach, there has been some evolution in its
implementation.

The structural approach is the closest to Haavelmo’s original idea. A probabilistic economic
model is specified, and the quantitative analysis performed under the assumption that the economic
model is correctly specified. Researchers often describe this as “taking their model seriously.”The
structural approach typically leads to likelihood-based analysis, including maximum likelihood and
Bayesian estimation.

A criticism of the structural approach is that it is misleading to treat an economic model
as correctly specified. Rather, it is more accurate to view a model as a useful abstraction or
approximation. In this case, how should we interpret structural econometric analysis? The quasi-
structural approach to inference views a structural economic model as an approximation rather
than the truth. This theory has led to the concepts of the pseudo-true value (the parameter value
defined by the estimation problem), the quasi-likelihood function, quasi-MLE, and quasi-likelihood
inference.

Closely related is the semiparametric approach. A probabilistic economic model is partially
specified but some features are left unspecified. This approach typically leads to estimation methods
such as least-squares and the Generalized Method of Moments. The semiparametric approach
dominates contemporary econometrics, and is the main focus of this textbook.

Another branch of quantitative structural economics is the calibration approach. Similar
to the quasi-structural approach, the calibration approach interprets structural models as approx-
imations and hence inherently false. The difference is that the calibrationist literature rejects
mathematical statistics as inappropriate for approximate models, and instead selects parameters
by matching model and data moments using non-statistical ad hoc1 methods.

1.3 Econometric Terms and Notation

In a typical application, an econometrician has a set of repeated measurements on a set of vari-
ables. For example, in an labor application the variables could include weekly earnings, educational
attainment, age, and other descriptive characteristics. We call this information the data, dataset,
or sample.

We use the term observations to refer to the distinct repeated measurements on the variables.
An individual observation often corresponds to a specific economic unit, such as a person, household,
corporation, firm, organization, country, state, city or other geographical region. An individual
observation could also be a measurement at a point in time, such as quarterly GDP or a daily
interest rate.

Economists typically denote variables by the italized roman characters y, x, and/or z. The
convention in econometrics is to use the character y to denote the variable to be explained, while

1Ad hoc means “for this purpose”—a method designed for a specific problem —and not based on a generalizable
principle.
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the characters x and z are used to denote the conditioning (explaining) variables.
Following mathematical convention, real numbers (elements of the real line R) are written using

lower case italics such as y, and vectors (elements of Rk) by lower case bold italics such as x, e.g.

x =


x1

x2
...
xk

 .

Upper case bold italics such as X will be used for matrices.
We typically denote the number of observations by the natural number n, and subscript the

variables by the index i to denote the individual observation, e.g. yi, xi and zi. In some contexts
we use indices other than i, such as in time-series applications where the index t is common, and
in panel studies we typically use the double index it to refer to individual i at a time period t.

The i’th observation is the set (yi,xi, zi).

It is proper mathematical practice to use upper case X for random variables and lower case x
for realizations or specific values. This practice is not commonly followed in econometrics because
instead we use upper case to denote matrices. Thus the notation yi will in some places refer to a
random variable, and in other places a specific realization. Hopefully there will be no confusion as
the use should be evident from the context.

As we mentioned before, ideally each observation consists of a set of measurements on the
list of variables. In practice it is common to find that some variables are not measured for some
observations, and in these cases we describe these variables or observations as unobserved or
missing.

We typically use Greek letters such as β, θ and σ2 to denote unknown parameters of an econo-
metric model, and will use boldface, e.g. β or θ, when these are vector-valued. Estimates are
typically denoted by putting a hat “^”, tilde “~”or bar “-”over the corresponding letter, e.g. β̂
and β̃ are estimates of β.

The covariance matrix of an econometric estimator will typically be written using the capital

boldface V , often with a subscript to denote the estimator, e.g. V β̂ = var
(√

n
(
β̂ − β

))
as the

covariance matrix for
√
n
(
β̂ − β

)
. Hopefully without causing confusion, we will use the notation

V β to denote the asymptotic covariance matrix of
√
n
(
β̂ − β

)
(the variance of the asymptotic

distribution). Estimates will be denoted by appending hats or tildes, e.g. V̂ β is an estimate of V β.

1.4 Observational Data

A common econometric question is to quantify the impact of one set of variables on another
variable. For example, a concern in labor economics is the returns to schooling — the change in
earnings induced by increasing a worker’s education, holding other variables constant. Another
issue of interest is the earnings gap between men and women.

Ideally, we would use experimental data to answer these questions. To measure the returns to
schooling, an experiment might randomly divide children into groups, mandate different levels of
education to the different groups, and then follow the children’s wage path after they mature and
enter the labor force. The differences between the groups would be direct measurements of the ef-
fects of different levels of education. However, experiments such as this would be widely condemned
as immoral! Consequently, we see few non-laboratory experimental data sets in economics.
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Instead, most economic data is observational. To continue the above example, through data
collection we can record the level of a person’s education and their wage. With such data we
can measure the joint distribution of these variables, and assess the joint dependence. But from
observational data it is diffi cult to infer causality, as we are not able to manipulate one variable to
see the direct effect on the other. For example, a person’s level of education is (at least partially)
determined by that person’s choices as well as their educational level. These factors are likely to
be affected by their personal abilities and attitudes towards work. The fact that a person is highly
educated suggests a high level of ability, which suggests a high relative wage. This is an alternative
explanation for an observed positive correlation between educational levels and wages. High ability
individuals do better in school, and therefore choose to attain higher levels of education, and their
high ability is the fundamental reason for their high wages. The point is that multiple explanations
are consistent with a positive correlation between schooling levels and education. Knowledge of the
joint distibution alone may not be able to distinguish between these explanations.

Most economic data sets are observational, not experimental. This means that
all variables must be treated as random and possibly jointly determined.

This discussion means that it is diffi cult to infer causality from observational data alone. Causal
inference requires identification, and this is based on strong assumptions. We will return to a
discussion of some of these issues in Chapter 11.

1.5 Standard Data Structures

There are three major types of economic data sets: cross-sectional, time-series, and panel. They
are distinguished by the dependence structure across observations.

Cross-sectional data sets have one observation per individual. Surveys are a typical source
for cross-sectional data. In typical applications, the individuals surveyed are persons, households,
firms or other economic agents. In many contemporary econometric cross-section studies the sample
size n is quite large. It is conventional to assume that cross-sectional observations are mutually
independent. Most of this text is devoted to the study of cross-section data.

Time-series data are indexed by time. Typical examples include macroeconomic aggregates,
prices and interest rates. This type of data is characterized by serial dependence so the random
sampling assumption is inappropriate. Most aggregate economic data is only available at a low
frequency (annual, quarterly or perhaps monthly) so the sample size can be much smaller than in
typical cross-section studies. The exception is financial data where data are available at a high
frequency (weekly, data, hourly, or tick-by-tick) so sample sizes can be quite large.

Panel data combines elements of cross-section and time-series. These data sets consist of a set
of individuals (typically persons, households, or corporations) surveyed repeatedly over time. The
common modeling assumption is that the individuals are mutually independent of one another,
but a given individual’s observations are mutually dependent. This is a modified random sampling
environment.

Data Structures

• Cross-section

• Time-series

• Panel
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Some contemporary econometric applications combine elements of cross-section, time-series,
and panel data modeling. These include models of spatial correlation and clustering.

As we mentioned above, most of this text will be devoted to cross-sectional data under the
assumption of mutually independent observations. By mutual independence we mean that the i’th
observation (yi,xi, zi) is independent of the j’th observation (yj ,xj , zj) for i 6= j. (Sometimes the
label “independent”is misconstrued. It is a statement about the relationship between observations
i and j, not a statement about the relationship between yi and xi and/or zi.)

Furthermore, if the data is randomly gathered, it is reasonable to model each observation as
a random draw from the same probability distribution. In this case we say that the data are
independent and identically distributed or iid. We call this a random sample. For most of
this text we will assume that our observations come from a random sample.

Definition 1.5.1 The observations (yi,xi, zi) are a random sample if they are
mutually independent and identically distributed (iid) across i = 1, ..., n.

In the random sampling framework, we think of an individual observation (yi,xi, zi) as a re-
alization from a joint probability distribution F (y,x, z) which can call the population. This
“population” is infinitely large. This abstraction can be a source of confusion as it does not cor-
respond to a physical population in the real world. The distribution F is unknown, and the goal
of statistical inference is to learn about features of F from the sample. The assumption of random
sampling provides the mathematical foundation for treating economic statistics with the tools of
mathematical statistics.

The random sampling framework was a major intellectural breakthrough of the late 19th cen-
tury, allowing the application of mathematical statistics to the social sciences. Before this concep-
tual development, methods from mathematical statistics had not been applied to economic data as
they were viewed as inappropraite. The random sampling framework enabled economic samples to
be viewed as homogenous and random, a necessary precondition for the application of statistical
methods.

1.6 Sources for Economic Data

Fortunately for economists, the the internet provides a convenient forum for dissemination of
economic data. Many large-scale economic datasets are available without charge from governmental
agencies. An excellent starting point is the Resources for Economists Data Links, available at
rfe.org. From this site you can find almost every publically available economic data set. Some
specific data sources of interest include

• Bureau of Labor Statistics

• US Census

• Current Population Survey

• Survey of Income and Program Participation

• Panel Study of Income Dynamics

• Federal Reserve System (Board of Governors and regional banks)

• National Bureau of Economic Research
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• U.S. Bureau of Economic Analysis

• CompuStat

• International Financial Statistics

Another good source of data is from authors of published empirical studies. Most journals
in economics require authors of published papers to make their datasets generally available. For
example, in its instructions for submission, Econometrica states:

Econometrica has the policy that all empirical, experimental and simulation results must
be replicable. Therefore, authors of accepted papers must submit data sets, programs,
and information on empirical analysis, experiments and simulations that are needed for
replication and some limited sensitivity analysis.

The American Economic Review states:

All data used in analysis must be made available to any researcher for purposes of
replication.

The Journal of Political Economy states:

It is the policy of the Journal of Political Economy to publish papers only if the data
used in the analysis are clearly and precisely documented and are readily available to
any researcher for purposes of replication.

If you are interested in using the data from a published paper, first check the journal’s website,
as many journals archive data and replication programs online. Second, check the website(s) of
the paper’s author(s). Most academic economists maintain webpages, and some make available
replication files complete with data and programs. If these investigations fail, email the author(s),
politely requesting the data. You may need to be persistent.

As a matter of professional etiquette, all authors absolutely have the obligation to make their
data and programs available. Unfortunately, many fail to do so, and typically for poor reasons.
The irony of the situation is that it is typically in the best interests of a scholar to make as much of
their work (including all data and programs) freely available, as this only increases the likelihood
of their work being cited and having an impact.

Keep this in mind as you start your own empirical project. Remember that as part of your end
product, you will need (and want) to provide all data and programs to the community of scholars.
The greatest form of flattery is to learn that another scholar has read your paper, wants to extend
your work, or wants to use your empirical methods. In addition, public openness provides a healthy
incentive for transparency and integrity in empirical analysis.

1.7 Econometric Software

Economists use a variety of econometric, statistical, and programming software.
STATA (www.stata.com) is a powerful statistical program with a broad set of pre-programmed

econometric and statistical tools. It is quite popular among economists, and is continuously being
updated with new methods. It is an excellent package for most econometric analysis, but is limited
when you want to use new or less-common econometric methods which have not yet been programed.

GAUSS (www.aptech.com), MATLAB (www.mathworks.com), and Ox (www.oxmetrics.net)
are high-level matrix programming languages with a wide variety of built-in statistical functions.
Many econometric methods have been programed in these languages and are available on the web.
The advantage of these packages is that you are in complete control of your analysis, and it is
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easier to program new methods than in STATA. Some disadvantages are that you have to do
much of the programming yourself, programming complicated procedures takes significant time,
and programming errors are hard to prevent and diffi cult to detect and eliminate.

R (www.r-project.org) is an integrated suite of statistical and graphical software that is flexible,
open source, and best of all, free!

For highly-intensive computational tasks, some economists write their programs in a standard
programming language such as Fortran or C. This can lead to major gains in computational speed,
at the cost of increased time in programming and debugging.

As these different packages have distinct advantages, many empirical economists end up using
more than one package. As a student of econometrics, you will learn at least one of these packages,
and probably more than one.

1.8 Reading the Manuscript

Chapters 2 through 7 deal with the core linear regression and projection models. Chapter 8
introduces the bootstrap. Chapters 9 through 11 deal with the Generalized Method of Moments,
empirical likelihood and endogeneity. Chapters 12 and 13 cover time series, and Chapters 14, 15
and 16 cover limited dependent variables, panel data, and nonparametrics. Reviews of matrix
algebra, probability theory, asymptotic theory, maximum likelihood, and numerical optimization
can be found in the appendix.
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Chapter 2

Regression and Projection

2.1 Introduction

The most commonly applied econometric tool is least-squares estimation, also known as regres-
sion. As we will see, least-squares is a tool to estimate an approximate conditional mean of one
variable (the dependent variable) given another set of variables (the regressors, conditioning
variables, or covariates).

In this chapter we abstract from estimation, and focus on the probabilistic foundation of the
regression model and its projection approximation.

2.2 Notation

We let y denote the dependent variable and let (x1, x2, ..., xk) denote the k regressors. Through-
out this section we maintain the assumption that the variables are stochastic.

Assumption 2.2.1 (y, x1, x2, ..., xk) is a random vector
with a joint probability distribution such that

1. Ey2 <∞.

2. Ex2
j <∞ for j = 1, ..., k.

The finite second moment conditions imposed in Assumption 2.2.1.1 and 2.2.1.2 imply that the
variables have finite means and variances.

It is convenient to write the set of regressors as a vector in Rk :

x =


x1

x2
...
xk

 . (2.1)

For most of our analysis it is unimportant whether the regressors x come from continuous
or discrete distributions. As an example of a discrete variable, many regressors in econometric
applications are binary, taking on only the values 0 and 1, and are called dummy variables.

For some purposes, the same is true about the dependent variable — it could be continuous
or discrete. But when the dependent variable is discrete we typically use specific models and
techniques built for this purpose (see Chapter 14).
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2.3 Conditional Mean

To study how the distribution of y varies with the variables x in the population, we start with
f (y | x) , the conditional density of y given x.

Figure 2.1: Wage Densities for White College Grads with 10-15 Years Work Experience

To illustrate, Figure 2.1 displays the density1 of hourly wages for men and women, from the
population of white non-military wage earners in the U.S. with a college degree and 10-15 years of
potential work experience. These are conditional density functions —the density of hourly wages
conditional on race, gender, education and experience. The two density curves show the effect of
gender on the distribution of wages, holding the other variables constant.

While it is easy to observe that the two densities are unequal, it is useful to have numerical
measures of the difference. An important summary measure is the conditional mean2

m (x) = E (y | x) =

∫ ∞
−∞

yf (y | x) dy. (2.2)

The function m (x) varies with the vector x and is thus a function from Rk to R. The conditional
mean m (x) is sometimes called the regression function. In general, m (x) can have arbitrary
shape, although in some cases an economic model may dictate a specific shape restriction (such
as monotonicity) or a specific functional form (such as linearity). The regression function m (x) is
defined for values of x in the support3 of x. Thus when x has a discrete distribution then m (x) is
defined for those values of x with positive probability. When x has a continuous distribution with
density fx(x) then m (x) is defined for those values of x for which fx(x) > 0.

In the example presented in Figure 2.1, the mean wage for men is $27.22, and that for women
is $20.73. These are indicated in Figure 2.1 by the arrows drawn to the x-axis. These values
are the conditional means of U.S. wages in 2004 (conditional on gender, and conditional for white
non-military wages earners with a college degree and 10-15 years of work experience).

Take a closer look at the density functions displayed in Figure 2.1. You can see that the right
tail of the density is much thicker than the left tail. These are asymmetric (skewed) densities,

1These are nonparametric density estimates using a normal kernel with the bandwidth selected by cross-validation.
See Chapter 16. The data are from the 2004 Current Population Survey.

2The conditional mean exists if E |y| <∞. For a rigorous definition see Section 2.16.
3The support of a random vector x is the closed set of points for which its distribution F (x) is increasing in all

elements of x.
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which is a common feature of many economic variables. When a distribution is skewed, the mean
is not necessarily a good summary of the central tendency. In this context it is often convenient to
transform the data by taking the (natural) logarithm4. Figure 2.2 shows the density of log hourly
wages for the same population, with mean log hourly wages (3.21 and 2.91, respectively) drawn
in with the arrows. The difference between the mean log wage of men and women is 0.30, which
implies a 30% average wage difference for this population. The difference in the mean log wage is a
more robust measure of the typical wage gap than the difference in the untransformed wage means.
For this reason, wage regressions typically use log wages as a dependent variable rather than the
level of wages.

Figure 2.2: Log Wage Densities for White College Grads with 10-15 Years Work Experience

The comparisons in Figures 2.1 and 2.2 are facilitated by the fact that the control variable
(gender) is binary. When the distribution of the control variable takes on multiple values or
is continuous, then comparisons become more complicated. To illustrate, Figure 2.3 displays a
scatter plot5 of log wages against education levels. Assuming for simplicity that this is the true
joint distribution, the solid line displays the conditional expectation of log wages varying with
education. The conditional expectation function is close to linear; the dashed line is a linear
projection approximation which will be discussed in Section 2.9. The main point to be learned
from Figure 2.3 is that the conditional expectation is a useful summary of the central tendency of
the conditional distribution when the control variable takes multiple values. Of particular interest
to graduate students may be the observation that difference between a B.A. and a Ph.D. degree in
mean log hourly wages is 0.36, implying an average 36% difference in wage levels.

As another example, Figure 2.4 displays the conditional mean6 of log hourly wages as a function
of labor market experience. The solid line is the conditional mean. We see that the conditional
mean is strongly non-linear and non-monotonic. The main lesson to be learned at this point from
Figure 2.4 is that conditional expectations can be quite non-linear.

4Mathematically, this is equivalent to measuring the central tendency by the conditional geometric mean
exp (E (log y | x)). For example, the conditional geometric means for the densities in Figure 2.1 are $24.78 and
$18.36, respectively.

5White non-military male wage earners with 10-15 years of potential work experience.
6 In the population of white non-military male wage earners with 12 years of education.
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Figure 2.3: Scatter Plot and Conditional Mean of Log Wages Given Education

2.4 Regression Error

The regression error e is defined as the difference between y and its conditional mean (2.2)
evaluated at the random vector x:

e = y −m(x).

By construction, this yields the formula

y = m(x) + e. (2.3)

It is useful to understand that the regression error is derived from the joint distribution of (y,x),
and so its properties are derived from this construction. We now discuss some of these properties.

Theorem 2.4.1 Properties of the regression error e.
Under Assumption 2.2.1,

1. E (e | x) = 0.

2. E(e) = 0.

3. E (h(x)e) = 0 for any function h (·) such that Eh(x)2 <∞

4. E(xe) = 0.

Proof of Theorem 2.4.1.1:
By the definition of e and the linearity of conditional expectations,

E (e | x) = E ((y −m(x)) | x)

= E (y | x)− E (m(x) | x)

= m(x)−m(x) = 0.

Proofs of the remaining parts of Theorem 2.4.1.1 are left to Exercise 2.1.

11



Figure 2.4: Log Hourly Wage as a Function of Experience

The equations

y = m(x) + e

E (e | x) = 0.

are often stated jointly as the regression framework. It is important to understand that this is a
framework, not a model, because no restrictions have been placed on the joint distribution of the
data. These equations hold true by definition. A regression model imposes further restrictions on
the permissible class of regression functions m (x) .

The condition E (e | x) = 0 is the key implication of the conditional mean model. This equation
is sometimes called a conditional mean restriction, since the conditional mean is restricted to equal
zero. The property is also sometimes called mean independence, for the conditional mean of e is
0 and thus independent of x. It is quite important to understand, however, that it does not imply
that the distribution of e is independent of x. Sometimes the assumption “e is independent of x”
is added as a convenient simplification, but it is not generic feature of regression. Typically and
generally, e and x are jointly dependent, even though the conditional mean of e is zero.

As a simple example, suppose that y = xu where x and u are independent and Eu = 1. Then
E (y | x) = x so the regression equation is y = x+ e where e = x(u− 1). Yet e is not independent
of x, even though E (e | x) = 0.

2.5 Best Predictor

Given a realized value of x, we can view m(x) as a predictor or forecast of y. The prediction
error is e = y−m(x), which is random. A non-stochastic measure of the magnitude of the prediction
error is the expectation of the squared error, or mean squared error

E (y −m (x))2 = Ee2 ≡ σ2. (2.4)

The parameter σ2 is also known as the variance of the regression error.
It turns out that the the conditional mean is a good predictor of y in the sense that it has the

lowest mean squared error among all predictors. This holds regardless of the joint distribution of
(y,x). We state this formally in the following result.
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Theorem 2.5.1 Conditional Mean as Best Predictor
Let m (x) = E (y | x) be the conditional mean and let g (x) be any other
predictor of y given x. Under Assumption 2.2.1,

E (y − g (x))2 ≥ E (y −m (x))2 .

Proof of Theorem 2.5.1: Since y = m(x) + e, the mean squared error using g (x) is

E (y − g (x))2 = E (e+m (x)− g (x))2

= Ee2 + 2E (e (m (x)− g (x))) + E (m (x)− g (x))2

= Ee2 + E (m (x)− g (x))2

≥ Ee2 = E (y −m (x))2

where the third equality uses Theorem 2.4.1.3. The right-hand-side after the third equality is
minimized by setting g (x) = m (x), yielding the final inequality.

2.6 Conditional Variance

While the conditional mean is a good measure of the location of a conditional distribution,
it does not provide information about the spread of the distribution. A common measure of the
dispersion is the conditional variance.

Definition 2.6.1 The conditional variance of y given x is

σ2(x) = var (y | x)

= E
(
y2 | x

)
− (E (y | x))2

= E
(

(y − E (y | x))2 | x
)

= E
(
e2 | x

)

Generally, σ2 (x) is a non-trivial function of x and can take any form subject to the restriction
that it is non-negative. The conditional standard deviation is its square root σ(x) =

√
σ2(x).

One way to think about σ2(x) is that it is the conditional mean of e2 given x.
As an example of how the conditional variance depends on observables, compare the conditional

wage densities for men and women displayed in Figure 2.1. The difference between the densities is
not just a location shift, but is also a difference in spread. Specifically, we can see that the density
for men’s wages is somewhat more spread out than that for women, while the density for women’s
wages is somewhat more peaked. Indeed, the conditional standard deviation for men’s wages is
12.1 and that for women is 10.5. So while men have higher average wages, they are also somewhat
more dispersed.

Many econometric studies focus on the conditional mean m(x) and either ignore the conditional
variance σ2(x), treat it as a constant σ2(x) = σ2, or treat it as a nuisance parameter (a parameter
not of primary interest). This may be unfortunate as dispersion is relevant to many economic
topics, including income and wealth distribution, economic inequality, and price dispersion.

The perverse consequences of a narrow-minded focus on the mean has been parodied in a classic
joke:
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An economist was standing with one foot in a bucket of boiling water
and the other foot in a bucket of ice. When asked how he felt, he
replied, “On average I feel just fine.”

Clearly, the economist in question ignored variance!

2.7 Homoskedasticity and Heteroskedasticity

An important special case obtains when the conditional variance of the regression error σ2(x)
is a constant and independent of x. This is called homoskedasticity.

Definition 2.7.1 The error is homoskedastic if E
(
e2 | x

)
= σ2

does not depend on x.

In the general case where σ2(x) depends on x we say that the error e is heteroskedastic.

Definition 2.7.2 The error is heteroskedastic if E
(
e2 | x

)
= σ2(x)

depends on x.

Even when the error is heteroskedastic we still define the unconditional variance σ2 of the error
e as in (2.4). It may be helpful to notice that by using iterated expectations the unconditional
variance can be written as the expected conditional error variance

σ2 = E
(
e2
)

= E
(
E
(
e2 | x

))
= E

(
σ2(x)

)
.

Thus σ2 is well-defined whether or not the error is homoskedastic or heteroskedastic.
Some older or introductory textbooks describe heteroskedasticity as the case where “the variance

of e varies across observations”. This is a poor and confusing definition. It is more constructive
to understand that heteroskedasticity is the case where the conditional variance σ2 (x) depends on
the variables x. (Once again, recall Figure 2.1 and how the variance of wages varies between men
and women.)

Older textbooks also tend to describe homoskedasticity as a component of a correct regression
specification, and describe heteroskedasticity as an exception or deviance. This description has
influenced many generations of economists, but it is unfortunately backwards. The correct view
is that heteroskedasticity is generic and “standard”, while homoskedasticity is unusual and excep-
tional. The default in empirical work should be to assume that the errors are heteroskedastic, not
the converse.

In apparent contraction to the above statement, we will still frequently impose the homoskedas-
ticity assumption when making theoretical investigations into the properties of regression tech-
niques. The reason is that in many cases homoskedasticity greatly simplifies the theoretical cal-
culations, and it is therefore quite advantageous for teaching and learning. It should always be
remembered, however, that homoskedasticity is never imposed because it is believed to be a correct
feature of an empirical regression, but rather because of its simplicity.
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2.8 Linear Regression

An important special case of (2.3) is when the conditional mean function m (x) is linear in x
(or linear in functions of x). In this case we can write the mean equation as

m(x) = β0 + x1β1 + x2β2 + · · ·+ xkβk.

Notationally it is convenient to write this as a simple function of the vector x. An easy way to do
so is to augment the regressor vector x by listing the number “1”as an element. We call this the
“constant”and the corresponding coeffi cient is called the “intercept”. Equivalently, assuming that
the first element7 of the vector x is the intercept, then x1 = 1. Thus (2.1) has been redefined as
the k × 1 vector

x =


1
x2
...
xk

 . (2.5)

With this redefinition, then the mean equation is

m(x) = x1β1 + x2β2 + · · ·+ xkβk

= x′β (2.6)

where

β =

 β1
...
βk

 (2.7)

is a k × 1 coeffi cient vector. This is called the linear regression model.

Linear Regression

y = x′β + e

E (e | x) = 0

If in addition the error is homoskedastic, we call this the homoskedastic linear regression model.

Homoskedastic Linear Regression

y = x′β + e

E (e | x) = 0

E
(
e2 | x

)
= σ2

7The order doesn’t matter. It could be any element.
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2.9 Best Linear Predictor

While the conditional mean m(x) = E (y | x) is the best predictor of y among all functions
of x, its functional form is typically unknown. In particular, the linear equation of the previous
section is empirically unlikely to be accurate. In practice it is more realistic to view the linear
specification (2.6) as an approximation. In this section we derive a specific approximation with a
simple interpretation.

Theorem 2.5.1 showed that the conditional mean m (x) is the best predictor in the sense that
it has the lowest mean squared error among all predictors. By extension, we can define a linear
approximation to the conditional mean function as the linear function with the lowest mean squared
error among all linear predictors.

To be precise, a linear predictor for y given x is x′β for some β ∈ Rk. The mean squared error
of this predictor is

S(β) = E
(
y − x′β

)2
.

The best linear predictor of y given x is defined by finding the vector β which minimizes S(β).

Definition 2.9.1 The Best Linear Predictor of y given x is x′β, where β
minimizes the mean squared error

S(β) = E
(
y − x′β

)2
.

The minimizer
β = argmin

β∈Rk
S(β) (2.8)

is called the Linear Projection Coeffi cient.

The quadratic structure of S(β) means that we can solve explicitly for β. The mean squared
prediction error can be written out as a quadratic function of β :

S(β) = Ey2 − 2β′E (xy) + β′E
(
xx′

)
β

The first-order condition for minimization (from Appendix A.9) is

0 =
∂

∂β
S(β) = −2E (xy) + 2E

(
xx′
)
β. (2.9)

This has a unique solution under the following condition.

Assumption 2.9.1 Q = E (xx′) is invertible.

The matrixQ is sometimes called the design matrix, as in experimental settings the researcher
is able to control Q by manipulating the distribution of the regressors x.

Rewriting (2.9) as
2E (xy) = 2E

(
xx′
)
β

dividing by 2, and then inverting the k × k matrix E (xx′) , we obtain the solution for β.
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Theorem 2.9.1 Linear Projection Coeffi cient
Under Assumptions 2.2.1 and 2.9.1, the linear projection coeffi cient equals

β =
(
E
(
xx′
))−1 E (xy) . (2.10)

It is worth taking the time to understand the notation involved in the expression (2.10). E (xx′)
is a k × k matrix and E (xy) is a k × 1 column vector. Therefore, alternative expressions such as
E(xy)
E(xx′) or E (xy) (E (xx′))−1 are incoherent and incorrect.
Given the definition of β in (2.10), x′β is the best linear predictor for y. The projection error

is

e = y − x′β. (2.11)

The error e from the linear prediction equation is equal to the error from the regression equation
when (and only when) the conditional mean is linear in x, otherwise they are distinct.

Rewriting, we obtain a decomposition of y into linear predictor and error

y = x′β + e. (2.12)

This completes the derivation of the model. We call x′β the best linear predictor of y given x, or
the linear projection of y onto x. In general we call equation (2.12) the linear projection model.

The following are important properties of the model.

Theorem 2.9.2 Properties of Linear Projection Model
Under Assumptions 2.2.1 and 2.9.1, then (2.11) and (2.12) exist and are unique,

σ2 = E
(
e2
)
<∞, (2.13)

and
E (xe) = 0. (2.14)

A complete proof of Theorem 2.9.1 is presented below.
We have shown that under mild regularity conditions, for any pair (y,x) we can define a linear

equation (2.12) with the properties listed in Theorem 2.9.1. No additional assumptions are required.
Thus the linear model (2.12) exists quite generally. However, it is important not to misinterpret
the generality of this statement. The linear equation (2.12) is defined as the best linear predictor.
In contrast, in many economic models the parameter β may be defined within the model. In this
case (2.10) may not hold and the implications of Theorem 2.9.1 may be false. These structural
models require alternative estimation methods, and are discussed in Chapter 11.

Linear Projection Model

y = x′β + e.

E (xe) = 0

β =
(
E
(
xx′
))−1 E (xy)
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Equation (2.14) is a set of k equations, one for each regressor. In other words, (2.14) is equivalent
to

E (xje) = 0 (2.15)

for j = 1, ..., k. As in (2.5), the regressor vector x typically contains a constant, e.g. x1 = 1. In
this case (2.15) for j = 1 is the same as

E (e) = 0. (2.16)

Thus the projection error has a mean of zero when the regression contains a constant. (When x
does not have a constant, this is not guarenteed. As it is desireable for e to have a zero mean, this
is a good reason to always include a constant in any regression.)

It is also useful to observe that since cov(xj , e) = E (xje) − E (xj)E (e) , then (2.15)-(2.16)
together imply that the variables xj and e are uncorrelated.

Invertibility and Identification

The vector (2.10) exists and is unique as long as the k × k matrix Q = E (xx′) is
invertible. Observe that for any non-zero α ∈ Rk,

α′Qα = E
(
α′xx′α

)
= E

(
α′x

)2 ≥ 0

so Q by construction is positive semi-definite. It is invertible if and only if it is positive
definite, which requires that for all non-zero α, E (α′x)2 > 0. Equivalently, there cannot
exist a non-zero vector α such that α′x = 0 identically. This occurs when redundant
variables are included in x. In order for β to be uniquely defined, this situation must be
excluded.

Theorem 2.9.1 shows that the linear projection coeffi cient β is identified (uniquely
determined) under Assumptions 2.2.1 and 2.9.1. The key is invertibility of Q. Otherwise,
there is no unique solution to the equation

E
(
xx′
)
β = E (xy) . (2.17)

When Q is not invertible there are multiple solutions to (2.17), all of which yield an
equivalent best linear predictor x′β. In this case the coeffi cient β is not identified as it
does not have a unique value. Even so, the best linear predictor x′β still identified. One
solution is to set

β =
(
E
(
xx′
))− E (xy)

where A− denotes the generalized inverse of A (see Appendix A.5).

Proof of Theorem 2.9.1
We first show that the moments E (xy) and E (xx′) are finite and well defined. First, it is useful

to note that Assumption 2.2.1 implies that

E ‖x‖2 = E
(
x′x
)

=
k∑
j=1

Ex2
j <∞. (2.18)

Note that for j = 1, ..., k, by the Cauchy-Schwarz Inequality (C.3) and Assumption 2.2.1

E |xjy| ≤
(
Ex2

j

)1/2 (Ey2
)1/2

<∞.
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Thus the elements in the vector E (xy) are well defined and finite. Next, note that the jl’th element
of E (xx′) is E (xjxl) . Observe that

E |xjxl| ≤
(
Ex2

j

)1/2 (Ex2
l

)1/2
<∞.

Thus all elements of the matrix E (xx′) are finite.
Equation (2.10) states that β = (E (xx′))−1 E (xy) which is well defined since (E (xx′))−1 exists

under Assumption 2.9.1. It follows that e = y − x′β as defined in (2.11) is also well defined.
Note the Schwarz Inequality (A.6) implies (x′β)2 ≤ ‖x‖2 ‖β‖2 and therefore combined with

(2.18) we see that
E
(
x′β

)2 ≤ E ‖x‖2 ‖β‖2 <∞. (2.19)

Using Minkowski’s Inequality (C.5), Assumption 2.2.1, and (2.19) we find

(
E
(
e2
))1/2

=
(
E
(
y − x′β

)2)1/2

≤
(
Ey2

)1/2
+
(
E
(
x′β

)2)1/2

< ∞

establishing (2.13).
An application of the Cauchy-Schwarz Inequality (C.3) shows that for any j

E |xje| ≤
(
Ex2

j

)1/2 (Ee2
)1/2

<∞

and therefore the elements in the vector E (xe) are well defined and finite.
Using the definitions (2.11) and (2.10), and the matrix properties that AA−1 = I and Ia = a,

E (xe) = E
(
x
(
y − x′β

))
= E (xy)− E

(
xx′
) (
E
(
xx′
))−1 E (xy) = 0

completing the proof.

2.10 Regression Coeffi cients

Sometimes it is useful to separate the intercept from the other regressors, and write the regres-
sion equation in the format

y = α+ x′β + e (2.20)

where α is the intercept and x does not contain a constant.
Taking expectations of this equation, we find

Ey = Eα+ Ex′β + Ee

or
µy = α+ µ′xβ

where µy = Ey and µx = Ex, since E (e) = 0 from (2.16). Rearranging, we find

α = µy − µ′xβ.

Subtracting this equation from (2.20) we find

y − µy = (x− µx)′ β + e, (2.21)
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a linear equation between the centered variables y − µy and x − µx. (They are centered at their
means, or equivalently are mean-zero random variables.) Because x − µx is uncorrelated with e,
(2.21) is also a linear projection, thus by the formula for the linear projection model,

β =
(
E
(
(x− µx) (x− µx)′

))−1 E
(
(x− µx)

(
y − µy

))
= cov (x,x)−1 cov (x, y)

a function only of the covariances8 of x and y.

Theorem 2.10.1 In the linear projection model

y = α+ x′β + e,

then
α = µy − µ′xβ (2.22)

and
β = cov (x,x)−1 cov (x, y) . (2.23)

2.11 Best Linear Approximation

There are alternative ways we could construct a linear approximation x′β to the conditional
mean m(x). In this section we show that one natural approach turns out to yield the same answer
as the best linear predictor.

We start by defining the mean-square approximation error of x′β to m(x) as the expected
squared difference between x′β and the conditional mean m(x)

d(β) = E
(
m(x)− x′β

)2
. (2.24)

The function d(β) is a measure of the deviation of x′β from m(x). If the two functions are identical
then d(β) = 0, otherwise d(β) > 0.We can also view the mean-square difference d(β) as a density-
weighted average of the function (m(x)− x′β)2 .

We can then define the best linear approximation to the conditional m(x) as the function x′β
obtained by selecting β to minimize d(β) :

β = argmin
β∈Rk

d(β). (2.25)

Similar to the best linear predictor we are measuring accuracy by expected squared error. The
difference is that the best linear predictor (2.8) selects β to minimize the expected squared predic-
tion error, while the best linear approximation (2.25) selects β to minimize the expected squared
approximation error.

Despite the different definitions, it turns out that the best linear predictor and the best linear
approximation are identical. By the same steps as in (2.9) plus an application of conditional
expectations we can find that

β =
(
E
(
xx′
))−1 E (xm(x)) (2.26)

=
(
E
(
xx′
))−1 E (xy) (2.27)

(see Exercise 2.14). Thus (2.25) equals (2.8). We conclude that the definition (2.25) can be viewed
as an alternative motivation for the linear projection coeffi cient.

8The covariance matrix between vectors x and z is cov (x,z) = E
(
(x− Ex) (z − Ez)′

)
. We call cov (x,x) the

covariance matrix of x.
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2.12 Normal Regression

Suppose the variables (y,x) are jointly normally distributed. Consider the best linear predictor
of y on x

y = x′β + e.

β =
(
E
(
xx′
))−1 E (xy) .

Since the error e is a linear transformation of the normal vector (y,x), it follows that (e,x) is
jointly normal, and since they are jointly normal and uncorrelated (since E (xe) = 0) they are also
independent (see Appendix B.9). Independence implies that

E (e | x) = E (e) = 0

and
E
(
e2 | x

)
= E

(
e2
)

= σ2

which are properties of a homoskedastic linear conditional regression.
We have shown that when (y,x) are jointly normally, they satisfy a normal linear regression

y = x′β + e

where
e ∼ N(0, σ2)

is independent of x.
This is an alternative (and traditional) motivation for the linear regression model. This moti-

vation has limited merit in econometric applications since economic data is typically non-normal.

2.13 Regression to the Mean

The term regression originated in an influential paper by Francis Galton published in 1886,
where he examined the joint distribution of the stature (height) of parents and children. Effectively,
he was estimating the conditional mean of children’s height given their parents height. Galton
discovered that this conditional mean was approximately linear with a slope of 2/3. This implies
that on average a child’s height is more mediocre than his or her parent’s height. Galton called
this phenomenon regression to the mean, and the label regression has stuck to this day to
describe most conditional relationships.

One of Galton’s fundamental insights was to recognize that if the marginal distributions of y
and x are the same (e.g. the heights of children and parents in a stable environment) then the
regression slope in a linear projection is always less than one.

To be more precise, take the simple regression

y = α+ xβ + e (2.28)

where y equals the height of the child and x equals the height of the parent. Assume that y and x
have the same mean, so that µy = µx = µ. Then from (2.22)

α = (1− β)µ

so we can write the conditional mean of (2.28) as

E (y | x) = (1− β)µ+ xβ.

This shows that the expected height of the child is a weighted average of the population average
height µ and the parents height x, with the weight equal to the regression slope β.When the height
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distribution is stable across generations, so that var(y) = var(x), then this slope is the simple
correlation of y and x. Using (2.23)

β =
cov (x, y)

var(x)
= corr(x, y).

By the properties of correlation (e.g. equation (B.7) in the Appendix), −1 ≤ corr(x, y) ≤ 1, with
corr(x, y) = 1 only in the degenerate case y = x. Thus if we exclude degeneracy, β is strictly less
than 1.

This means that on average a child’s height is more mediocre (closer to the population average)
than the parent’s.

Sir Francis Galton

Sir Francis Galton (1822-1911) of England was one of the leading figures in late 19th century
statistics. In addition to inventing the concept of regression, he is credited with introducing
the concepts of correlation, the standard deviation, and the bivariate normal distribution.
His work on heredity made a significant intellectual advance by examing the joint distribu-
tions of observables, allowing the application of the tools of mathematical statistics to the
social sciences.

A common error —known as the regression fallacy —is to infer from β < 1 that the population
is converging9. This is a fallacy because we have shown that under the assumption of constant
(e.g. stable, non-converging) means and variances, the slope coeffi cient must be less than one. It
cannot be anything else. A slope less than one does not imply that the variance of y is less than
than the variance of x.

Another way of seeing this is to examine the conditions for convergence in the context of equation
(2.28). Since x and e are uncorrelated, it follows that

var(y) = β2 var(x) + var(e).

Then var(y) < var(x) if and only if

β2 < 1− var(e)

var(x)

which is not implied by the simple condition |β| < 1.
The regression fallacy arises in related empirical situations. Suppose you sort families into groups

by the heights of the parents, and then plot the average heights of each subsequent generation over
time. If the population is stable, the regression property implies that the plots lines will converge
—children’s height will be more average than their parents. The regression fallacy is to incorrectly
conclude that the population is converging. The message is that such plots are misleading for
inferences about convergence.

The regression fallacy is subtle. It is easy for intelligent economists to succumb to its temptation.
A famous example is The Triumph of Mediocrity in Business by Horace Secrist, published in 1933.
In this book, Secrist carefully and with great detail documented that in a sample of department
stores over 1920-1930, when he divided the stores into groups based on 1920-1921 profits, and
plotted the average profits of these groups for the subsequent 10 years, he found clear and persuasive
evidence for convergence “toward mediocrity”. Of course, there was no discovery —regression to
the mean is a necessary feature of stable distributions.

9A population is converging if its variance is declining towards zero.
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2.14 Reverse Regression

Galton noticed another interesting feature of the bivariate distribution. There is nothing special
about a regression of y on x. We can also regress x on y. (In his heredity example this is the best
linear predictor of the height of parents given the height of their children.) This regression takes
the form

x = α∗ + yβ∗ + e∗. (2.29)

This is sometimes called the reverse regression. In this equation, the coeffi cients α∗, β∗ and
error e∗ are defined by linear projection. In a stable population we find that

β∗ = corr(x, y) = β

α∗ = (1− β)µ = α

which are exactly the same as in the regression of y on x! The intercept and slope have exactly the
same values in the forward and reverse regression!

While this algebraic discovery is quite simple, it is counter-intuitive. Instead, a common yet
mistaken guess for the form of the reverse regression is to take the regression (2.28), divide through
by β and rewrite to find the equation

x = −α
β

+ y
1

β
− 1

β
e (2.30)

suggesting that the regression of x on y should have a slope coeffi cient of 1/β instead of β, and
intercept of -α/β rather than α. What went wrong? Equation (2.30) is perfectly valid, because it
is a simple manipulation of the valid equation (2.28). The trouble is that (2.30) is not a regression
equation. Inverting a regression does not yield a regression. Instead, (2.29) is a valid regression,
not (2.30).

In any event, Galton’s finding was that when the variables are standardized, the slope in both
regressions (y on x, and x and y) equals the correlation, and both equations exhibit regression to
the mean. It is not a causal relation, but a natural feature of all joint distributions.

2.15 Limitations of the Best Linear Predictor

Let’s compare the linear projection and linear regression models.
From Theorem 2.4.1.4 we know that the regression error has the property E (xe) = 0. Thus a

linear regression is a linear projection. However, the converse is not true as the projection error
does not necessarily satisfy E (e | x) = 0.

To see this in a simple example, suppose we take a normally distributed random variable
x ∼ N(0, 1) and set y = x2. Note that y is a deterministic function of x! Now consider the linear
projection of y on x and an intercept. The intercept and slope may be calculated as(

α
β

)
=

(
1 E (x)

E (x) E
(
x2
) )−1( E (y)

E (xy)

)
=

(
1 E (x)

E (x) E
(
x2
) )−1( E

(
x2
)

E
(
x3
) )

=

(
1
0

)
Thus the linear projection equation takes the form

y = α+ xβ + e
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where α = 1, β = 0 and e = x2−1. Observe that E (e) = E
(
x2
)
−1 = 0 and E (xe) = E

(
x3
)
−E (e) =

0, yet E (e | x) = x2 − 1 6= 0. In this simple example e is a deterministic function of x, yet e and x
are uncorrelated! The point is that a projection error need not be a regression error.

Return for a moment to the joint distributions displayed in Figures 2.3 and 2.4. In these figures,
the solid lines are the conditional means and the straight dashed lines are the linear projections.
In Figure 2.3 (the conditional mean of log hourly wages as a function of education) the conditional
mean and linear projection are quite close to one another. In this example the linear predictor is a
close approximation to the conditional mean. However, in Figure 2.4 (the conditional mean of log
hourly wages as a function of labor market experience) the conditional mean is quite nonlinear, so
the linear projection is a poor approximation. It over-predicts wages for young and old workers,
and under-predicts for the rest. Most importantly, it misses the strong downturn in expected wages
for those above 35 years work experience (equivalently, for those over 53 in age).

This defect in the best linear predictor can be partially corrected through a careful selection of
regressors. In the example of Figure 2.4, we can augment the regressor vector x to include both
experience and experience2. The best linear predictor of log wages given these two variables can
be called a quadratic projection, since the resulting function is quadratic in experience. Other than
the redefinition of the regressor vector, there are no changes in our methods or analysis. In Figure
2.4 we display as well the quadratic projection. In this example it is a much better approximation
to the conditional mean than the linear projection.

Figure 2.5: Conditional Mean and Two Linear Projections

Another defect of linear projection is that it is sensitive to the marginal distribution of the
regressors when the conditional mean is non-linear. We illustrate the issue in Figure 2.5 for a
constructed10 joint distribution of y and x. The solid line is the non-linear conditional mean of
y given x. The data are divided in two —Group 1 and Group 2 —which have different marginal
distributions for the regressor x, and Group 1 has a lower mean value of x than Group 2. The
separate linear projections of y on x for these two groups are displayed in the Figure by the dashed
lines. These two projections are distinct approximations to the conditional mean. A defect with
linear projection is that it leads to the incorrect conclusion that the effect of x on y is different for
individuals in the two Groups. This conclusion is incorrect because in fact there is no difference in
the conditional mean function. The apparant difference is a by-product of a linear approximation

10The x in Group 1 are N(2, 1) and those in Group 2 are N(4, 1), and the conditional distriubtion of y given x is
N(m(x), 1) where m(x) = 2x− x2/6.
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to a non-linear mean, combined with different marginal distributions for the conditioning variables.

2.16 Identification of the Conditional Mean

When a parameter is uniquely determined by the distribution of the observable variables, we
say that the parameter is identified. Typically, identification only holds under a set of restrictions,
and an identification theorem carefully describes a set of such conditions which are suffi cient for
identification. Identification is a necessary pre-condition for estimation.

For example, consider the unconditional mean µ = Ey. It is well defined and unique for all
distributions for which E |y| < ∞. Thus the mean µ is identified from the distribution of y under
the restriction E |y| <∞. Unless E |y| <∞, it is meaningless to attempt to estimate Ey.

As another example, consider the ratio of means θ = µ1/µ2 where µ1 = Ey1 and µ2 = Ey2. It
is well defined when µ1 and µ2 are both finite and µ2 6= 0, but if µ2 = 0 then θ is undefined. Thus
θ is identified from the distribution of (y1, y2) under the restrictions E |y1| < ∞, E |y2| < ∞, and
Ey2 6= 0. Unless these conditions hold, it is meaningless to estimate θ.

Now consider the conditional mean m(x) = E (y | x). Under which conditions is m(x) defined
and unique? The answer is provided in the following deep result from probability theory, which
establishes the existence of the conditional mean.

Theorem 2.16.1 Existence of the Conditional Mean
If E |y| <∞ then there exists a function m(x) such that for all measurable sets X

E (1 (x ∈ X ) y) = E (1 (x ∈ X )m(x)) . (2.31)

The function m(x) is almost everywhere unique, in the sense that if h(x) satisfies
(2.31), then there is a set S∗ such that P(S∗) = 1 and m(x) = h(x) for x ∈ S∗.
The function m(x) is called the conditional mean and is written m(x) = E (y | x) .

See, for example, Ash (1972), Theorem 6.3.3.

The function m(x) defined by (2.31) specializes to (2.2) when (y,x) have a joint density.
Theorem 2.16.1 shows that the conditional mean function m(x) exists and is almost everywhere

unique, and is thus is identified.

Theorem 2.16.2 Identification of the Conditional Mean
If E |y| <∞, the conditional mean m(x) = E (y | x) is identified for x ∈ S∗ where
P(S∗) = 1.
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Exercises

Exercise 2.1 Prove parts 2, 3 and 4 of Theorem 2.4.1.

Exercise 2.2 Suppose that the random variables y and x only take the values 0 and 1, and have
the following joint probability distribution

x = 0 x = 1

y = 0 .1 .2
y = 1 .4 .3

Find E (y | x) , E
(
y2 | x

)
and var (y | x) for x = 0 and x = 1.

Exercise 2.3 Show that σ2(x) is the best predictor of e2 given x:

(a) Write down the mean-squared error of a predictor h(x) for e2.

(b) What does it mean to be predicting e2?

(c) Show that σ2(x) minimizes the mean-squared error and is thus the best predictor.

Exercise 2.4 Use y = m(x) + e to show that

var (y) = var (m(x)) + σ2

Exercise 2.5 Suppose that y is discrete-valued, taking values only on the non-negative integers,
and the conditional distribution of y given x is Poisson:

P (y = j | x) =
exp (−x′β) (x′β)j

j!
, j = 0, 1, 2, ...

Compute E (y | x) and var (y | x) . Does this justify a linear regression model of the form y =
x′β + e?

Hint: If P (y = j) = exp(−λ)λj

j! , then Ey = λ and var(y) = λ.

Exercise 2.6 Let x and y have the joint density f (x, y) = 3
2

(
x2 + y2

)
on 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

Compute the coeffi cients of the best linear predictor y = α+βx+e. Compute the conditional mean
m(x) = E (y | x) . Are the best linear predictor and conditional mean different?

Exercise 2.7 True or False. If y = xβ + e, x ∈ R, and E (e | x) = 0, then E
(
x2e
)

= 0.

Exercise 2.8 True or False. If y = xβ + e, x ∈ R, and E (xe) = 0, then E
(
x2e
)

= 0.

Exercise 2.9 True or False. If y = x′β + e and E (e | x) = 0, then e is independent of x.

Exercise 2.10 True or False. If y = x′β + e and E(xe) = 0, then E (e | x) = 0.

Exercise 2.11 True or False. If y = x′β + e, E (e | x) = 0, and E
(
e2 | x

)
= σ2, a constant, then

e is independent of x.

Exercise 2.12 Let x be a random variable with µ = Ex and σ2 = var(x). Define

g
(
x | µ, σ2

)
=

(
x− µ

(x− µ)2 − σ2

)
.

Show that Eg (x | m, s) = 0 if and only if m = µ and s = σ2.
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Exercise 2.13 Suppose that

x =

 1
x2

x3


and x3 = α1 + α2x2 is a linear function of x2.

(a) Show that Q = E (xx′) is not invertible.

(b) Use a linear transformation of x to find an expression for the best linear predictor of y given
x. (Be explicit, do not just use the generalized inverse formula.)

Exercise 2.14 Show (2.26)-(2.27), namely that for

d(β) = E
(
m(x)− x′β

)2
then

β = argmin
β∈Rk

d(β)

=
(
E
(
xx′
))−1 E (xm(x))

=
(
E
(
xx′
))−1 E (xy) .

Hint: To show E (xm(x)) = E (xy) use the law of iterated expectations.
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Chapter 3

The Algebra of Least Squares

3.1 Introduction

In this chapter we introduce the popular least-squares estimator. Most of the discussion will be
algebraic, with questions of distribution and inference defered to later chapters.

3.2 Least Squares Estimator

In Section 2.9 we derived and discussed the best linear predictor of y given x for a pair of random
variables (y,x) ∈ R×Rk, and called this the linear projection model. Applied to observations from
a random sample with observations (yi,xi : i = 1, ..., n) this model takes the form

yi = x′iβ + ei (3.1)

where β is defined as
β = argmin

β∈Rk
S(β), (3.2)

S(β) = E
(
yi − x′iβ

)2
, (3.3)

and
β =

(
E
(
xx′
))−1 E (xy) . (3.4)

When a parameter is defined as the minimizer of a function as in (3.2), a standard approach
to estimation is to construct an empirical analog of the function, and define the estimator of the
parameter as the minimizer of the empirical function.

The empirical analog of the expected squared error (3.3) is the sample average squared error

Sn(β) =
1

n

n∑
i=1

(
yi − x′iβ

)2 (3.5)

=
1

n
SSEn(β)

where

SSEn(β) =

n∑
i=1

(
yi − x′iβ

)2
is called the sum-of-squared-errors function.

An estimator for β is the minimizer of (3.5):

β̂ = argmin
β∈Rk

Sn(β).
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Figure 3.1: Sum-of-Squared Errors Function

Alternatively, as Sn(β) is a scale multiple of SSEn(β), we may equivalently define β̂ as the mini-
mizer of SSEn(β). Hence β̂ is commonly called the least-squares estimator of β.

To visualize the quadratic function Sn(β), Figure 3.1 displays an example sum-of-squared er-
rors function SSEn(β) for the case k = 2. The least-squares estimator β̂ is the the pair (β̂1, β̂2)
minimizing this function.

3.3 Solving for Least Squares

To solve for β̂, expand the SSE function to find

SSEn(β) =
n∑
i=1

y2
i − 2β′

n∑
i=1

xiyi + β′
n∑
i=1

xix
′
iβ

which is quadratic in the vector argument β . The first-order-condition for minimization of SSEn(β)
is

0 =
∂

∂β
Sn(β̂) = −2

n∑
i=1

xiyi + 2
n∑
i=1

xix
′
iβ̂. (3.6)

By inverting the k×k matrix
∑n

i=1 xix
′
i we find an explicit formula for the least-squares estimator

β̂ =

(
n∑
i=1

xix
′
i

)−1( n∑
i=1

xiyi

)
. (3.7)

This is the natural estimator of the best linear prediction coeffi cient β defined in (3.2), and can
also be called the linear projection estimator.
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Early Use of Matrices

The earliest known treatment of the use of matrix methods
to solve simultaneous systems is found in Chapter 8 of the
Chinese text The Nine Chapters on the Mathematical Art,
written by several generations of scholars from the 10th to
2nd century BCE.

Alternatively, equation (3.4) writes the projection coeffi cient β as an explicit function of the
population moments E (xiyi) and E (xix

′
i) . Their moment estimators are the sample moments

Ê (xiyi) =
1

n

n∑
i=1

xiyi

Ê
(
xix

′
i

)
=

1

n

n∑
i=1

xix
′
i.

The moment estimator of β replaces the population moments in (3.4) with the sample moments:

β̂ =
(
Ê
(
xix

′
i

))−1
Ê (xiyi)

=

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiyi

)

=

(
n∑
i=1

xix
′
i

)−1( n∑
i=1

xiyi

)

which is identical with (3.7).

Least Squares Estimation

Definition 3.3.1 The least-squares estimator β̂ is

β̂ = argmin
β∈Rk

Sn(β)

where

Sn(β) =
1

n

n∑
i=1

(
yi − x′iβ

)2
and has the solution

β̂ =

(
n∑
i=1

xix
′
i

)−1( n∑
i=1

xiyi

)
.

To illustrate least-squares estimation in practice, consider the data used to generate Figure 2.3.
These are white male wage earners from the March 2004 Current Population Survey, excluding
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military, with 10-15 years of potential work experience. This sample has 988 observations. Let yi
be log wages and xi be an intercept and years of education. Then

1

n

n∑
i=1

xiyi =

(
2.951
42.405

)
and

1

n

n∑
i=1

xix
′
i =

(
1 14.136

14.136 205.826

)
.

Thus

β̂ =

(
1 14.136

14.136 205.826

)−1(
2.951
42.405

)

=

(
1. 33
0.115

)
. (3.8)

We often write the estimated equation using the format

̂log(Wage) = 1.33 + 0.115 education. (3.9)

An interpretation of the estimated equation is that each year of education is associated with an
11% increase in mean wages.

Equation (3.9) is called a bivariate regression as there are only two variables. A multivariate
regression has two or more regressors, and allows a more detailed investigation. Let’s redo the
example, but now including all levels of experience. This expanded sample includes 6578 observa-
tions. Including as regressors years of experience and its square (experience2/100) (we divide by
100 to simplify reporting), we obtain the estimates

̂log(Wage) = 0.959 + 0.100 education+ 0.053 experience− 0.095 experience2/100. (3.10)

These estimates suggest a 10% increase in mean wages per year of education.

Adrien-Marie Legendre

The method of least-squares was first published in 1805 by the French mathematician
Adrien-Marie Legendre (1752-1833). Legendre proposed least-squares as a solution to the
algebraic problem of solving a system of equations when the number of equations exceeded
the number of unknowns. This was a vexing and common problem in astronomical mea-
surement. As viewed by Legendre, (3.1) is a set of n equations with k unknowns. As the
equations cannot be solved exactly, Legendre’s goal was to select β to make the set of
errors as small as possible. He proposed the sum of squared error criterion, and derived
the algebraic solution presented above. As he noted, the first-order conditions (3.6) is a
system of k equations with k unknowns, which can be solved by “ordinary”methods. Hence
the method became known as Ordinary Least Squares and to this day we still use the
abbreviation OLS to refer to Legendre’s estimation method.
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3.4 Least Squares Residuals

As a by-product of estimation, we define the fitted or predicted value

ŷi = x′iβ̂

and the residual
êi = yi − ŷi = yi − x′iβ̂. (3.11)

Note that yi = ŷi + êi. We make a distinction between the error ei and the residual êi. The
error ei is unobservable while the residual êi is a by-product of estimation. These two variables are
frequently mislabeled, which can cause confusion.

Equation (3.6) implies that
1

n

n∑
i=1

xiêi = 0. (3.12)

To see this by a direct calculation, using (3.11) and (3.7),

1

n

n∑
i=1

xiêi =
1

n

n∑
i=1

xi

(
yi − x′iβ̂

)
=

1

n

n∑
i=1

xiyi −
1

n

n∑
i=1

xix
′
iβ̂

=
1

n

n∑
i=1

xiyi −
1

n

n∑
i=1

xix
′
i

(
n∑
i=1

xix
′
i

)−1( n∑
i=1

xiyi

)

=
1

n

n∑
i=1

xiyi −
n∑
i=1

xiyi

= 0.

When xi contains a constant, an implication of (3.12) is

1

n

n∑
i=1

êi = 0.

Thus the residuals have a sample mean of zero and the sample correlation between the regressors
and the residual is zero. These are algebraic results, and hold true for all linear regression estimates.

Given the residuals, we can construct an estimator for σ2 as defined in (2.13):

σ̂2 =
1

n

n∑
i=1

ê2
i . (3.13)

3.5 Model in Matrix Notation

For many purposes, including computation, it is convenient to write the model and statistics in
matrix notation. The linear equation (2.12) is a system of n equations, one for each observation.
We can stack these n equations together as

y1 = x′1β + e1

y2 = x′2β + e2

...

yn = x′nβ + en.
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Now define

y =


y1

y2
...
yn

 , X =


x′1
x′2
...
x′n

 , e =


e1

e2
...
en

 .

Observe that y and e are n× 1 vectors, and X is an n× k matrix. Then the system of n equations
can be compactly written in the single equation

y = Xβ + e.

Sample sums can also be written in matrix notation. For example

n∑
i=1

xix
′
i = X ′X

n∑
i=1

xiyi = X ′y.

Therefore
β̂ =

(
X ′X

)−1 (
X ′y

)
. (3.14)

Using matrix notation we have simple expressions for most estimators. This is particularly conve-
nient for computer programming, as most languages allow matrix notation and manipulation.

Important Matrix Expressions

y = Xβ + e

β̂ =
(
X ′X

)−1 (
X ′y

)
ê = y −Xβ̂
σ̂2 = n−1ê′ê.

3.6 Projection Matrices

Define the matrices
P = X

(
X ′X

)−1
X ′

and

M = In −X
(
X ′X

)−1
X ′

= In − P

where In is the n × n identity matrix. P and M are called projection matrices due to the
property that for any matrix Z which can be written as Z = XΓ for some matrix Γ (we say that
Z lies in the range space of X), then

PZ = PXΓ = X
(
X ′X

)−1
X ′XΓ = XΓ = Z

and
MZ = (In − P )Z = Z − PZ = Z −Z = 0.
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As an important example of this property, partition the matrix X into two matrices X1 and
X2 so that

X = [X1 X2] .

Then PX1 = X1 and MX1 = 0. It follows that MX = 0 and MP = 0, so M and P are
orthogonal.

The matrices P andM are symmetric and idempotent1. To see that P is symmetric,

P ′ =
(
X
(
X ′X

)−1
X ′
)′

=
(
X ′
)′ ((

X ′X
)−1
)′

(X)′

= X
((
X ′X

)′)−1
X ′

= X
(

(X)′
(
X ′
)′)−1

X ′

= P .

To establish that it is idempotent,

PP =
(
X
(
X ′X

)−1
X ′
)(
X
(
X ′X

)−1
X ′
)

= X
(
X ′X

)−1
X ′X

(
X ′X

)−1
X ′

= X
(
X ′X

)−1
X ′

= P .

Similarly,
M ′ = (In − P )′ = In − P = M

and

MM = M (In − P )

= M −MP

= M,

sinceMP = 0.
Another useful property is that

trP = k (3.15)

trM = n− k (3.16)

(See Appendix A.4 for definition and properties of the trace operator.) To show (3.15) and (3.16),

trP = tr
(
X
(
X ′X

)−1
X ′
)

= tr
((
X ′X

)−1
X ′X

)
= tr (Ik)

= k,

and
trM = tr (In − P ) = tr (In)− tr (P ) = n− k.

1A matrix P is symmetric if P ′ = P . A matrix P is idempotent if PP = P. See Appendix A.8.
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Given the definitions of P andM , observe that

ŷ = Xβ̂ = X
(
X ′X

)−1
X ′y = Py

and
ê = y −Xβ̂ = y − Py = My. (3.17)

Furthermore, since y = Xβ + e andMX = 0, then

ê = M (Xβ + e) = Me. (3.18)

Another way of writing (3.17) is

y = (P +M)y = Py +My = ŷ + ê.

This decomposition is orthogonal, that is

ŷ′ê = (Py)′ (My) = y′PMy = 0.

The projection matrix P is also known as the hat matrix due to the equation ŷ = Py. The
i’th diagonal element of P = X (X ′X)

−1
X ′ is

hii = x′i
(
X ′X

)−1
xi (3.19)

which is called the leverage of the i’th observation. The hii take values in [0, 1] and sum to k

n∑
i=1

hii = k (3.20)

(See Exercise 3.6).

3.7 Residual Regression

Partition
X = [X1 X2]

and

β =

(
β1

β2

)
.

Then the regression model can be rewritten as

y = X1β1 +X2β2 + e. (3.21)

Observe that the OLS estimator of β = (β′1,β
′
2)′ can be obtained by regression of y on X = [X1

X2]. OLS estimation can be written as

y = X1β̂1 +X2β̂2 + ê (3.22)

Suppose that we are primarily interested in β2, not in β1, and we want to obtain the OLS sub-
component β̂2. In this section we derive an alternative expression for β̂2 which does not involve
estimation of the full model.

Define
M1 = In −X1

(
X ′1X1

)−1
X ′1.

Recalling the definitionM = In −X (X ′X)
−1
X ′, observe that X ′1M1 = 0 and thus

M1M = M −X1

(
X ′1X1

)−1
X ′1M = M .

35



It follows that
M1ê = M1My = My = ê.

Using this result, if we premultiply (3.22) byM1 we obtain

M1y = M1X1β̂1 +M1X2β̂2 +M1ê

= M1X2β̂2 + ê (3.23)

the second equality since M1X1 = 0. Premultiplying by X ′2 and recalling that X
′
2ê = 0, we

obtain
X ′2M1y = X ′2M1X2β̂2 +X ′2ê = X ′2M1X2β̂2.

Solving,
β̂2 =

(
X ′2M1X2

)−1 (
X ′2M1y

)
an alternative expression for β̂2.

Now, define

X̃2 = M1X2 (3.24)

ỹ = M1y, (3.25)

the least-squares residuals from the regression of X2 and y, respectively, on the matrix X1 only.
Since the matrixM1 is idempotent,M1 = M1M1 and thus

β̂2 =
(
X ′2M1X2

)−1 (
X ′2M1y

)
=

(
X ′2M1M1X2

)−1 (
X ′2M1M1y

)
=

(
X̃
′
2X̃2

)−1 (
X̃
′
2ỹ
)
.

This shows that β̂2 can be calculated by the OLS regression of ỹ on X̃2. This technique is called
residual regression.

Furthermore, using the definitions (3.24) and (3.25), expression (3.23) can be equivalently writ-
ten as

ỹ = X̃2β̂2 + ê.

Since β̂2 is precisely the OLS coeffi cient from a regression of ỹ on X̃2, this shows that the residual
vector from this regression is ê, numerically the same residual vector as from the joint regression
(3.22). We have proven the following theorem.

Theorem 3.7.1 Frisch-Waugh-Lovell
In the model (3.21), the OLS estimator of β2 and the OLS residuals ê
may be equivalently computed by either the OLS regression (3.22) or via
the following algorithm:

1. Regress y on X1, obtain residuals ỹ;

2. Regress X2 on X1, obtain residuals X̃2;

3. Regress ỹ on X̃2, obtain OLS estimates β̂2 and residuals ê.

In some contexts, the FWL theorem can be used to speed computation, but in most cases
there is little computational advantage to using the two-step algorithm. Rather, the primary use
is theoretical.
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A common application of the FWL theorem, which you may have seen in an introductory
econometrics course, is the demeaning formula for regression. Partition X = [X1 X2] where
X1 = ι is a vector of ones, and X2 is the vector of observed regressors. In this case,

M1 = I − ι
(
ι′ι
)−1

ι′.

Observe that

X̃2 = M1X2

= X2 − ι
(
ι′ι
)−1

ι′X2

= X2 −X2

and

ỹ = M1y

= y − ι
(
ι′ι
)−1

ι′y

= y − y,

which are “demeaned”. The FWL theorem says that β̂2 is the OLS estimate from a regression of
yi − y on x2i − x2 :

β̂2 =

(
n∑
i=1

(x2i − x2) (x2i − x2)′
)−1( n∑

i=1

(x2i − x2) (yi − y)

)
.

Thus the OLS estimator for the slope coeffi cients is a regression with demeaned data.

Ragnar Frisch

Ragnar Frisch (1895-1973) was co-winner with Jan Tinbergen of the first Nobel Memorial
Prize in Economic Sciences in 1969 for their work in developing and applying dynamic mod-
els for the analysis of economic problems. Frisch made a number of foundational contribu-
tions to modern economics beyond the Frisch-Waugh-Lovell Theorem, including formalizing
consumer theory, production theory, and business cycle theory.

3.8 Prediction Errors

The least-squares residual êi are not true prediction errors, as they are constructed based on
the full sample including yi. A proper prediction for yi should be based on estimates constructed
only using the other observations. We can do this by defining the leave-one-out OLS estimator
of β as that obtained from the sample excluding the i’th observation:

β̂(−i) =

 1

n− 1

∑
j 6=i
xjx

′
j

−1 1

n− 1

∑
j 6=i
xjyj


=

(
X ′(−i)X(−i)

)−1
X(−i)y(−i) (3.26)

where X(−i) and y(−i) are the data matrices omitting the i’th row. The leave-one-out predicted
value for yi is

ỹi = x′iβ̂(−i),
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and the leave-one-out residual or prediction error is

ẽi = yi − ỹi.

A convenient alternative expression for β̂(−i) (derived below) is

β̂(−i) = β̂ − (1− hii)−1 (X ′X)−1
xiêi (3.27)

where hii are the leverage values as defined in (3.19).
Using (3.27) we can simplify the expression for the prediction error:

ẽi = yi − x′iβ̂(−i)

= yi − x′iβ̂ + (1− hii)−1 x′i
(
X ′X

)−1
xiêi

= êi + (1− hii)−1 hiiêi

= (1− hii)−1 êi. (3.28)

A convenient feature of this expression is that it shows that computation of ẽi is based on a simple
linear operation, and does not really require n separate estimations.

One use of the prediction errors is to estimate the out-of-sample mean squared error

σ̃2 =
1

n

n∑
i=1

ẽ2
i

=
1

n

n∑
i=1

(1− hii)−2 ê2
i .

This is also known as the mean squared prediction error. Its square root σ̃ =
√
σ̃2 is the

prediction standard error.

Proof of Equation (3.27). The Sherman—Morrison formula (A.2) from Appendix A.5 states that
for nonsingular A and vector b(

A− bb′
)−1

= A−1 +
(
1− b′A−1b

)−1
A−1bb′A−1.

This implies (
X ′X − xix′i

)−1
=
(
X ′X

)−1
+ (1− hi)−1 (X ′X)−1

xix
′
i

(
X ′X

)−1

and thus

β̂(−i) =
(
X ′X − xix′i

)−1 (
X ′y − xiyi

)
=

(
X ′X

)−1
X ′y −

(
X ′X

)−1
xiyi

+ (1− hi)−1 (X ′X)−1
xix

′
i

(
X ′X

)−1 (
X ′y − xiyi

)
= β̂ −

(
X ′X

)−1
xiyi + (1− hi)−1 (X ′X)−1

xi

(
x′iβ̂ − hiyi

)
= β̂ − (1− hi)−1 (X ′X)−1

xi

(
(1− hi) yi − x′iβ̂ + hiyi

)
= β̂ − (1− hi)−1 (X ′X)−1

xiêi

the third equality making the substitutions β̂ = (X ′X)
−1
X ′y and hi = x′i (X ′X)

−1
xi, and the

remainder collecting terms.
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3.9 Influential Observations

Another use of the leave-one-out estimator is to investigate the impact of influential obser-
vations, sometimes called outliers. We say that observation i is influential if its omission from
the sample induces a substantial change in a parameter of interest. From (3.27)-(3.28) we know
that

β̂ − β̂(−i) = (1− hii)−1 (X ′X)−1
xiêi

=
(
X ′X

)−1
xiẽi.

By direct calculation of this quantity for each observation i, we can directly discover if a specific
observation i is influential for a coeffi cient estimate of interest.

For a more general assessment, we can focus on the predicted values. The difference between
the full-sample and leave-one-out predicted values is

ŷi − ỹi = x′iβ̂ − x′iβ̂(−i)

= x′i
(
X ′X

)−1
xiẽi

= hiiẽi

which is a simple function of the leverage values hii and prediction errors ẽi. Observation i is
influential for the predicted value if |hiiẽi| is large, which requires that both hii and |ẽi| are large.

One way to think about this is that a large leverage value hii gives the potential for observation
i to be influential. A large hii means that observation i is unusual in the sense that the regressor xi
is far from its sample mean. We call this observation with large hii a leverage point. A leverage
point is not necessarily influential as this also requires that the prediction error ẽi is large.

To determine if any individual observations are influential in this sense, a useful summary
statistic is

Influence = max
1≤i≤n

|ŷi − ỹi|
σ̃

= max
1≤i≤n

hii |ẽi|
σ̃

which scales the maximum change in predicted values by the prediction standard error. If Influence
is large, it may be useful to examine the corresponding observation or observations. (As this is an
informal comparison there is no magic threshold, so judgement must be employed.)

If an observation is determined to be influential, what should be done? Certainly, the recorded
values for the observations should be examined. It is quite possible that there is a data error, and
this is a common cause of influential observations. If there is an error, you should scrutinize all
observations more carefully, as it would seem unlikely that data error would be confined to a single
observation. If it is determined that an observation is incorrectly recorded, then the observation is
typically deleted from the sample. When this is done it is proper empirical practice to document
such choices. (It is useful to keep the source data in its original form, a revised data file after
cleaning, and a record describing the revision process. This is especially useful when revising
empirical work at a later date.)

It is also possible that an observation is correctly measured, but unusual and influential. In
this case it is unclear how to proceed. Some researchers will try to alter the specification to
properly model the influential observation. Other researchers will delete the observation from the
sample. The motivation for this choice is to prevent the results from being skewed or determined
by individual observations, but this practice is viewed skeptically by many researchers, who believe
it reduces the integrity of reported empirical results.

3.10 Measures of Fit

When a least-squares regression is reported in applied economics, it is common to see a reported
summary measure of fit, measuring how well the regressors explain the observed variation in the
dependent variable.
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Some common summary measures are based on scaled or transformed estimates of the mean-
squared error σ2. These include the sum of squared errors

∑n
i=1 ê

2
i , the mean squared error

of sample variance n−1
∑n

i=1 ê
2
i = σ̂2, and the root mean squared error

√
n−1

∑n
i=1 ê

2
i (sometimes

called the standard error of the regression), and the mean prediction error σ̃2 = 1
n

∑n
i=1 ẽ

2
i .

A related and commonly reported statistic is the coeffi cient of determination orR-squared:

R2 =

∑n
i=1 (ŷi − y)2∑n
i=1 (yi − y)2 = 1− σ̂2

σ̂2
y

where

σ̂2
y =

1

n

n∑
i=1

(yi − y)2

is the sample variance of yi. R2 can be viewed as an estimator of the population parameter

ρ2 =
var (x′iβ)

var(yi)
= 1− σ2

σ2
y

where σ2
y = var(yi). A high ρ2 or R2 means that forecasts of y using x′β or x′β̂ will be quite

accurate relative to the unconditional mean. In this sense R2 can be a useful summary measure for
an out-of-sample forecast or policy experiment.

An alternative estimator of ρ2 proposed by Theil called R-bar-squared or adjusted R2 is

R
2

= 1− (n− 1)
∑n

i=1 ê
2
i

(n− k)
∑n

i=1 (yi − y)2 .

Theil’s estimator R
2
is better estimator of ρ2 than the unadjusted estimator R2 because it can be

expressed as a ratio of bias-corrected variance estimates.
Unfortunately, the frequent reporting of R2 and R

2
seems to have led to exaggerated beliefs

regarding their usefulness. One mistaken belief is that R2 is a measure of “fit”. This belief is
incorrect, as an incorrectly specified model can still have a reasonably high R2. For example,
suppose the truth is that xi ∼ N(0, 1) and yi = βxi+x2

i . If we regress yi on xi (incorrectly omitting
x2
i ), the best linear predictor is yi = 1+βxi+ei where ei = x2

i −1. This is a misspecified regression,
as the true relationship is deterministic! You can also calculate that the population ρ2 = β/(2 +β)
which can be arbitrarily close to 1 if β is large. For example, if β = 8, then R2 ' ρ2 = .8, or if
β = 18 then R2 ' ρ2 = .9. This example shows that a regression with a high R2 can actually have
poor fit.

Another mistaken belief is that a high R2 is important in order to justify interpretation of the
regression coeffi cients. This is mistaken as there is no known association between the level of R2

and the “correctness” of a regression, the accuracy of the coeffi cient estimates, or the validity of
statistical inferences based on the estimated regression. In contrast, even if the R2 is quite small,
accurate estimates of regression coeffi cients is quite possible when sample sizes are large.

The bottom line is that while R2 and R
2
have appropriate uses, their usefulness should not be

exaggerated.

Henri Theil

Henri Theil (1924-2000) of Holland invented R
2
and two-stage least squares, both of which

are routinely seen in applied econometrics. He also wrote an early and influential advanced
textbook on econometrics (Theil, 1971).
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3.11 Normal Regression Model

The normal regression model is the linear regression model under the restriction that the error
ei is independent of xi and has the distribution N

(
0, σ2

)
. We can write this as

ei | xi ∼ N
(
0, σ2

)
.

This assumption implies
yi | xi ∼ N

(
x′iβ, σ

2
)
.

Normal regression is a parametric model, where likelihood methods can be used for estimation,
testing, and distribution theory.

The log-likelihood function for the normal regression model is

logL(β, σ2) =

n∑
i=1

log

(
1

(2πσ2)1/2
exp

(
− 1

2σ2

(
yi − x′iβ

)2))

= −n
2

log
(
2πσ2

)
− 1

2σ2
SSEn(β).

The maximum likelihood estimator (MLE) (β̂, σ̂2) maximize logL(β, σ2). Since the latter is a
function of β only through the sum of squared errors SSEn(β), maximizing the likelihood is
identical to minimizing SSEn(β). Hence

β̂mle = β̂ols,

the MLE for β equals the OLS estimator. Due to this equivalence, the least squares estimator β̂ is
also known as the MLE.

We can also find the MLE for σ2. Plugging β̂ into the log-likelihood we obtain

logL
(
β̂, σ2

)
= −n

2
log
(
2πσ2

)
− 1

2σ2

n∑
i=1

ê2
i .

Maximization with respect to σ2 yields the first-order condition

∂

∂σ2
logL

(
β̂, σ̂2

)
= − n

2σ̂2 +
1

2
(
σ̂2
)2 n∑

i=1

ê2
i = 0.

Solving for σ̂2 yields the MLE for σ2

σ̂2 =
1

n

n∑
i=1

ê2
i

which is the same as the moment estimator (3.13).
It may seem surprising that the MLE β̂ is numerically equal to the OLS estimator, despite

emerging from quite different motivations. It is not completely accidental. The least-squares
estimator minimizes a particular sample loss function —the sum of squared error criterion —and
most loss functions are equivalent to the likelihood of a specific parametric distribution, in this case
the normal regression model. In this sense it is not surprising that the least-squares estimator can
be motivated as either the minimizer of a sample loss function or as the maximizer of a likelihood
function.

41



Carl Friedrich Gauss

The mathematician Carl Friedrich Gauss (1777-1855) proposed the normal regression model,
and derived the least squares estimator as the maximum likelihood estimator for this model.
He claimed to have discovered the method in 1795 at the age of eighteen, but did not publish
the result until 1809. Interest in Gauss’s approach was reinforced by Laplace’s simultaneous
discovery of the central limit theorem, which provided a justification for viewing random
disturbances as approximately normal.
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Exercises

Exercise 3.1 Let y be a random variable with µ = Ey and σ2 = var(y). Define

g
(
y, µ, σ2

)
=

(
y − µ

(y − µ)2 − σ2

)
.

Let (µ̂, σ̂2) be the values such that gn(µ̂, σ̂2) = 0 where gn(m, s) = n−1
∑n

i=1 g (yi,m, s) . Show that
µ̂ and σ̂2 are the sample mean and variance.

Exercise 3.2 Consider the OLS regression of the n× 1 vector y on the n× k matrix X. Consider
an alternative set of regressors Z = XC, where C is a k × k non-singular matrix. Thus, each
column of Z is a mixture of some of the columns of X. Compare the OLS estimates and residuals
from the regression of y on X to the OLS estimates from the regression of y on Z.

Exercise 3.3 Let ê be the OLS residual from a regression of y on X = [X1 X2]. Find X ′2ê.

Exercise 3.4 Let ê be the OLS residual from a regression of y on X. Find the OLS coeffi cient
from a regression of ê on X.

Exercise 3.5 Let ŷ = X(X ′X)−1X ′y. Find the OLS coeffi cient from a regression of ŷ on X.

Exercise 3.6 Show ()3.20), that hii in (3.19) sum to k. (Hint: Use (3.15).)

Exercise 3.7 A dummy variable takes on only the values 0 and 1. It is used for categorical data,
such as an individual’s gender. Let d1 and d2 be vectors of 1’s and 0’s, with the i′th element of d1

equaling 1 and that of d2 equaling 0 if the person is a man, and the reverse if the person is a woman.
Suppose that there are n1 men and n2 women in the sample. Consider the three regressions

y = µ+ d1α1 + d2α2 + e (3.29)

y = d1α1 + d2α2 + e (3.30)

y = µ+ d1φ+ e (3.31)

Can all three regressions (3.29), (3.30), and (3.31) be estimated by OLS? Explain if not.

(a) Compare regressions (3.30) and (3.31). Is one more general than the other? Explain the
relationship between the parameters in (3.30) and (3.31).

(b) Compute ι′d1 and ι′d2, where ι is an n× 1 is a vector of ones.

(c) Letting α = (α1 α2)′, write equation (3.30) as y = Xα + e. Consider the assumption
E(xiei) = 0. Is there any content to this assumption in this setting?

Exercise 3.8 Let d1 and d2 be defined as in the previous exercise.

(a) In the OLS regression
y = d1γ̂1 + d2γ̂2 + û,

show that γ̂1 is sample mean of the dependent variable among the men of the sample (y1),
and that γ̂2 is the sample mean among the women (y2).

(b) Describe in words the transformations

y∗ = y − d1y1 − d2y2

X∗ = X − d1X1 − d2X2.
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(c) Compare β̃ from the OLS regresion

y∗ = X∗β̃ + ẽ

with β̂ from the OLS regression

y = d1α̂1 + d2α̂2 +Xβ̂ + ê.

Exercise 3.9 Let β̂n = (X ′nXn)
−1
X ′nyn denote the OLS estimate when yn is n × 1 and Xn is

n× k. A new observation (yn+1,xn+1) becomes available. Prove that the OLS estimate computed
using this additional observation is

β̂n+1 = β̂n +
1

1 + x′n+1 (X ′nXn)
−1
xn+1

(
X ′nXn

)−1
xn+1

(
yn+1 − x′n+1β̂n

)
.

Exercise 3.10 Prove that R2 is the square of the simple correlation between y and ŷ.

Exercise 3.11 The data file cps85.dat contains a random sample of 528 individuals from the
1985 Current Population Survey by the U.S. Census Bureau. The file contains observations on nine
variables, listed in the file cps85.pdf.

V1 = education (in years)
V2 = region of residence (coded 1 if South, 0 otherwise)
V3 = (coded 1 if nonwhite and non-Hispanic, 0 otherwise)
V4 = (coded 1 if Hispanic, 0 otherwise)
V5 = gender (coded 1 if female, 0 otherwise)
V6 = marital status (coded 1 if married, 0 otherwise)
V7 = potential labor market experience (in years)
V8 = union status (coded 1 if in union job, 0 otherwise)
V9 = hourly wage (in dollars)

Estimate a regression of wage yi on education x1i, experience x2i, and experienced-squared x3i = x2
2i

(and a constant). Report the OLS estimates.
Let êi be the OLS residual and ŷi the predicted value from the regression. Numerically calculate

the following:

(a)
∑n

i=1 êi

(b)
∑n

i=1 x1iêi

(c)
∑n

i=1 x2iêi

(d)
∑n

i=1 x
2
1iêi

(e)
∑n

i=1 x
2
2iêi

(f)
∑n

i=1 ŷiêi

(g)
∑n

i=1 ê
2
i

(h) R2

Are these calculations consistent with the theoretical properties of OLS? Explain.
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Exercise 3.12 Using the data from the previous problem, restimate the slope on education using
the residual regression approach. Regress yi on (1, x2i, x

2
2i), regress x1i on (1, x2i, x

2
2i), and regress

the residuals on the residuals. Report the estimate from this regression. Does it equal the value
from the first OLS regression? Explain.

In the second-stage residual regression, (the regression of the residuals on the residuals), cal-
culate the equation R2 and sum of squared errors. Do they equal the values from the initial OLS
regression? Explain.
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Chapter 4

Least Squares Regression

4.1 Introduction

In this chapter we investigate some finite-sample properties of least-squares applied to a random
sample in the the linear regression model. Throughout this chapter we maintain the following.

Assumption 4.1.1 Linear Regression Model
The observations (yi,xi) come from a random sample and satisfy the linear
regression equation

yi = x′iβ + ei (4.1)

E (ei | xi) = 0. (4.2)

The variables have finite second moments

Ey2
i <∞

and
Ex2

ji <∞

for j = 1, ..., k, and an invertible design matrix

Q = E
(
xix

′
i

)
> 0.

We will consider both the general case of heteroskedastic regression, where the conditional
variance

E
(
e2
i | xi

)
= σ2(xi) = σ2

i

is unrestricted, and the specialized case of homoskedastic regression, where the conditional variance
is constant. In the latter case we add the following assumption.

Assumption 4.1.2 Homoskedastic Linear Regression Model
In addition to Assumption 4.1.1,

E
(
e2
i | xi

)
= σ2(xi) = σ2 (4.3)

is independent of xi.
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Figure 4.1: Sampling Density of β̂

4.2 Sampling Distribution

The least-squares estimator is random, since it is a function of random data, and therefore has a
sampling distribution. In general, its distribution is a complicated function of the joint distribution
of (yi,xi) and the sample size n.

To illustrate the possibilities in one example, let yi and xi be drawn from the joint density

f(x, y) =
1

2πxy
exp

(
−1

2
(log y − log x)2

)
exp

(
−1

2
(log x)2

)
and let β̂ be the slope coeffi cient estimate from a bivariate regression on observations from this
joint density. Using simulation methods, the density function of β̂ was computed and plotted in
Figure 4.1 for sample sizes of n = 25, n = 100 and n = 800. The vertical line marks the true value
of the projection coeffi cient.

From the figure we can see that the density functions are dispersed and highly non-normal. As
the sample size increases the density becomes more concentrated about the population coeffi cient.
To learn about the true value of β from the sample estimate β̂, we need to have a way to characterize
the sampling distribution of β̂. We start in the next sections by deriving the mean and variance of
β̂.

4.3 Mean of Least-Squares Estimator

In this section we show that the OLS estimator is unbiased in the linear regression model.
Under (4.1)-(4.2) note that

E (y |X) =


...

E (yi |X)
...

 =


...

E (yi | xi)
...

 =


...
x′iβ
...

 = Xβ. (4.4)
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Similarly

E (e |X) =


...

E (ei |X)
...

 =


...

E (ei | xi)
...

 = 0. (4.5)

By (3.14), conditioning on X, the linearity of expectations, (4.4), and the properties of the
matrix inverse,

E
(
β̂ |X

)
= E

((
X ′X

)−1
X ′y |X

)
=

(
X ′X

)−1
X ′E (y |X)

=
(
X ′X

)−1
X ′Xβ

= β.

Applying the law of iterated expectations to E
(
β̂ |X

)
= β, we find that

E
(
β̂
)

= E
(
E
(
β̂ |X

))
= β.

Another way to calculate the same result is as follows. Insert y = Xβ + e into the formula
(3.14) for β̂ to obtain

β̂ =
(
X ′X

)−1 (
X ′ (Xβ + e)

)
=

(
X ′X

)−1
X ′Xβ +

(
X ′X

)−1 (
X ′e

)
= β +

(
X ′X

)−1
X ′e. (4.6)

This is a useful linear decomponsition of the estimator β̂ into the true parameter β and the
stochastic component (X ′X)

−1
X ′e.

Using (4.6), conditioning on X, and (4.5),

E
(
β̂ − β |X

)
= E

((
X ′X

)−1
X ′e |X

)
=

(
X ′X

)−1
X ′E (e |X)

= 0.

Using either derivation, we have shown the following theorem.

Theorem 4.3.1 Mean of Least-Squares Estimator
In the linear regression model (Assumption 4.1.1)

E
(
β̂ |X

)
= β (4.7)

and
E(β̂) = β. (4.8)

Equation (4.8) says that the estimator is unbiased, meaning that the distribution of β̂ is centered
at β. Equation (4.7) says that the estimator is conditionally unbiased, which is a stronger result.
It says that β̂ is unbiased for any realization of the regressor matrix X.
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4.4 Variance of Least Squares Estimator

In this section we calculate the conditional variance of the OLS estimator.
For any r × 1 random vector Z define the r × r covariance matrix

var(Z) = E (Z − EZ) (Z − EZ)′

= EZZ ′ − (EZ) (EZ)′

and for any pair (Z,X) define the conditional covariance matrix

var(Z |X) = E
(
(Z − E (Z |X)) (Z − E (Z |X))′ |X

)
.

The conditional covariance matrix of the n× 1 regression error e is the n× n matrix

D = E
(
ee′ |X

)
.

The i’th diagonal element of D is

E
(
e2
i |X

)
= E

(
e2
i | xi

)
= σ2

i

while the ij′th off-diagonal element of D is

E (eiej |X) = E (ei | xi)E (ej | xj) = 0.

where the first equality uses independence of the observations (Assumption 1.5.1) and the second
is (4.2). Thus D is a diagonal matrix with i’th diagonal element σ2

i :

D = diag
(
σ2

1, ..., σ
2
n

)
=


σ2

1 0 · · · 0
0 σ2

2 · · · 0
...

...
. . .

...
0 0 · · · σ2

n

 . (4.9)

In the special case of the linear homoskedastic regression model (4.3), then

E
(
e2
i | xi

)
= σ2

i = σ2

and we have the simplification
D = Inσ

2.

In general, however, D need not necessarily take this simplified form.
For any matrix n× r matrix A = A(X),

var(A′y |X) = var(A′e |X) = A′DA. (4.10)

In particular, we can write β̂ = A′y where A = X (X ′X)
−1 and thus

var
(
β̂ |X

)
= A′DA

=
(
X ′X

)−1
X ′DX

(
X ′X

)−1
.

It is useful to note that

X ′DX =
n∑
i=1

xix
′
iσ

2
i ,

a weighted version of X ′X.
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Rather than working with the variance of the unscaled estimator β̂, it will be useful to work

with the conditional variance of the scaled estimator
√
n
(
β̂ − β

)
V β̂ = var

(√
n
(
β̂ − β

)
|X
)

= n var
(
β̂ |X

)
= n

(
X ′X

)−1 (
X ′DX

) (
X ′X

)−1

=

(
1

n
X ′X

)−1( 1

n
X ′DX

)(
1

n
X ′X

)−1

.

This rescaling might seem rather odd, but it will help provide continuity between the finite-sample
treatment of this chapter and the asymptotic treatment of later chapters. As we will see in the

next chapter, var
(
β̂ |X

)
vanishes as n tends to infinity, yet V β̂ converges to a constant matrix.

In the special case of the linear homoskedastic regression model, D = Inσ
2, so X ′DX =

X ′Xσ2, and the variance matrix simplifies to

V β̂ =

(
1

n
X ′X

)−1

σ2.

Theorem 4.4.1 Variance of Least-Squares Estimator
In the linear regression model (Assumption 4.1.1),

V β̂ = var
(√

n
(
β̂ − β

)
|X
)

=

(
1

n
X ′X

)−1( 1

n
X ′DX

)(
1

n
X ′X

)−1

where D is defined in (4.9).
In the homoskedastic linear regression model (Assumption 4.1.2), the co-
variance matrix simplifies to

V β̂ =

(
1

n
X ′X

)−1

σ2.

4.5 Gauss-Markov Theorem

Now consider the class of estimators of β which are linear functions of the vector y, and thus
can be written as

β̃ = A′y

where A is an n × k function of X. The least-squares estimator is the special case obtained by
setting A = X(X ′X)−1.What is the best choice of A? The Gauss-Markov theorem, which we now
present, says that the least-squares estimator is the best choice when the errors are homoskedastic,
as the least-squares estimator has the smallest variance among all unbiased linear estimators.

To see this, since E (y |X) = Xβ, then for any linear estimator β̃ = A′y we have

E
(
β̃ |X

)
= A′E (y |X) = A′Xβ,
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so β̃ is unbiased if (and only if) A′X = Ik. Furthermore, we saw in (4.10) that

var
(
β̃ |X

)
= var

(
A′y |X

)
= A′DA = A′Aσ2.

the last equality using the homoskedasticity assumption D = Inσ
2 . The “best”unbiased linear

estimator is obtained by finding the matrix A such that A′A is minimized in the positive definite
sense.

Theorem 4.5.1 Gauss-Markov

1. In the homoskedastic linear regression model (Assumption 4.1.2),
the best (minimum-variance) unbiased linear estimator is the least-
squares estimator

β̂ =
(
X ′X

)−1
X ′y

2. In the linear regression model (Assumption 4.1.1), the best unbiased
linear estimator is

β̃ =
(
X ′D−1X

)−1
X ′D−1y (4.11)

The first part of the Gauss-Markov theorem is a limited effi ciency justification for the least-
squares estimator. The justification is limited because the class of models is restricted to ho-
moskedastic linear regression and the class of potential estimators is restricted to linear unbiased
estimators. This latter restriction is particularly unsatisfactory as the theorem leaves open the
possibility that a non-linear or biased estimator could have lower mean squared error than the
least-squares estimator.

The second part of the theorem shows that in the (heteroskedastic) linear regression model,
the least-squares estimator is ineffi cient. Within the class of linear unbiased estimators the best
estimator is (4.11) and is called theGeneralized Least Squares (GLS) estimator. This estimator
is infeasible as the matrix D is unknown. This result does not suggest a practical alternative to
least-squares. We return to the issue of feasible implementation of GLS in Section 7.1.

Proof of Theorem 4.5.1.1. Let A be any n×k function ofX such that A′X = Ik. The variance
of the least-squares estimator is (X ′X)

−1
σ2 and that of A′y is A′Aσ2. It is suffi cient to show

that the difference A′A− (X ′X)
−1 is positive semi-definite. Set C = A−X (X ′X)

−1
. Note that

X ′C = 0. Then we calculate that

A′A−
(
X ′X

)−1
=

(
C +X

(
X ′X

)−1
)′ (

C +X
(
X ′X

)−1
)
−
(
X ′X

)−1

= C ′C +C ′X
(
X ′X

)−1
+
(
X ′X

)−1
X ′C

+
(
X ′X

)−1
X ′X

(
X ′X

)−1 −
(
X ′X

)−1

= C ′C

The matrix C ′C is positive semi-definite (see Appendix A.7) as required.
The proof of Theorem 4.5.1.2 is left for Exercise 4.3.
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4.6 Residuals

What are some properties of the residuals êi = yi−x′iβ̂ and prediction errors ẽi = yi−x′iβ̂(−i),
at least in the context of the linear regression model?

Recall from (3.17) and (3.18) that we can write the residuals in vector notation as

ê = y −Xβ̂ = My = Me

where M = In −X (X ′X)
−1
X ′ is the matrix which projects on the the space orthogonal to the

columns of X. Using the properties of conditional expectation

E (ê |X) = E (Me |X) = ME (e |X) = 0

and
var (ê |X) = var (Me |X) = M var (e | X)M = MDM (4.12)

where D is defined in (4.9).
We can simplify this expression under the assumption of conditional homoskedasticity

E
(
e2
i | xi

)
= σ2.

In this case (4.12) simplies to
var (ê |X) = Mσ2.

In particular, for a single observation i, we obtain

var (êi |X) = E
(
ê2
i |X

)
= (1− hii)σ2 (4.13)

since the diagonal elements of M are 1 − hii as defined in (3.19). Thus the residuals are het-
eroskedastic even if the errors are homoskedastic.

Similarly, we can write the prediction errors ẽi = (1− hii)−1 êi in vector notation. Set

M∗ = diag{(1− h11)−1 , .., (1− hnn)−1}

Then we can write the prediction errors as

ẽ = M∗My

= M∗Me.

We can calculate that
E (ẽ |X) = M∗ME (e |X) = 0

and
var (ẽ |X) = M∗M var (e | X)MM∗ = M∗MDMM∗

which simplifies under homoskedasticity to

var (ẽ |X) = M∗MMM∗σ2

= M∗MM∗σ2.

The variance of the i’th prediction error is then

var (ẽi |X) = E
(
ẽ2
i |X

)
= (1− hii)−1 (1− hii) (1− hii)−1 σ2

= (1− hii)−1 σ2.
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A residual with proper variance can be obtained by rescaling. The studentized residuals are

ēi = (1− hi)−1/2 êi, (4.14)

and in vector notation
ē = (ē1, ..., ēn)′ = M∗1/2Me.

From our above calculations, under homoskedasticity,

var (ē |X) = M∗1/2MM∗1/2σ2

and
var (ēi |X) = E

(
ē2
i |X

)
= σ2 (4.15)

and thus these rescaled residuals have the same bias and variance as the original errors when the
latter are homoskedastic.

4.7 Estimation of Error Variance

The error variance σ2 = Ee2
i can be a parameter of interest, even in a heteroskedastic regression

or a projection model. σ2 measures the variation in the “unexplained”part of the regression. Its
method of moments estimator (MME) is the sample average of the squared residuals:

σ̂2 =
1

n

n∑
i=1

ê2
i

and equals the MLE in the normal regression model (3.13).
In the linear regression model we can calculate the mean of σ̂2. From (3.18), the properties of

projection matrices and the trace operator, observe that

σ̂2 =
1

n
ê′ê =

1

n
e′MMe =

1

n
e′Me =

1

n
tr
(
e′Me

)
=

1

n
tr
(
Mee′

)
.

Then

E
(
σ̂2 |X

)
=

1

n
tr
(
E
(
Mee′ |X

))
=

1

n
tr
(
ME

(
ee′ |X

))
=

1

n
tr (MD) . (4.16)

Adding the assumption of conditional homoskedasticity E
(
e2
i | xi

)
= σ2, so that D = Inσ

2, then
(4.16) simplifies to

E
(
σ̂2 |X

)
=

1

n
tr
(
Mσ2

)
= σ2

(
n− k
n

)
,

the final equality by (3.16). This calculation shows that σ̂2 is biased towards zero. The order of
the bias depends on k/n, the ratio of the number of estimated coeffi cients to the sample size.
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Another way to see this is to use (4.13). Note that

E
(
σ̂2 |X

)
=

1

n

n∑
i=1

E
(
ê2
i |X

)
=

1

n

n∑
i=1

(1− hii)σ2

=

(
n− k
n

)
σ2

using (3.20).
Since the bias takes a scale form, a classic method to obtain an unbiased estimator is by rescaling

the estimator. Define

s2 =
1

n− k

n∑
i=1

ê2
i . (4.17)

By the above calculation,
E
(
s2 |X

)
= σ2 (4.18)

so
E
(
s2
)

= σ2

and the estimator s2 is unbiased for σ2. Consequently, s2 is known as the “bias-corrected estimator”
for σ2 and in empirical practice s2 is the most widely used estimator for σ2.

Interestingly, this is not the only method to construct an unbiased estimator for σ2. An al-
ternative unbiased estimator can be using the studentized residuals ēi from (4.14), yielding the
estimator

σ̄2 =
1

n

n∑
i=1

ē2
i =

1

n

n∑
i=1

(1− hii)−1 ê2
i .

You can show (see Exercise 4.6) that

E
(
σ̄2 |X

)
= σ2 (4.19)

and thus σ̄2 is unbiased for σ2 (in the homoskedastic linear regression model).
When the sample sizes are large and the number of regressors small, the estimators σ̂2, s2 and

σ̄2 are likely to be close. For example, in the regression (3.10), σ̂, s, and σ̄ all equal 0.490. The
estimators are more likely to differ when n is small and k is large.

4.8 Covariance Matrix Estimation Under Homoskedasticity

For inference, we need an estimate of the covariance matrix V β̂ of the least-squares estimator.
In this section we consider estimation of V β̂ in the homoskedastic regression model (4.1)-(4.2)-(4.3).

Under homoskedasticity, the covariance matrix takes the relatively simple form

V β̂ =

(
1

n
X ′X

)−1

σ2.

which is known up to the unknown scale σ2. In the previous section we discussed three estimators
of σ2. The most commonly used choice is s2, leading to the classic covariance matrix estimator

V̂
0

β̂ =

(
1

n
X ′X

)−1

s2. (4.20)
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Since s2 is conditionally unbiased for σ2, it is simple to calculate that V̂
0

β̂ is conditionally
unbiased for V β̂ under the assumption of homoskedasticity:

E
(
V̂

0

β̂ |X
)

=

(
1

n
X ′X

)−1

E
(
s2 |X

)
=

(
1

n
X ′X

)−1

σ2

= V β̂.

This estimator was the dominant covariance matrix estimator in applied econometrics in pre-
vious generations, and is still the default in most regression packages.

If the estimator (4.20) is used, but the regression error is heteroskedastic, it is possible for V̂
0

β̂

to be quite biased for the correct covariance matrix V β̂ =

(
1

n
X ′X

)−1( 1

n
X ′DX

)(
1

n
X ′X

)−1

.

For example, suppose k = 1 and σ2
i = x2

i (extreme heteroskedasticity). The ratio of the true
variance of the least-squares estimator to the expectation of the variance estimator is

V β̂

E
(
V̂

0

β̂ |X
) =

1

n

∑n
i=1 x

4
i

σ2
1

n

∑n
i=1 x

2
i

' Ex4
i

σ2Ex2
i

=
Ex4

i(
Ex2

i

)2 .
(Notice that we use the fact that σ2

i = x2
i implies σ

2 = Eσ2
i = Ex2

i .) This is the kurtosis of
the regressor xi. As the kurtosis can be any number greater than one, we conclude that the bias

of V̂
0

β̂ can be arbitrarily large. While this is an extreme and constructed example, the point is
that the classic covariance matrix estimator (4.20) may be quite biased when the homoskedasticity
assumption fails.

4.9 Covariance Matrix Estimation Under Heteroskedasticity

In the previous section we showed that that the classic covariance matrix estimator can be
highly biased if homoskedasticity fails. In this section we show how to contruct covariance matrix
estimators which do not require homoskedasticity.

Recall that the general form for the covariance matrix is

V β̂ =

(
1

n
X ′X

)−1( 1

n
X ′DX

)(
1

n
X ′X

)−1

.

This depends on the unknown matrix D which we can write as

D = diag
(
σ2

1, ..., σ
2
n

)
= E

(
ee′ |X

)
= E

(
diag

(
e2

1, ..., e
2
n

)
|X
)
.

Thus D is the conditional mean of diag
(
e2

1, ..., e
2
n

)
, so the latter is an unbiased estimator for D.

Therefore, if the squared errors e2
i were observable, we could construct the unbiased estimator

V ideal
β̂

=

(
1

n
X ′X

)−1( 1

n
X ′ diag

(
e2

1, ..., e
2
n

)
X

)(
1

n
X ′X

)−1

=

(
1

n
X ′X

)−1
(

1

n

n∑
i=1

xix
′
ie

2
i

)(
1

n
X ′X

)−1

.
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Indeed,

E
(
V ideal
β̂
|X
)

=

(
1

n
X ′X

)−1
(

1

n

n∑
i=1

xix
′
iE
(
e2
i |X

))( 1

n
X ′X

)−1

=

(
1

n
X ′X

)−1
(

1

n

n∑
i=1

xix
′
iσ

2
i

)(
1

n
X ′X

)−1

=

(
1

n
X ′X

)−1( 1

n
X ′DX

)(
1

n
X ′X

)−1

= V β̂

verifying that V ideal
β̂

is unbiased for V β̂

Since the errors e2
i are unobserved, V

ideal
β̂

is not a feasible estimator. To construct a feasible
estimator we can replace the errors with the least-squares residuals êi, the prediction errors ẽi or
the unbiased residuals ēi, e.g.

D̂ = diag
(
ê2

1, ..., ê
2
n

)
,

D̃ = diag
(
ẽ2

1, ..., ẽ
2
n

)
,

D = diag
(
ē2

1, ..., ē
2
n

)
.

Substituting these matrices into the formula for V β̂ we obtain the estimators

V̂ β̂ =

(
1

n
X ′X

)−1( 1

n
X ′D̂X

)(
1

n
X ′X

)−1

=

(
1

n
X ′X

)−1
(

1

n

n∑
i=1

xix
′
iê

2
i

)(
1

n
X ′X

)−1

,

Ṽ β̂ =

(
1

n
X ′X

)−1( 1

n
X ′D̃X

)(
1

n
X ′X

)−1

=

(
1

n
X ′X

)−1
(

1

n

n∑
i=1

xix
′
iẽ

2
i

)(
1

n
X ′X

)−1

=

(
1

n
X ′X

)−1
(

1

n

n∑
i=1

(1− hii)−2 xix
′
iê

2
i

)(
1

n
X ′X

)−1

,

and

V β̂ =

(
1

n
X ′X

)−1( 1

n
X ′DX

)(
1

n
X ′X

)−1

=

(
1

n
X ′X

)−1
(

1

n

n∑
i=1

xix
′
iē

2
i

)(
1

n
X ′X

)−1

=

(
1

n
X ′X

)−1
(

1

n

n∑
i=1

(1− hii)−1 xix
′
iê

2
i

)(
1

n
X ′X

)−1

.

The estimators V̂ β̂, Ṽ β̂, and V β̂ are often called robust, heteroskedasticity-consistent, or heteroskedasticity-

robust covariance matrix estimators. The estimator V̂ β̂ was first developed by Eicker (1963), and
introduced to econometrics by White (1980), and is sometimes called the Eicker-White orWhite
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covariance matrix estimator1. The estimator Ṽ β̂ was introduced by Andrews (1991) based on the

principle of leave-one-out cross-validation, and the estimator V β̂ was introduced by Horn, Horn
and Duncan (1975) as a reduced-bias covariance matrix estimator.

In general, the bias of the estimators V̂ β̂, Ṽ β̂ and V β̂, is quite complicated, but they greatly
simplify under the assumption of homoskedasticity (4.3). For example, using (4.13),

E
(
V̂ β̂ |X

)
=

(
1

n
X ′X

)−1
(

1

n

n∑
i=1

xix
′
iE
(
ê2
i |X

))( 1

n
X ′X

)−1

=

(
1

n
X ′X

)−1
(

1

n

n∑
i=1

xix
′
i (1− hii)σ2

)(
1

n
X ′X

)−1

=

(
1

n
X ′X

)−1

σ2 −
(

1

n
X ′X

)−1
(

1

n

n∑
i=1

xix
′
ihii

)(
1

n
X ′X

)−1

σ2

<

(
1

n
X ′X

)−1

σ2

= V β̂.

The inequality A < B when applied to matrices means that the matrix B −A is positive definite,
which holds here since

∑n
i=1 xix

′
ihii is positive definite. This calculation shows that V̂ β̂ is biased

downwards.
Similarly, (again under homoskedasticity) we can calculate that Ṽ β̂ is biased upwards, specifi-

cally

E
(
Ṽ β̂ |X

)
>

(
1

n
X ′X

)−1

σ2 (4.21)

while the estimator V β̂ is unbiased

E
(
V β̂ |X

)
=

(
1

n
X ′X

)−1

σ2. (4.22)

(See Exercise 4.7
It might seem rather odd to compare the bias of heteroskedasticity-robust estimators under the

assumption of homoskedasticity, but it does give us a baseline for comparison.

We have introduced four covariance matrix estimators, V̂
0

β̂, V̂ β̂, Ṽ β̂, and V β̂. Which should

you use? The classic estimator V̂
0

β̂ is typically a poor choice, as it is only valid under the unlikely
homoskedasticity restriction. For this reason it is not typically used in contemporary economet-
ric research. Of the three robust estimators, V̂ β̂ is the most commonly used, as it is the most

straightforward and familiar. However, Ṽ β̂, and in particular V β̂, are perferred based on their

improved bias. Unfortunately, standard regression packages set the classic estimator V̂
0

β̂ as the

default. As Ṽ β̂ and V β̂ are simple to implement, this should not be a barrier. For example, in

STATA, V β̂ is implemented by selecting “Robust”standard errors and selecting the bias correction
option “1/(1− h)”, or using the vce(hc2) option.

4.10 Standard Errors

A variance estimator such as V̂ β̂ is an estimate of the variance of the distribution of β̂. A
more easily interpretable measure of spread is its square root — the standard deviation. This is

1Often, this estimator is rescaled by multiplying by the ad hoc bias adjustment
n

n− k in analogy to the bias-

corrected error variance estimator.
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so important when discussing the distribution of parameter estimates, we have a special name for
estimates of their standard deviation.

Definition 4.10.1 A standard error s(β̂) for an real-
valued estimator β̂ is an estimate of the standard deviation
of the distribution of β̂.

When β is a vector with estimate β̂ and covariance matrix estimate n−1V̂ β̂, standard errors

for individual elements are the square roots of the diagonal elements of n−1V̂ β̂. That is,

s(β̂j) =

√
n−1V̂ β̂j

= n−1/2

√[
V̂ β̂

]
jj
.

As we discussed in the previous section, there are multiple possible covariance matrix estimators,
so standard errors are not unique. It is therefore important to understand what formula and method
is used by an author when studying their work. It is also important to understand that a particular
standard error may be relevant under one set of model assumptions, but not under another set of
assumptions.

4.11 Multicollinearity

If rank(X ′X) < k, then β̂ is not defined2. This is called strict multicollinearity. This
happens when the columns of X are linearly dependent, i.e., there is some α 6= 0 such that
Xα = 0. Most commonly, this arises when sets of regressors are included which are identically
related. For example, if X includes both the logs of two prices and the log of the relative prices,
log(p1), log(p2) and log(p1/p2). When this happens, the applied researcher quickly discovers the
error as the statistical software will be unable to construct (X ′X)−1. Since the error is discovered
quickly, this is rarely a problem for applied econometric practice.

The more relevant situation is near multicollinearity, which is often called “multicollinearity”
for brevity. This is the situation when theX ′X matrix is near singular, when the columns ofX are
close to linearly dependent. This definition is not precise, because we have not said what it means
for a matrix to be “near singular”. This is one diffi culty with the definition and interpretation of
multicollinearity.

One implication of near singularity of matrices is that the numerical reliability of the calculations
is reduced. In extreme cases it is possible that the reported calculations will be in error.

A more relevant implication of near multicollinearity is that individual coeffi cient estimates will
be imprecise. We can see this most simply in a homoskedastic linear regression model with two
regressors

yi = x1iβ1 + x2iβ2 + ei,

and
1

n
X ′X =

(
1 ρ
ρ 1

)
In this case

var
(
β̂ |X

)
=
σ2

n

(
1 ρ
ρ 1

)−1

=
σ2

n (1− ρ2)

(
1 −ρ
−ρ 1

)
.

2See Appendix A.5 for the defintion of the rank of a matrix.
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The correlation ρ indexes collinearity, since as ρ approaches 1 the matrix becomes singular. We
can see the effect of collinearity on precision by observing that the variance of a coeffi cient esti-
mate σ2

[
n
(
1− ρ2

)]−1 approaches infinity as ρ approaches 1. Thus the more “collinear” are the
regressors, the worse the precision of the individual coeffi cient estimates.

What is happening is that when the regressors are highly dependent, it is statistically diffi cult
to disentangle the impact of β1 from that of β2. As a consequence, the precision of individual
estimates are reduced. The imprecision, however, will be reflected by large standard errors, so
there is no distortion in inference.

Some earlier textbooks overemphasized a concern about multicollinearity. A very amusing
parody of these texts appeared in Chapter 23.3 of Goldberger’s A Course in Econometrics (1991),
which is reprinted below. To understand his basic point, you should notice how the estimation
variance σ2

[
n
(
1− ρ2

)]−1 depends equally and symmetrically on the the correlation ρ and the
sample size n.

Arthur S. Goldberger

Art Goldberger (1930-2009) was one of the most distinguished members of the Depart-
ment of Economics at the University of Wisconsin. His PhD thesis developed an early
macroeconometric forecasting model (known as the Klein-Goldberger model) but most of
his career focused on microeconometric issues. He was the leading pioneer of what has been
called the Wisconsin Tradition of empirical work — a combination of formal econometric
theory with a careful critical analysis of empirical work. Goldberger wrote a series of highly
regarded and influential graduate econometric textbooks, including including Econometric
Theory (1964), Topics in Regression Analysis (1968), and A Course in Econometrics (1991).
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Micronumerosity
Arthur S. Goldberger

A Course in Econometrics (1991), Chapter 23.3

Econometrics texts devote many pages to the problem of multicollinearity in multiple regres-
sion, but they say little about the closely analogous problem of small sample size in estimation
a univariate mean. Perhaps that imbalance is attributable to the lack of an exotic polysyllabic
name for “small sample size.” If so, we can remove that impediment by introducing the term
micronumerosity.

Suppose an econometrician set out to write a chapter about small sample size in sampling
from a univariate population. Judging from what is now written about multicollinearity, the
chapter might look like this:

1. Micronumerosity

The extreme case, “exact micronumerosity,” arises when n = 0, in which case the sample
estimate of µ is not unique. (Technically, there is a violation of the rank condition n > 0 : the
matrix 0 is singular.) The extreme case is easy enough to recognize. “Near micronumerosity”
is more subtle, and yet very serious. It arises when the rank condition n > 0 is barely
satisfied. Near micronumerosity is very prevalent in empirical economics.

2. Consequences of micronumerosity

The consequences of micronumerosity are serious. Precision of estimation is reduced. There
are two aspects of this reduction: estimates of µ may have large errors, and not only that,
but Vȳ will be large.

Investigators will sometimes be led to accept the hypothesis µ = 0 because ȳ/σ̂ȳ is small,
even though the true situation may be not that µ = 0 but simply that the sample data have
not enabled us to pick µ up.

The estimate of µ will be very sensitive to sample data, and the addition of a few more
observations can sometimes produce drastic shifts in the sample mean.

The true µ may be suffi ciently large for the null hypothesis µ = 0 to be rejected, even
though Vȳ = σ2/n is large because of micronumerosity. But if the true µ is small (although
nonzero) the hypothesis µ = 0 may mistakenly be accepted.

3. Testing for micronumerosity

Tests for the presence of micronumerosity require the judicious use of various fingers. Some
researchers prefer a single finger, others use their toes, still others let their thumbs rule.

A generally reliable guide may be obtained by counting the number of observations. Most
of the time in econometric analysis, when n is close to zero, it is also far from infinity.

Several test procedures develop critical values n∗, such that micronumerosity is a problem
only if n is smaller than n∗. But those procedures are questionable.

4. Remedies for micronumerosity

If micronumerosity proves serious in the sense that the estimate of µ has an unsatisfactorily
low degree of precision, we are in the statistical position of not being able to make bricks
without straw. The remedy lies essentially in the acquisition, if possible, of larger samples
from the same population.

But more data are no remedy for micronumerosity if the additional data are simply “more
of the same.”So obtaining lots of small samples from the same population will not help.
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4.12 Omitted Variable Bias

Let the regressors be partitioned as

xi =

(
x1i

x2i

)
.

We can write the regression of yi on xi as

yi = x′1iβ1 + x′2iβ2 + ei (4.23)

E (xiei) = 0.

Now suppose that instead of estimating equation (4.23) by least-squares, we regress yi on x1i

only. Perhaps this is done because the variables x2i are not in the data set, in order to reduce the
number of estimated parameters. Effectively, we are estimating the equation

yi = x′1iγ1 + ui (4.24)

E (x1iui) = 0

Notice that we have written the coeffi cient on x1i as γ1 rather than β1 and the error as ui rather
than ei. This is because the model being estimated is different than (4.23). Goldberger (1991)
introduced the labels (4.23) the long regression and (4.24) the short regression to emphasize
the distinction.

Typically, β1 6= γ1, except in special cases. To see this, we calculate

γ1 =
(
E
(
x1ix

′
1i

))−1 E (x1iyi)

=
(
E
(
x1ix

′
1i

))−1 E
(
x1i

(
x′1iβ1 + x′2iβ2 + ei

))
= β1 +

(
E
(
x1ix

′
1i

))−1 E
(
x1ix

′
2i

)
β2

= β1 + Γβ2

where
Γ =

(
E
(
x1ix

′
1i

))−1 E
(
x1ix

′
2i

)
is the coeffi cient from a regression of x2i on x1i.

Observe that γ1 6= β1 unless Γ = 0 or β2 = 0. Thus the short and long regressions have the
same coeffi cient on x1i only under one of two conditions. First, the regression of x2i on x1i yields
a set of zero coeffi cients (they are uncorrelated), or second, the coeffi cient on x2i in (4.23) is zero.
In general, least-squares estimation of (4.24) is an estimate of γ1 = β1 + Γβ2 rather than β1. The
difference Γβ2 is known as omitted variable bias. It is the consequence of omission of a relevant
correlated variable.

To avoid omitted variables bias the standard advice is to include potentially relevant variables
in the estimated model. By construction, the general model will be free of the omitted variables
problem. Typically there are limits, as many desired variables are not available in a given dataset.
In this case, the possibility of omitted variables bias should be acknowledged and discussed in the
course of an empirical investigation.

4.13 Normal Regression Model

In the special case of the normal linear regression model introduced in Section 3.11, we can derive
exact sampling distributions for the least-squares estimator, residuals, and variance estimator.

In particular, under the normality assumption ei | xi ∼ N
(
0, σ2

)
then we have the multivariate

implication
e |X ∼ N

(
0, Inσ

2
)
.

61



That is, the error vector e is independent of X and is normally distributed. Since linear functions
of normals are also normal, this implies that conditional on X(

β̂ − β
ê

)
=

(
(X ′X)

−1
X ′

M

)
e ∼ N

(
0,

(
σ2 (X ′X)

−1
0

0 σ2M

))
where M = In −X (X ′X)

−1
X ′. Since uncorrelated normal variables are independent, it follows

that β̂ is independent of any function of the OLS residuals including the estimated error variance
s2 or σ̂2 or prediction errors ẽ.

The spectral decomposition ofM yields

M = H

[
In−k 0

0 0

]
H ′

(see equation (A.4)) where H ′H = In. Let u = σ−1H ′e ∼ N (0,H ′H) ∼ N (0, In) . Then

nσ̂2

σ2
=

(n− k) s2

σ2

=
1

σ2
ê′ê

=
1

σ2
e′Me

=
1

σ2
e′H

[
In−k 0

0 0

]
H ′e

= u′
[
In−k 0

0 0

]
u

∼ χ2
n−k,

a chi-square distribution with n− k degrees of freedom.
Furthermore, if standard errors are calculated using the homoskedastic formula (4.20)

β̂j − βj
s(β̂j)

=
β̂j − βj

s

√[
(X ′X)

−1
]
jj

∼
N

(
0, σ2

[
(X ′X)

−1
]
jj

)
√

σ2

n−kχ
2
n−k

√[
(X ′X)

−1
]
jj

=
N (0, 1)√

χ2n−k
n−k

∼ tn−k

a t distribution with n− k degrees of freedom.

Theorem 4.13.1 Normal Regression
In the linear regression model (Assumption 4.1.1) if ei is independent of
xi and distributed N

(
0, σ2

)
then

• β̂ − β ∼ N
(
0, σ2 (X ′X)

−1
)

• nσ̂2

σ2
= (n−k)s2

σ2
∼ χ2

n−k

• β̂j−βj
s(β̂j)

∼ tn−k

These are the exact finite-sample distributions of the least-squares estimator and variance esti-
mators, and are the basis for traditional inference in linear regression.

62



While elegant, the diffi culty in applying Theorem 4.13.1 is that the normality assumption is
too restrictive to be empirical plausible, and therefore inference based on Theorem 4.13.1 has no
guarantee of accuracy. We develop a more broadly-applicable inference theory based on large
sample (asymptotic) approximations in the following chapter.
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Exercises

Exercise 4.1 Explain the difference between 1
n

∑n
i=1 xix

′
i and E (xix

′
i) .

Exercise 4.2 True or False. If yi = xiβ + ei, xi ∈ R, E(ei | xi) = 0, and êi is the OLS residual
from the regression of yi on xi, then

∑n
i=1 x

2
i êi = 0.

Exercise 4.3 Prove Theorem 4.5.1.2.

Exercise 4.4 In a linear model

y = Xβ + e, E(e |X) = 0, var (e |X) = σ2Ω

with Ω known, the GLS estimator is

β̃ =
(
X ′Ω−1X

)−1 (
X ′Ω−1y

)
.

the residual vector is ê = y −Xβ̃, and an estimate of σ2 is

s2 =
1

n− k ê
′Ω−1ê.

(a) Why is this a reasonable estimator for σ2?

(b) Prove that ê = M1e, whereM1 = I −X
(
X ′Ω−1X

)−1
X ′Ω−1.

(c) Prove thatM ′
1Ω
−1M1 = Ω−1 −Ω−1X

(
X ′Ω−1X

)−1
X ′Ω−1.

Exercise 4.5 Let (yi,xi) be a random sample with E(y | X) = Xβ. Consider the Weighted
Least Squares (WLS) estimator of β

β̃ =
(
X ′WX

)−1 (
X ′Wy

)
where W = diag (w1, ..., wn) and wi = x−2

ji , where xji is one of the xi.

(a) In which contexts would β̃ be a good estimator?

(b) Using your intuition, in which situations would you expect that β̃ would perform better than
OLS?

Exercise 4.6 Show (4.19) in the homoskedastic regression model.

Exercise 4.7 Show (4.21) and (4.22) in the homoskedastic regression model.
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Chapter 5

Asymptotic Theory

5.1 Introduction

As discussed in Section 4.2, the OLS estimator β̂ is has an unknown statistical distribution. In-
ference (confidence intervals and hypothesis testing) requires useful approximations to the sampling
distribution. The most widely used and versatile method is asymptotic theory, which approximates
sampling distributions by taking the limit of the finite sample distribution as the sample size n tends
to infinity. The primary tools of asymptotic theory are the weak law of large numbers (WLLN),
central limit theorem (CLT), and continuous mapping theorem (CMT). With these tools we can
approximate the sampling distributions of most econometric estimators.

It turns out that most of this theory equally applies to the projection model and the linear
conditional mean model, and therefore the results in this Chapter will be stated for the broader
projection model unless otherwise stated. Throughout this chapter we maintain the following.

Assumption 5.1.1 Linear Projection Model
The observations (yi,xi) come from a random sample with finite second
moments

Ey2
i <∞

and
Ex2

ji <∞

for j = 1, ..., k, and an invertible design matrix

Q = E
(
xix

′
i

)
> 0.

From Theorems 2.9.1 and 2.9.2, under Assumtpion 5.1.1 the variables satisfy the linear projec-
tion equation

yi = x′iβ + ei

E (xiei) = 0

β =
(
E
(
xx′
))−1 E (xy) .

A review of the most important tools in asymptotic theory is contained in Appendix C.

5.2 Weak Law of Large Numbers

At the beginning of Chapter 4, we showed in Figure 4.1 how the sampling density of the least-
square estimator varies with the sample size n. It is possible to see in the figure that the sampling
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density concentrates about the true parameter value as the sample size increases. This is the
property of estimator consistency —convergence in probability to the true parameter value. In this
section we review the core theory explaining this phenomenon.

At its heart, estimator consistency is the effect of sample size on the variance of the sample
mean. To review, suppose ui is an iid random variable with finite mean Eui = µ and variance
E (ui − µ)2 = σ2, and consider the sample mean µ̂ = 1

n

∑n
i=1 ui. The mean and variance of µ̂ are

Eµ̂ = E
1

n

n∑
i=1

ui =
1

n

n∑
i=1

Eui = µ

and

var(µ̂) = E (µ̂− µ)2 = E

(
1

n

n∑
i=1

(ui − µ)

)2

=
1

n2

n∑
i=1

n∑
j=1

E (ui − µ) (uj − µ) =
1

n2

n∑
i=1

σ2 =
σ2

n

where the second-to-last inequality is because E (ui − µ) (uj − µ) = σ2 for i = j yet E (ui − µ) (uj − µ) =
0 for i 6= j due to independence.

We see that var(µ̂) = σ2/n which is decreasing in n (as long as σ2 < ∞). It follows that
var(µ̂) = σ2/n → 0 as n → ∞. This means that the distribution of µ̂ is increasingly concentrated
about its mean µ as n increases.

To be more precise, for any δ > 0, an application of Chebyshev’s inequality yields

P (|µ̂− µ| > δ) ≤ var(µ̂)

δ2 =
σ2/n

δ2 → 0

as n→∞. This says that the probability that µ̂ differs from µ by more than δ declines to zero as
n → ∞. Equivalently, the distribution of µ̂ becomes concentrated within the region [µ − δ, µ + δ]
as n diverges. As this holds for any δ (even an extremely small value) it is reasonable to say that
the distribution of µ̂ concentrates about µ as n increases.

We have described three distinct but intertwined concepts: convergence in probability (concen-
tration of a sampling distribution), consistency (convergence in probability of an estimator to the
parameter value), and the weak law of large numbers (convergence in probability of the sample
mean). We now state these concepts formally.

Definition 5.2.1 We say that a random variable zn ∈ R converges in
probability to z as n→∞, denoted zn

p−→ z, if for all δ > 0,

lim
n→∞

P (|zn − z| > δ) = 0.

Definition 5.2.2 An estimator θ̂ of a parameter θ is consistent if θ̂
p−→

θ as n→∞

Consistency is a good property for an estimator to possess. It means that for any given data
distribution, there is a sample size n suffi ciently large such that the estimator θ̂ will be arbitrarily
close to the true value θ with high probability.

Above, we showed that the sample mean µ̂ converges in probability to the population mean µ
as n→∞, and is thus consistent for µ. This result is known as the weak law of large numbers.
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Theorem 5.2.1 Weak Law of Large Numbers (WLLN)
If ui ∈ R is iid and E |ui| <∞, then

un =
1

n

n∑
i=1

ui
p−→ E(ui)

as n→∞ .

Theorem 5.2.2 WLLN for Random Matrices
If U i ∈ Rk×r is iid and E |ujli| <∞ for 1 ≤ j ≤ k and 1 ≤ l ≤ r then

Un =
1

n

n∑
i=1

U i
p−→ E(U i)

as n→∞.

In our derivation, we proved the WLLN under the assumption that ui has a finite variance.
Theorem 5.2.1 states that the WLLN holds under the weaker assumption of a finite mean. We
provide a proof of this more general result for the technically-inclinded readers.

Proof of Theorem 5.2.1: Without loss of generality, we can assume E(ui) = 0 by recentering ui
on its expectation.

We need to show that for all δ > 0 and η > 0 there is some N < ∞ so that for all n ≥ N,
P (|un| > δ) ≤ η. Fix δ and η. Set ε = δη/3. Pick C <∞ large enough so that

E (|ui| 1 (|ui| > C)) ≤ ε (5.1)

(where 1 (·) is the indicator function) which is possible since E |ui| <∞. Define the random variables

wi = ui1 (|ui| ≤ C)− E (ui1 (|ui| ≤ C))

zi = ui1 (|ui| > C)− E (ui1 (|ui| > C)) .

By the Triangle Inequality (A.8), the Expectation Inequality (C.2), and (5.1),

E |zn| = E

∣∣∣∣∣ 1n
n∑
i=1

zi

∣∣∣∣∣
≤ 1

n

n∑
i=1

E |zi|

= E |zi|
≤ E |ui| 1 (|ui| > C) + |E (ui1 (|ui| > C))|
≤ 2E |ui| 1 (|ui| > C)

≤ 2ε. (5.2)
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By Jensen’s Inequality (C.1), the fact that the wi are iid and mean zero, and the bound |wi| ≤ 2C,

(E |wn|)2 ≤ Ew2
n

=
Ew2

i

n

≤ 4C2

n
≤ ε2 (5.3)

the final inequality holding for n ≥ 4C2/ε2 = 36C2/δ2η2.
Finally, by Markov’s Inequality (C.6), the fact that un = wn + zn, the triangle inequality, (5.2)

and (5.3),

P (|un| > δ) ≤ E |un|
δ
≤ E |wn|+ E |zn|

δ
≤ 3ε

δ
= η,

the equality by the definition of ε. We have shown that for any δ > 0 and η > 0 then for all
n ≥ 36C2/δ2η2, P (|un| > δ) ≤ η, as needed.

Proof of Theorem 5.2.2: A random vector or matrix converges in probability to its limit if (and
only if) all elements in the vector or matrix converge in probability. Since each element of U i has
a finite mean by assumption, Theorem 5.2.1 applies to each element and therefore converges in
probability, as needed.

Jacob Bernoulli

Jacob Bernoulli (1654 -1705) of Switzerland was one of many famous mathematicians in the
Bernoulli family. One of Jacob Bernoulli’s important contributions was the first proof of
the weak law of large numbers, published in his posthumous masterpiece Ars Conjectandi.

5.3 Consistency of Least-Squares Estimation

In this section we use the WLLN and continuous mapping theorem (CMT, Theorem C.3.1) to
show that the least-squares estimator β̂ is consistent for the projection coeffi cient β.

This derivation is based on three key components. First, the OLS estimator can be written as
a continuous function of a set of sample moments. Second, the weak law of large numbers (WLLN,
Theorem 5.2.1) shows that sample moments converge in probability to population moments. And
third, the continuous mapping theorem (CMT, Theorem C.3.1) states that continuous functions
preserve convergence in probability. We now explain each step in brief and then in greater detail.

First, observe that the OLS estimator

β̂ =

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiyi

)

is a function of the sample moments 1
n

∑n
i=1 xix

′
i and

1
n

∑n
i=1 xiyi.

Second, by an application of the WLLN these sample moments converge in probability to the
population moments. Specifically, as n→∞,

1

n

n∑
i=1

xix
′
i

p−→ E
(
xix

′
i

)
= Q (5.4)

68



and
1

n

n∑
i=1

xiyi
p−→ E (xiyi) . (5.5)

Third, the CMT to allows us to combine these equations to show that β̂ converges in probability
to β. Specifically, as n→∞,

β̂ =

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiyi

)
p−→
(
E
(
xix

′
i

))−1
(E (xiyi))

= β. (5.6)

We have shown that β̂
p−→ β, as n→∞. In words, the OLS estimator converges in probability to

the projection coeffi cient vector β as the sample size n gets large.
For a slightly different demonstration of this result, recall that (4.6) implies that

β̂ − β =

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiei

)
. (5.7)

The WLLN and (2.14) imply
1

n

n∑
i=1

xiei
p−→ E (xiei) = 0. (5.8)

Therefore

β̂ − β =

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiei

)
p−→ Q−10

= 0

which is the same as β̂
p−→ β.

Theorem 5.3.1 Consistency of Least-Squares
Under Assumption 5.1.1, β̂

p−→ β as n→∞.

Theorem 5.3.1 states that the OLS estimator β̂ converges in probability to β as n diverges to
positive infinity, and thus β̂ is consistent for β.

We now explain the application of the WLLN in (5.4) and (5.5) and the CMT in (5.6) in greater
detail.

The weak law of large numbers (Theorem 5.2.1, Section 5.2) says that when when random vari-
ables are iid and have finite mean, then sample averages converge in probability to their population
mean. Thus to apply the WLLN to (5.4) and (5.5) it is suffi cient to verify that the elements of the
random matrices xix′i and xiyi are iid and have finite mean. First, these random variables are iid
because the observations (yi,xi) are mutually independent and identically distributed (Assumption
1.5.1), and so are any functions of the observations, including xix′i and xiyi. Second, Assumption
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5.1.1 is suffi cient for 1 ≤ j ≤ k and 1 ≤ l ≤ k, E |xjixli| < ∞ and E |xjiyi| < ∞. Indeed, by an
application of the Cauchy-Schwarz inequality and Assumption 5.1.1

E |xjixli| ≤
(
Ex2

jiEx2
li

)1/2
<∞

and
E |xjiyi| ≤

(
Ex2

jiEy2
i

)1/2
<∞.

We have verified the conditions for the WLLN, and thus (5.4) and (5.5).
The final step of the proof is the application of the continuous mapping theorem to obtain (5.6).

To fully understand its application we walk through it in detail. We can write

β̂ =

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiyi

)

= g

(
1

n

n∑
i=1

xix
′
i,

1

n

n∑
i=1

xiyi

)

where g (A, b) = A−1b is a function of A and b. The function g (A, b) is a continuous function
of A and b at all values of the arguments such that A−1 exists. Assumption 5.1.1 implies that
Q−1 exists and thus g (A, b) is continuous at A = Q. Hence by the continuous mapping theorem
(Theorem C.3.1), as n→∞,

β̂ = g

(
1

n

n∑
i=1

xix
′
i,

1

n

n∑
i=1

xiyi

)
p−→ g (Q,E (xiyi))

= E
(
xix

′
i

)−1 E (xiyi)

= β.

This completes the proof of Theorem 5.3.1.

5.4 Asymptotic Normality

We started this Chapter discussing the need for an approximation to the distribution of the OLS
estimator β̂. In Section 5.3 we showed that β̂ converges in probability to β. Consistency is a useful
first step, but in itself does not provide a useful approximation to the distribution of the estimator.
In this Section we derive an approximation typically called the asymptotic distribution.

The derivation starts by writing the estimator as a function of sample moments. One of the
moments must be written as a sum of zero-mean random vectors and normalized so that the central
limit theorem can be applied. The steps are as follows.

Take equation (5.7) and multiply it by
√
n. This yields the expression

√
n
(
β̂ − β

)
=

(
1

n

n∑
i=1

xix
′
i

)−1(
1√
n

n∑
i=1

xiei

)
. (5.9)

This shows that the normalized and centered estimator
√
n
(
β̂ − β

)
is a function of the sample

average 1
n

∑n
i=1 xix

′
i and the normalized sample average

1√
n

∑n
i=1 xiei. Furthermore, the latter has

mean zero so the central limit theorem (CLT) applies.
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Central Limit Theorem (Theorem C.2.1)
If ui ∈ Rk is iid, Eui = 0 and Eu2

ji <∞ for j = 1, ..., k, then as n→∞

1√
n

n∑
i=1

ui
d−→ N

(
0,E

(
uiu

′
i

))
.

For our application, ui = xiei which is iid (since the observations are iid) and mean zero (since
E (xiei) = 0). We calculate that E (uiu

′
i) = E

(
xix

′
ie

2
i

)
. By the CLT we conclude

1√
n

n∑
i=1

xiei
d−→ N (0,Ω) (5.10)

as n→∞, where
Ω = E

(
xix

′
ie

2
i

)
. (5.11)

Putting these steps together, using (5.4), (5.9), and (5.10),

√
n
(
β̂ − β

)
d−→ Q−1

N (0,Ω)

= N
(
0,Q−1ΩQ−1

)
as n → ∞, where the final equality follows from the property that linear combinations of normal
vectors are also normal (Theorem B.9.1).

Formally, (5.10) requires that the elements of ui = xiei have finite variances. Indeed, if this is
not true then (5.11) is not well defined and (5.10) does not make sense. A suffi cient condition can
be found as follows. For any j = 1, ..., k, by the Cauchy-Schwarz Inequality (C.3), note that

E |xjiei|2 = E
∣∣x2
jie

2
i

∣∣ ≤ (Ex4
ji

)1/2 (Ee4
i

)1/2
(5.12)

which is finite if xji and ei have finite fourth moments. As ei is a linear combination of yi and xi,
it is suffi cient that the observables have finite fourth moments.

Assumption 5.4.1 In addition to Assumption 5.1.1, Ey4
i < ∞ and for

j = 1, ..., k, Ex4
ji <∞.

We have derived the asymptotic normal approximation to the distribution of the least-squares
estimator.

Theorem 5.4.1 Asymptotic Normality of Least-Squares Estimator
Under Assumption 5.4.1, as n→∞

√
n
(
β̂ − β

)
d−→ N (0,V β)

where
V β = Q−1ΩQ−1.
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As V β is the variance of the asymptotic distribution of
√
n
(
β̂ − β

)
, V β is often referred to as

the asymptotic covariance matrix of β̂. The expression V β = Q−1ΩQ−1 is called a sandwich
form.

Theorem 5.4.1 states that the sampling distribution of the least-squares estimator, after rescal-
ing, is approximately normal when the sample size n is suffi ciently large. This holds true for all
joint distributions of (yi,xi) which satisfy the conditions of Assumption 5.4.1. However, for any
fixed n the sampling distribution of β̂ can be arbitrarily far from the normal distribution. In Figure
4.1 we have already seen a simple example where the least-squares estimate is quite asymmetric
and non-normal even for reasonably large sample sizes.

There is a special case where Ω and V β simplify. We say that ei is a Homoskedastic Pro-
jection Error when

cov(xix
′
i, e

2
i ) = 0. (5.13)

Condition (5.13) holds in the homoskedastic linear regression model, but is somewhat broader.
Under (5.13) the asymptotic variance formulas simplify as

Ω = E
(
xix

′
i

)
E
(
e2
i

)
= Qσ2 (5.14)

V β = Q−1ΩQ−1 = Q−1σ2 ≡ V 0
β (5.15)

In (5.15) we define V 0
β = Q−1σ2 whether (5.13) is true or false. When (5.13) is true then V β = V 0

β,

otherwise V β 6= V 0
β. We call V

0 the homoskedastic covariance matrix.
The asymptotic distribution of Theorem 5.4.1 is commonly used to approximate the finite

sample distribution of
√
n
(
β̂ − β

)
. The approximation may be poor when n is small. How large

should n be in order for the approximation to be useful? Unfortunately, there is no simple answer
to this reasonable question. The trouble is that no matter how large is the sample size, the
normal approximation is arbitrarily poor for some data distribution satisfying the assumptions.
We illustrate this problem using a simulation. Let yi = β0 + β1xi + ei where xi is N (0, 1) , and
ei is independent of xi with the Double Pareto density f(e) = α

2 |e|
−α−1 , |e| ≥ 1. If α > 2 the

error ei has zero mean and variance α/(α − 2). As α approaches 2, however, its variance diverges

to infinity. In this context the normalized least-squares slope estimator
√
nα−2

α

(
β̂2 − β2

)
has the

N(0, 1) asymptotic distibution for any α > 2. In Figure 5.1 we display the finite sample densities

of the normalized estimator
√
nα−2

α

(
β̂2 − β2

)
, setting n = 100 and varying the parameter α.

For α = 3.0 the density is very close to the N(0, 1) density. As α diminishes the density changes
significantly, concentrating most of the probability mass around zero.

Vilfredo Pareto

Vilfredo Pareto (1848-1923) of Italy was a major economic theorist, introducing the eco-
nomic concept of Pareto effi ciency. His major econometric contribution was the Pareto
(or power law) distribution which is commonly used to model the empirical distribution of
wealth.

Another example is shown in Figure 5.2. Here the model is yi = β + ei where (5.16)

ei =
uki − E

(
uki
)(

E
(
u2k
i

)
−
(
E
(
uki
))2)1/2

(5.16)
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Figure 5.1: Density of Normalized OLS estimator with Double Pareto Error

and ui ∼ N(0, 1). We show the sampling distribution of
√
n
(
β̂ − β

)
setting n = 100, for k = 1, 4,

6 and 8. As k increases, the sampling distribution becomes highly skewed and non-normal. The
lesson from Figures 5.1 and 5.2 is that the N(0, 1) asymptotic approximation is never guaranteed
to be accurate.

5.5 Consistency of Sample Variance Estimators

Using the methods of Section 5.3 we can show that the estimators σ̂2 and s2 are consistent for
σ2.

Theorem 5.5.1 Under Assumption 5.1.1, σ̂2 p−→ σ2 and s2 p−→ σ2 as
n→∞.

One implication of this theorem is that multiple estimators can be consistent for the sample
population parameter. While σ̂2 and s2 are unequal in any given application, they are close in
value when n is very large.

Proof of Theorem 5.5.1. Note that

êi = yi − x′iβ̂
= ei + x′iβ − x′iβ̂
= ei − x′i

(
β̂ − β

)
.

Thus
ê2
i = e2

i − 2eix
′
i

(
β̂ − β

)
+
(
β̂ − β

)′
xix

′
i

(
β̂ − β

)
(5.17)
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Figure 5.2: Density of Normalized OLS estimator with error process (5.16)

and

σ̂2 =
1

n

n∑
i=1

ê2
i

=
1

n

n∑
i=1

e2
i − 2

(
1

n

n∑
i=1

eix
′
i

)(
β̂ − β

)
+
(
β̂ − β

)′( 1

n

n∑
i=1

xix
′
i

)(
β̂ − β

)
p−→ σ2

as n→∞, the last line using the WLLN, (5.4), (5.8) and Theorem 5.3.1. Thus σ̂2 is consistent for
σ2.

Finally, since n/(n− k)→ 1 as n→∞, it follows that as n→∞,

s2 =

(
n

n− k

)
σ̂2 p−→ σ2.

5.6 Consistent Covariance Matrix Estimation

In Sections 4.8 and 4.9 we introduced estimators of the finite-sample covariance matrix of the
least-squares estimator in the regression model. In this section we show that these estimators, when
normalized, are consistent for the asymptotic covariance matrix.

First, consider V̂
0

β̂, the covariance matrix estimate constructed under the assumption of ho-
moskedasticity. Writing

Q̂ =
1

n

n∑
i=1

xix
′
i =

1

n
X ′X

as the moment estimator of Q, we can write the covariance matrix estimator as

V̂
0

β̂ =

(
1

n
X ′X

)−1

s2 = Q̂
−1
s2.
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Since Q̂
p−→ Q and s2 p−→ σ2 (see (5.4) and Theorem 5.5.1), and the invertibility of Q (Assumption

5.1.1), it follows that

V̂
0

β̂ = Q̂
−1
s2 p−→ Q−1σ2 = V 0

β

so that V̂
0

β̂ is consistent for V
0
β, the homoskedastic covariance matrix.

Theorem 5.6.1 Under Assumption 5.1.1, V̂
0

β̂
p−→ V 0

β as n→∞.

Now consider V̂
0

β̂, the White covariance matrix estimator. Writing

Ω̂ =
1

n

n∑
i=1

xix
′
iê

2
i (5.18)

as the moment estimator for Ω = E
(
xix

′
ie

2
i

)
, then

V̂ β̂ =

(
1

n
X ′X

)−1
(

1

n

n∑
i=1

xix
′
iê

2
i

)(
1

n
X ′X

)−1

= Q̂
−1

Ω̂Q̂
−1
.

With some work, we can show that Ω̂ is consisent for Ω. Combined with the consistency of Q̂ for
Q and the invertibility of Q we find that V̂ β̂ converges in probability to Q

−1ΩQ−1 = V β.

Theorem 5.6.2 Under Assumption 5.4.1, Ω̂
p−→ Ω and V̂ β̂

p−→ V β as
n→∞.

To illustrate, we return to the log wage regression (3.9) of Section 3.3. We calculate that
s2 = 0.20 and

Ω̂ =

(
0.199 2.80
2.80 40.6

)
.

Therefore the two covariance matrix estimates are

V̂
0

β̂ =

(
1 14.14

14.14 205.83

)−1

0.20 =

(
6.98 −0.480
−0.480 .039

)
and

V̂ β =

(
1 14.14

14.14 205.83

)−1(
.199 2.80
2.80 40.6

)(
1 14.14

14.14 205.83

)−1

=

(
7.20 −0.493
−0.493 0.035

)
.

In this case the two estimates are quite similar. The (White) standard errors for β̂0 are
√

7.2/988 =

.085 and that for β̂1 is
√
.035/988 = .006.We can write the estimated equation with standard errors

using the format

̂log(Wage) = 1.33
(.08)

+ 0.115
(.006)

Education.
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Proof of Theorem 5.6.2. We first show Ω̂
p−→ Ω. Using (5.17)

Ω̂ =
1

n

n∑
i=1

xix
′
iê

2
i

=
1

n

n∑
i=1

xix
′
ie

2
i −

2

n

n∑
i=1

xix
′
i

(
β̂ − β

)′
xiei +

1

n

n∑
i=1

xix
′
i

((
β̂ − β

)′
xi

)2

. (5.19)

We now examine each k × k sum on the right-hand-side of (5.19) in turn.
Take the first term on the right-hand-side of (5.19). The jl’th element of xix′ie

2
i is xjixlie

2
i .

Using the Cauchy-Schwarz Inequality (C.3) twice and Assumption 5.4.1,

E
∣∣xjixlie2

i

∣∣ ≤ (
Ex2

jix
2
li

)1/2 (Ee4
i

)1/2
≤

(
Ex4

ji

)1/4 (Ex4
li

)1/4 (Ee4
i

)1/2
.

Since this expectation is finite, we can apply the WLLN (Theorem 5.2.1) to find that

1

n

n∑
i=1

xix
′
ie

2
i

p−→ E
(
xix

′
ie

2
i

)
= Ω.

Now take the second term on the right-hand-side of (5.19). Applying the Triangle Inequality
(A.8) to the matrix Euclidean norm, the Matrix Schwarz Inequality (A.7), equation (A.5) and the
Schwarz Inequality (A.6)∥∥∥∥∥ 2

n

n∑
i=1

xix
′
i

(
β̂ − β

)′
xiei

∥∥∥∥∥ ≤ 2

n

n∑
i=1

∥∥∥∥xix′i (β̂ − β)′ xiei∥∥∥∥
≤ 2

n

n∑
i=1

∥∥xix′i∥∥ ∣∣∣∣(β̂ − β)′ xi∣∣∣∣ |ei|
≤

(
2

n

n∑
i=1

‖xi‖3 |ei|
)∥∥∥β̂ − β∥∥∥ . (5.20)

Using Holder’s inequality (C.4) and Assumption 5.4.1,

E
(
‖xi‖3 |ei|

)
≤
(
E ‖xi‖4

)3/4 (
E
∣∣e4
i

∣∣)1/4 <∞.
By the WLLN

1

n

n∑
i=1

‖xi‖3 |ei|
p−→ E

(
‖xi‖3 |ei|

)
<∞.

Since β̂−β p−→ 0 it follows that (5.20) converges in probability to zero. This shows that the second
term on the right-hand-side of (5.19) converges in probability to zero.

We now take the third term in (5.19). Again by the Triangle Inequality, the Matrix Schwarz
Inequality, (A.5) and the Schwarz Inequality∥∥∥∥∥ 1

n

n∑
i=1

xix
′
i

((
β̂ − β

)′
xi

)2
∥∥∥∥∥ ≤ 1

n

n∑
i=1

∥∥xix′i∥∥((β̂ − β)′ xi)2

≤ 1

n

n∑
i=1

‖xi‖4
∥∥∥β̂ − β∥∥∥

p−→ 0
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the final convergence since β̂ − β p−→ 0 and 1
n

∑n
i=1 ‖xi‖

4 p−→ E ‖xi‖4 < ∞ under Assumption
5.4.1. This shows that the third term on the right-hand-side of (5.19) converges in probability to
zero.

Considering the three terms on the right-hand-side of (5.19), we have shown that the first
term converges in probability to Ω, and the second and third converge in probability to zero. We
conclude that Ω̂

p−→ Ω as claimed.
Finally, combined with (5.4) and the invertibilility of Q,

V̂ β = Q̂
−1

Ω̂Q̂
−1 p−→ Q−1ΩQ−1 = V β,

from which it follows that V̂ β
p−→ V β as n→∞.

5.7 Functions of Parameters

Sometimes we are interested in some lower-dimensional function of the parameter vector β =
(β1, ..., βk). For example, we may be interested in a single coeffi cient βj or a ratio βj/βl. In these
cases we can write the parameter of interest as a function of β. Let h : Rk → Rq denote this
function and let

θ = h(β)

denote the parameter of interest. The estimate of θ is

θ̂ = h(β̂).

What is the asymptotic distribution of θ̂? Assume that h(β) is differentiable at the true value
of β. By a first-order Taylor series approximation:

h(β̂) ' h(β) +H ′β

(
β̂ − β

)
.

where

Hβ =
∂

∂β
h(β) k × q.

Thus

√
n
(
θ̂ − θ

)
=
√
n
(
h(β̂)− h(β)

)
'H ′β

√
n
(
β̂ − β

)
d−→H ′β N (0,V β)

= N (0,V θ) . (5.21)

where
V θ = H ′βVβHβ. (5.22)

The asymptotic approximation (5.21) is often called the delta method because it approximates
the distribution of θ̂ by a first-order expansion. It shows that (at least approximately), nonlinear
functions of asymptotically normal estimators are themselves asymptotically normally distributed.
It is a very powerful result, as most parameters of interest can be written in this form.

In many cases, the function h(β) is linear:

h(β) = R′β

for some k × q matrix R. In this case, Hβ = R.
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In particular, if R is a “selector matrix”

R =

(
I
0

)
(5.23)

so that if β = (β1,β2), then θ = R′β = β1 and

V θ =
(
I 0

)
V β

(
I
0

)
= V 11,

the upper-left block of V β. In other words, (5.21)-(5.22) in this case is

√
n
(
β̂1 − β1

)
d−→ N (0,V 11)

where
V 11 = [V ]11

How do we estimate the covariance matrix for θ̂? From (5.22) we see we need an estimate of
Hβ and V β. We already have an estimate of the latter, V̂β̂. To estimate Hβ we use

Ĥβ =
∂

∂β
h(β̂).

Putting the parts together we obtain

V̂ θ̂ = Ĥ
′
βV̂ β̂Ĥβ

as the covariance matrix estimator for θ̂. As the primary justification for V̂ θ̂ is the asymptotic
approximation (5.21), V̂ θ̂ is often called an asymptotic covariance matrix estimator.

When h(β) is linear
h(β) = R′β

then Hβ = R and
V̂ θ̂ = R′V̂ β̂R.

When R takes the form of a selector matrix as in (5.23) then

V̂ θ̂ = V̂ 11 =
[
V̂
]

11
,

the upper-left block of the covariance matrix estimate V̂ .
When q = 1 (so h(β) is real-valued), the standard error for θ̂ is the square root of V̂ θ̂, that is,

s(θ̂) = n−1/2
√
V̂ θ̂ = n−1/2

√
Ĥ
′
βV̂ β̂Ĥβ

.

Theorem 5.7.1 Asymptotic Distribution of Functions of Parameters
Under Assumption 5.4.1, √

n
(
θ̂ − θ

)
d−→ N (0,V θ)

where
V θ = H ′βVβHβ

and
V̂ θ̂

p−→ V θ

as n→∞.
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Proof. We showed (5.21), we need only to show consistency of the covariance matrix estimator.
First, from Theorem 5.6.2,

V̂ β̂

p−→ V β.

Second, since β̂
p−→ β̂ and h(β) is continuously differentiable, by the continuous mapping theorem,

Ĥβ =
∂

∂β
h(β̂)

p−→ ∂

∂β
h(β) = Hβ.

Putting these together
V̂ θ̂ = Ĥ

′
βnV̂ β̂Ĥβ

p−→H ′βV βHβ = V θ,

completing the proof .

5.8 t statistic

Let θ = h(β) : Rk → R be any parameter of interest (for example, θ could be a single element
of β), θ̂ its estimate and s(θ̂) its asymptotic standard error. Consider the statistic

tn(θ) =
θ̂ − θ
s(θ̂)

(5.24)

which different writers alternatively call a t-statistic, a z-statistic or a studentized statistic.
We won’t be making such distinctions and will typically refer to tn(θ) as a t-statistic. We also
often suppress the parameter dependence, writing it as tn. The t-statistic is a simple function of
the estimate, its standard error, and the parameter.

Theorem 5.8.1 tn(θ)
d−→ N (0, 1)

Thus the asymptotic distribution of the t-ratio tn(θ) is the standard normal. Since this dis-
tribution does not depend on the parameters, we say that tn(θ) is asymptotically pivotal. In
special cases (such as the normal regression model, see Section 3.11), the statistic tn has an exact
t distribution, and is therefore exactly free of unknowns. In this case, we say that tn is exactly
pivotal. In general, however, pivotal statistics are unavailable and we must rely on asymptotically
pivotal statistics.

William Gosset

William S. Gosset (1876-1937) of England is most famous for his derivation of the student’s
t distribution, published in the paper “The probable error of a mean”in 1908. At the time,
Gosset worked at Guiness brewery, which prohibited its employees from publishing in order
to prevent the possible loss of trade secrets. To circumvent this barrier, Gosset published
under the pseudonym “Student”. Consequently, this famous distribution is known as the
student’s t rather than Gosset’s t!
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Proof of Theorem 5.8.1. By Theorem 5.7.1,

√
n
(
θ̂ − θ

)
d−→ N (0,V θ)

and

V̂ θ̂

p−→ V θ

Thus

tn(θ) =
θ̂ − θ
s(θ̂)

=

√
n
(
θ̂ − θ

)
√
V̂θ̂

d−→ N (0, Vθ)√
Vθ

= N (0, 1)

The last equality is by the property that linear scales of normal distributions are normal.

5.9 Confidence Intervals

A confidence interval Cn is an interval estimate of θ ∈ R. It is a function of the data and
hence is random. It is designed to cover θ with high probability. Either θ ∈ Cn or θ /∈ Cn. The
coverage probability is P(θ ∈ Cn). The convention is to design confidence intervals to have coverage
probability approximately equal to a pre-specified target, typically 90% or 95%, or more generally
written as (1 − α)% for some α ∈ (0, 1). In this case, by reporting a (1 − α)% confidence interval
Cn, we are stating that with (1− α)% probability (in repeated samples) the true θ lies in Cn.

There is not a unique method to construct confidence intervals. For example, a simple (yet
silly) interval is

Cn =

{
R with probability 1− α
θ̂ with probability α

By construction, if θ̂ has a continuous distribution, P(θ ∈ Cn) = 1− α, so this confidence interval
has perfect coverage, but Cn is uninformative about θ. This is not a useful confidence interval.

When we have an asymptotically normal parameter estimate θ̂ with standard error s(θ̂), it turns
out that a generally reasonable confidence interval for θ takes the form

Cn =
[
θ̂ − c · s(θ̂), θ̂ + c · s(θ̂)

]
(5.25)

where c > 0 is a pre-specified constant. This confidence interval is symmetric about the point
estimate θ̂, and its length is proportional to the standard error s(θ̂).

Equivalently, Cn is the set of parameter values for θ such that the t-statistic tn(θ) is smaller (in
absolute value) than c, that is

Cn = {θ : |tn(θ)| ≤ c} =

{
θ : −c ≤ θ̂ − θ

s(θ̂)
≤ c
}
.

The coverage probability of this confidence interval is

P (θ ∈ Cn) = P (|tn(θ)| ≤ c)
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which is generally unknown, but we can approximate the coverage probability by taking the as-
ymptotic limit as n→∞. Since tn(θ) is asymptotically standard normal (Theorem 5.8.1), it follows
that as n→∞ that

P (θ ∈ Cn)→ P (|Z| ≤ c) = Φ(c)− Φ(−c)

where Z ∼ N (0, 1) and Φ(u) = P (Z ≤ u) is the standard normal distribution function. Thus the
asymptotic coverage probability is a function only of c.

The convention is to design the confidence interval to have a pre-specified coverage probability
1− α, typically 90% or 95%. This means selecting the constant c so that

Φ(c)− Φ(−c) = 1− α.

Effectively, this makes c a function of α, and can be backed out of a normal distribution table.
For example, α = 0.05 (a 95% interval) implies c = 1.96 and α = 0.1 (a 90% interval) implies
c = 1.645. Rounding 1.96 to 2, this yields the most commonly implied confidence interval in
applied econometric practice

Cn =
[
θ̂ − 2s(θ̂), θ̂ + 2s(θ̂)

]
.

This is a useful rule-of thumb. This asymptotic 95% confidence interval Cn is simple to compute
and can be roughly calculated from tables of coeffi cient estimates and standard errors. (Technically,
it is a 95.4% interval, due to the substitution of 2.0 for 1.96, but this distinction is meaningless.)

Confidence intervals are a simple yet effective tool to assess estimation uncertainty. When
reading a set of empirical results, look at the estimated coeffi cient estimates and the standard
errors. For a parameter of interest, compute the confidence interval Cn and consider the meaning
of the spread of the suggested values. If the rage of values in the confidence interval are too wide
to learn about θ, then do not jump to a conclusion about θ based on the point estimate alone.

5.10 Semiparametric Effi ciency

In Section 4.5 we presented the Gauss-Markov theorem as a limited effi ciency justification for the
least-squares estimator. A broader justification is provided in Chamberlain (1987), who established
that in the projection model the OLS estimator has the smallest asymptotic mean-squared error
among feasible estimators. This property is called semiparametric effi ciency, and is a strong
justification for the least-squares estimator. We discuss the intuition behind his result in this
section.

Suppose that the joint distribution of (yi,xi) is discrete. That is, for finite r,

P
(
yi = τ j , xi = ξj

)
= pj , j = 1, ..., r (5.26)

for some constants pj , τ j , and ξj . Assume that the τ j and ξj are known, but the pj are unknown.
(We know the values yi and xi can take, but we don’t know the probabilities.)

In this discrete setting, the definition of linear the projection coeffi cient (2.10) can be rewritten
as

β =

 r∑
j=1

pjξjξ
′
j

−1 r∑
j=1

pjξjτ j

 (5.27)

Thus β is a function of (π1, ..., πr) .
As the data are multinomial, the maximum likelihood estimator (MLE) is

p̂j =
1

n

n∑
i=1

1 (yi = τ j) 1
(
xi = ξj

)
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for j = 1, ..., r, where 1 (·) is the indicator function. That is, p̂j is the percentage of the observations
which fall in each category. The MLE β̂mle for β is then the analog of (5.27) with the parameters
pj replaced by the estimates p̂j :

β̂mle =

 r∑
j=1

p̂jξjξ
′
j

−1 r∑
j=1

p̂jξjτ j

 .

Substituting in the expressions for p̂j ,

r∑
j=1

p̂jξjξ
′
j =

r∑
j=1

1

n

n∑
i=1

1 (yi = τ j) 1
(
xi = ξj

)
ξjξ
′
j

=
1

n

n∑
i=1

r∑
j=1

1 (yi = τ j) 1
(
xi = ξj

)
xix

′
i

=
1

n

n∑
i=1

xix
′
i

and

r∑
j=1

p̂jξjτ j =
r∑
j=1

1

n

n∑
i=1

1 (yi = τ j) 1
(
xi = ξj

)
ξjτ j

=
1

n

n∑
i=1

r∑
j=1

1 (yi = τ j) 1
(
xi = ξj

)
xiyi

=
1

n

n∑
i=1

xiyi.

Thus

β̂mle =

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiyi

)
= β̂ols.

In other words, if the data have a discrete distribution, the maximum likelihood estimator is
identical to the OLS estimator.

Since this is a regular parametric model the MLE is asymptotically effi cient (see Appendix D).
It follows that the OLS estimator is asymptotically effi cient.

The hard part of the argument (which was rigorously developed in Chamberlain’s paper, but we
do not present it here) is the extension to the case of continuously-distributed data.The intuition
is that all continuous distributions can be arbitrarily well approximated by some multinomial
distribution, and for any multinomial distribution the moment estimator is asymptotically effi cient.
Formalizing this intuition using a rigorous mathematical argument, Chamberlain proved that the
OLS estimator is asymptotically semiparametrically effi cient for the projection coeffi cient β for the
class of models satisfying Assumption 5.1.1.

5.11 Semiparametric Effi ciency in the Projection Model

In this section we continue the investigation of semiparametric effi ciency as raised in Section
5.10. There we presented the intuition behind Chamberlain’s demonstration of the asymptotic
effi ciency of the least-squares estimator. In this section we provide an alternative demonstration
based on the rich but technically challenging theory of semiparametric effi ciency bounds. An
excellent accessible review has been provided by Newey (1990).
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Our treatment covers what is known as the smooth function model, which includes the projection
model as a special case. Let z ∈ Rm be a random vector with finite mean µ = Ez and finite variance
matrix Σ = var (z) , and let z1, ...,zn be an iid sample from this distribution. The parameter of
interest is β = g (µ) where g (·) is a continuously differentiable function. The standard moment
estimator for µ is the sample mean µ̂ = n−1

∑n
i=1 zi and that for β is β̂ = g (µ̂) . This setting

includes the least-squares estimator for the projection model y = x′β+ e by letting z be the vector
with elements xje and xjxl for all j ≤ k and l ≤ k.

The sample mean has the asymptotic distribution
√
n (µ̂− µ)

d−→ N (0,Σ) . Applying the Delta
Method (Theorem C.3.3), we see that the moment estimator β̂ has the asymptotic distribution
√
n
(
β̂ − β

)
d−→ N (0,V ) where V = ∂

∂µ′g (µ) Σ ∂
∂µg (µ)′ . We want to know if β̂ is the best

feasible estimator. Is there another estimator with a smaller asymptotic variance? While it seems
intuitively unlikely that another estimator could have a smaller asymptotic variance than β̂, how
do we know that this is not the case?

To show that the answer is not immediately obvious, it might be helpful to review a set-
ting where the sample mean is ineffi cient. Suppose that z ∈ R has the density f (z | µ) =

2−1/2 exp
(
− |z − µ|

√
2
)
. Since var (z) = 1 we see that the sample mean satisfies

√
n (µ̂− µ)

d−→
N (0, 1). In this model the maximum likelihood estimator (MLE) µ̃ for µ is different than the sam-
ple mean (and happens to be the sample median). Recall from the theory of maximum likelhood

that the MLE satisfies
√
n (µ̃− µ)

d−→ N (0, I0) where I0 =
(
ES2

µ

)−1 and Sµ = ∂
∂µ log f (z | µ) =

−
√

2 sgn (z − µ) is the score. We can calculate that ES2
µ = 2 and thus conclude that

√
n (µ̃− µ)

d−→
N (0, 1/2) . The asymptotic variance of the MLE is one-half that of the sample mean. In this setting
the sample mean is ineffi cient.

But the question at hand is whether or not the sample mean is effi cient when the form of the
distribution is unknown. We call this setting semiparametric as the parameter of interest (the
mean) is finite dimensional while the remaining features of the distribution are unspecified. In the
semiparametric context an estimator is called semiparametrically effi cient if it has the smallest
asymptotic variance among all semiparametric estimators.

The mathematical trick is to reduce the semiparametric model to a set of parametric “submod-
els”. The classic Cramer-Rao variance bound can be found for each parametric submodel. The
variance bound for the semiparametric model (the union of the submodels) is then defined as the
supremum of the individual variance bounds.

Formally, suppose that the true density of z is the unknown function f(z) with mean µ =
Ez =

∫
zf(z)dz and the parameter of interest is β = g (µ) . A parametric submodel η for f(z) is

a density fη (z | θ) which is a smooth function of a parameter θ, and there is some θ0 such that
fη (z | θ0) = f(z). The index η indicates the submodels. The equality fη (z | θ0) = f(z) means
that the submodel class passes through the true density, so the submodel is a true model. The class
of submodels η and parameter θ0 depend on the true density f. In the submodel fη (z | θ) , the
mean is µη(θ) =

∫
zfη (z | θ) dz, and the parameter of interest is βη(θ) = g

(
µη(θ)

)
which varies

with the parameter θ. Let η ∈ ℵ be the class of all submodels for f.
Since each submodel η is parametric we can calculate its Cramer-Rao bound for estimation

of β. Specifically, given the density fη (z | θ) we can construct the MLE θ̂η for θ, the MLE

µ̂η =
∫
zfη

(
z | θ̂η

)
dz for µ, and the MLE β̂η = g(µ̂η) for β. The MLE satisfies

√
n
(
β̂η − βη(θ)

)
d−→ N (0,V η)

where V η is the smallest possible covariance matrix among regular estimators. By the Cramer-Rao
theorem no estimator (and in particular no semiparametric estimator) has an asymptotic vari-
ance smaller than V η. This comparison is true for all submodels η, so the asymptotic variance
of any semiparametric estimator cannot be smaller than the Cramer-Rao bound for any paramet-
ric submodel. The semiparametric asymptotic variance bound (which is sometimes called
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the semiparametric effi ciency bound) is the supremum of the Cramer-Rao bounds from all
conceivable submodels.

V = sup
η∈ℵ

V η.

It is a lower bound for the asymptotic variance of any semiparametric estimator. If the asymptotic
variance of a specific semiparametric estimator equals the bound V we say that the estimator is
semiparametrically effi cient.

For many statistical problems it is quite challenging to calculate the semiparametric variance
bound. However the solution is straightforward in the smooth function model. As the semiparamet-
ric variance bound cannot be smaller than the Cramer-Rao bound for any submodel, and cannot
be larger than the asymptotic variance of any feasible semiparametric estimator, it follows that if
the asymptotic variance of a feasible semiparametric estimator equals the Cramer-Rao bound for
at least one submodel, then this is the semiparametric asymptotic variance bound, and the afore-
mentioned feasible semiparametric estimator must be semiparametrically effi cient. In these cases,
it is suffi cient to construct a parametric submodel for which the Cramer-Rao bound (equivalently,
the asymptotic variance of the MLE) equals that of a known semiparametric estimator.

Formally, for any submodel η with Cramer-Rao variance V η and any semiparametric estimator
β̂ with asymptotic variance V β, then it is necessary that

V η ≤ V ≤ V β.

The first inequality holds by the definition of V , and the second holds since no semiparametric
estimator can be more effi cient than the MLE in any parametric submodel. Thus if we find a
submodel η and semiparametric estimator β̂ such that V η = V β, then it must be the case that
V = V β and β̂ is semiparametrically effi cient.

We now show this for the moment estimator β̂ = g (µ̂) discussed above. As β̂ has asymptotic
variance V β, our goal is to find a parametric submodel whose Cramer-Rao bound for estimation of
β is V β. The solution involves creating a tilted version of the true density. Consider the parametric
submodel

f (z | θ) = f(z)
(
1 + θ′Σ−1 (z − µ)

)
(5.28)

where f(z) is the true density and µ = Ez. Note that∫
f (z | θ) dz =

∫
f(z)dz + θ′Σ−1

∫
f(z) (z − µ) dz = 1

and for all θ close to zero f (z | θ) ≥ 0. Thus f (z | θ) is a valid density function. It is a parametric
submodel since f (z | θ0) = f(z) when θ0 = 0. This parametric submodel has the mean

µ(θ) =

∫
zf (z | θ) dz

=

∫
zf(z)dz +

∫
f(z)z (z − µ)′Σ−1θdz

= µ+ θ

and parameter of interest β (θ) = g (µ+ θ) both which are smooth functions of θ.
Since

∂

∂θ
log f (z | θ) =

∂

∂θ
log
(
1 + θ′Σ−1 (z − µ)

)
=

Σ−1 (z − µ)

1 + θ′Σ−1 (z − µ)

it follows that the score function for θ is

s =
∂

∂θ
log f (z | θ0) = Σ−1 (z − µ) . (5.29)
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By classic theory the asymptotic variance of the MLE θ̂ for θ is the Cramer-Rao bound (E (ss′))−1 =(
Σ−1E

(
(z − µ) (z − µ)′

)
Σ−1

)−1
= Σ. The MLE for β is β(θ̂) = g

(
µ+ θ̂

)
which by the delta

method has asymptotic variance V β = ∂
∂µ′g (µ) Σ ∂

∂µg (µ)′ , which is identical to the asymptotic

variance of the moment estimator β̂. This shows that moment estimators are semiparametrically
effi cient, and this includes the OLS estimator in the projection model. We have established the
following theorem.

Theorem 5.11.1 Under Assumption 5.1.1, the semiparametric variance
bound for estimation of β is V β = Q−1ΩQ−1, and the OLS estimator is
semiparametrically effi cient.

5.12 Semiparametric Effi ciency in the Homoskedastic Regression
Model

In Section 4.5 we presented the Gauss-Markov theorem, which stated that in the homoskedastic
regression model, in the class of linear unbiased estimators the one with the smallest variance is
least-squares. As we noted in that section, the restriction to linear unbiased estimators is unsat-
isfactory as it leaves open the possibility that an alternative (non-linear) estimator could have a
smaller asymptotic variance. In Sections 5.10 and 5.11 we showed that the OLS estimator is ef-
ficient in the projection model, but this does not address the question of whether or not OLS is
effi cient in the homoskedastic regression model. In this section we return to the question of effi cient
estimation in this model using the theory of semiparametric variance bounds as presented in the
previous section.

Recall that in the homoskedastic regression model the asymptotic variance of the OLS estimator
β̂ for β is V 0

β = Q−1σ2. Therefore, as described in the previous section, it is suffi cient to find a
parametric submodel whose Cramer-Rao bound for estimation of β is V 0

β. This would establish

that V 0
β is the semiparametric variance bound and the OLS estimator β̂ is semiparametrically

effi cient for β.
Let the joint density of y and x be written as f (y,x) = f1 (y | x) f2 (x) , the product of the

conditional density of y given x, and the marginal density of x. Now consider the parametric
submodel

f (y,x | θ) = f1 (y | x)
(
1 +

(
y − x′β

) (
x′θ
)
/σ2
)
f2 (x) . (5.30)

You can check that in this submodel, the marginal density of x is f2 (x) , and the conditional density
of y given x is f1 (y | x)

(
1 + (y − x′β) (x′θ) /σ2

)
. To see that the latter is a valid conditional

density, observe that the regression assumption implies that
∫
yf1 (y | x) dy = x′β and therefore∫

f1 (y | x)
(
1 +

(
y − x′β

) (
x′θ
)
/σ2
)
dy =

∫
f1 (y | x) dy +

∫
f1 (y | x)

(
y − x′β

)
dy
(
x′θ
)
/σ2

= 1.
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In this parametric submodel the conditional mean of y given x is

Eθ (y | x) =

∫
yf1 (y | x)

(
1 +

(
y − x′β

) (
x′θ
)
/σ2
)
dy

=

∫
yf1 (y | x) dy +

∫
yf1 (y | x)

(
y − x′β

) (
x′θ
)
/σ2dy

=

∫
yf1 (y | x) dy +

∫ (
y − x′β

)2
f1 (y | x)

(
x′θ
)
/σ2dy

+

∫ (
y − x′β

)
f1 (y | x) dy

(
x′β

) (
x′θ
)
/σ2

= x′ (β + θ) ,

using the homoskedasticity assumption that
∫

(y − x′β)2 f1 (y | x) dy = σ2. This means that in
this parametric submodel, the conditional mean is linear in x and the regression coeffi cient is
β (θ) = β + θ.

We now calculate the score for estimation of θ. Since

∂

∂θ
log f (y,x | θ) =

∂

∂θ
log
(
1 +

(
y − x′β

) (
x′θ
)
/σ2
)

=
x (y − x′β) /σ2

1 + (y − x′β) (x′θ) /σ2

the score is

s =
∂

∂θ
log f (y,x | θ0) = xe/σ2.

The Cramer-Rao bound for estimation of θ (and therefore β (θ) as well) is(
E
(
ss′
))−1

=
(
σ−4E

(
(xe) (xe)′

))−1
= σ2Q−1 = V 0

β.

We have shown that there is a parametric submodel (5.30) whose Cramer-Rao bound for estimation
of β is identical to the asymptotic variance of the least-squares estimator, which therefore is the
semiparametric variance bound.

Theorem 5.12.1 In the homoskedastic regression model, the semipara-
metric variance bound for estimation of β is V 0 = σ2Q−1 and the OLS
estimator is semiparametrically effi cient.

This result is similar to the Gauss-Markov theorem, in that it asserts the effi ciency of the least-
squares estimator in the context of the homoskedastic regression model. The difference is that the
Gauss-Markov theorem states that OLS has the smallest variance among the set of unbiased linear
estimators, while Theorem 5.12.1 states that OLS has the smallest asymptotic variance among
regular estimators. This is a much more powerful statement.
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Exercises

Exercise 5.1 You have two independent samples (y1,X1) and (y2,X2) which satisfy y1 = X1β1+
e1 and y2 = X2β2 + e2, where E (x1ie1i) = 0 and E (x2ie2i) = 0, and both X1 and X2 have k
columns. Let β̂1 and β̂2 be the OLS estimates of β1 and β2. For simplicity, you may assume that
both samples have the same number of observations n.

(a) Find the asymptotic distribution of
√
n
((
β̂2 − β̂1

)
− (β2 − β1)

)
as n→∞.

(b) Find an appropriate test statistic for H0 : β2 = β1.

(c) Find the asymptotic distribution of this statistic under H0.

Exercise 5.2 The model is

yi = x′iβ + ei

E (xiei) = 0

Ω = E
(
xix

′
ie

2
i

)
.

Find the method of moments estimators
(
β̂, Ω̂

)
for (β,Ω) .

(a) In this model, are
(
β̂, Ω̂

)
effi cient estimators of (β,Ω)?

(b) If so, in what sense are they effi cient?

Exercise 5.3 Take the model yi = x′1iβ1+x′2iβ2+ei with Exiei = 0. Suppose that β1 is estimated
by regressing yi on x1i only. Find the probability limit of this estimator. In general, is it consistent
for β1? If not, under what conditions is this estimator consistent for β1?

Exercise 5.4 Let y be n×1, X be n×k (rank k). y = Xβ+e with E(xiei) = 0. Define the ridge
regression estimator

β̂ =

(
n∑
i=1

xix
′
i + λIk

)−1( n∑
i=1

xiyi

)
where λ > 0 is a fixed constant. Find the probability limit of β̂ as n→∞. Is β̂ consistent for β?

Exercise 5.5 Of the variables (y∗i , yi,xi) only the pair (yi,xi) are observed. In this case, we say
that y∗i is a latent variable. Suppose

y∗i = x′iβ + ei

E (xiei) = 0

yi = y∗i + ui

where ui is a measurement error satisfying

E (xiui) = 0

E (y∗i ui) = 0

Let β̂ denote the OLS coeffi cient from the regression of yi on xi.

(a) Is β the coeffi cient from the linear projection of yi on xi?

(b) Is β̂ consistent for β as n→∞?
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(c) Find the asymptotic distribution of
√
n
(
β̂ − β

)
as n→∞.

Exercise 5.6 The model is

yi = xiβ + ei

E (ei | xi) = 0

where xi ∈ R. Consider the two estimators

β̂ =

∑n
i=1 xiyi∑n
i=1 x

2
i

β̃ =
1

n

n∑
i=1

yi
xi
.

(a) Under the stated assumptions, are both estimators consistent for β?

(b) Are there conditions under which either estimator is effi cient?
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Chapter 6

Testing

6.1 t tests

The t-test is routinely used to test hypotheses on θ. A simple null and composite hypothesis
takes the form

H0 : θ = θ0

H1 : θ 6= θ0

where θ0 is some pre-specified value. A t-test rejects H0 in favor of H1 when |tn(θ0)| is large. By
“large”we mean that the observed value of the t-statistic would be unlikely if H0 were true.

Formally, we first pick an asymptotic significance level α. We then find zα/2, the upper α/2
quantile of the standard normal distribution which has the property that if Z ∼ N(0, 1) then

P
(
|Z| > zα/2

)
= α.

For example, z.025 = 1.96 and z.05 = 1.645. A test of asymptotic significance α rejects H0 if
|tn| > zα/2. Otherwise the test does not reject, or “accepts”H0.

The asymptotic significance level is α because Theorem 5.8.1 implies that

P (reject H0 | H0 true) = P
(
|tn| > zα/2 | θ = θ0

)
→ P

(
|Z| > zα/2

)
= α.

The rejection/acceptance dichotomy is associated with the Neyman-Pearson approach to hypothesis
testing.

While there is no objective scientific basis for choice of significance level α, the common practice
is to set α = .05 or 5%. This implies a critical value of z.025 = 1.96 ≈ 2. When |tn| > 2 it is common
to say that the t-statistic is statistically significant. and if |tn| < 2 it is common to say that
the t-statistic is statistically insignificant. It is helpful to remember that this is simply a way of
saying “Using a t-test, the hypothesis that θ = θ0 can [cannot] be rejected at the asymptotic 5%
level.”

A related statistic is the asymptotic p-value, which can be interpreted as a measure of the
evidence against the null hypothesis. The asymptotic p-value of the statistic tn is

pn = p(tn)

where p(t) is the tail probability function

p(t) = P (|Z| > |t|) = 2 (1− Φ(|t|)) .

If the p-value pn is small (close to zero) then the evidence against H0 is strong.
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An equivalent statement of a Neyman-Pearson test is to reject at the α% level if and only if
pn < α. Significance tests can be deduced directly from the p-value since for any α, pn < α if and
only if |tn| > zα/2. The p-value is more general, however, in that the reader is allowed to pick the
level of significance α, in contrast to Neyman-Pearson rejection/acceptance reporting where the
researcher picks the significance level.

Another helpful observation is that the p-value function is a unit-free transformation of the

t statistic. That is, under H0, pn
d−→ U[0, 1], so the “unusualness” of the test statistic can be

compared to the easy-to-understand uniform distribution, regardless of the complication of the
distribution of the original test statistic. To see this fact, note that the asymptotic distribution of
|tn| is F (x) = 1− p(x). Thus

P (1− pn ≤ u) = P (1− p(tn) ≤ u)

= P (F (tn) ≤ u)

= P
(
|tn| ≤ F−1(u)

)
→ F

(
F−1(u)

)
= u,

establishing that 1− pn
d−→ U[0, 1], from which it follows that pn

d−→ U[0, 1].

6.2 t-ratios

Some applied papers (especially older ones) report “t-ratios”for each estimated coeffi cient. For
a coeffi cient θ these are

tn = tn(0) =
θ̂

s(θ̂)
,

the ratio of the coeffi cient estimate to its standard error, and equal the t-statistic for the test of
the hypothesis H0 : θ = 0. Such papers often discuss the “significance” of certain variables or
coeffi cients, or describe “which regressors have a significant effect on y”by noting which t-ratios
exceed 2 in absolute value.

This is very poor econometric practice, and should be studiously avoided. It is a receipe for
banishment of your work to lower tier economics journals.

Fundamentally, the common t-ratio is a test for the hypothesis that a coeffi cient equals zero.
This should be reported and discussed when this is an interesting economic hypothesis of interest.
But if this is not the case, it is distracting.

Instead, when a coeffi cient θ is of interest, it is constructive to focus on the point estimate,
its standard error, and its confidence interval. The point estimate gives our “best guess” for the
value. The standard error is a measure of precision. The confidence interval gives us the range
of values consistent with the data. If the standard error is large then the point estimate is not a
good summary about θ. The endpoints of the confidence interval describe the bounds on the likely
possibilities. If the confidence interval embraces too broad a set of values for θ, then the dataset
is not suffi ciently informative to render inferences about θ. On the other hand if the confidence
interval is tight, then the data have produced an accurate estimate, and the focus should be on
the value and interpretation of this estimate. In contrast, the widely-seen statement “the t-ratio is
highly significant”has little interpretive value.

The above discussion requires that the researcher knows what the coeffi cient θ means (in terms
of the economic problem) and can interpret values and magnitudes, not just signs. This is critical
for good applied econometric practice.
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6.3 Wald Tests

Sometimes θ = h(β) is a q × 1 vector, and it is desired to test the joint restrictions simultane-
ously. In this case the t-statistic approach does not work. We have the null and alternative

H0 : θ = θ0

H1 : θ 6= θ0.

The natural estimate of θ is θ̂ = h(β̂) and has asymptotic covariance matrix estimate

V̂ θ = Ĥ
′
βV̂βĤβ

where

Ĥβ =
∂

∂β
h(β̂).

The Wald statistic for H0 against H1 is

Wn = n
(
θ̂ − θ0

)′
V̂
−1
θ

(
θ̂ − θ0

)
= n

(
h(β̂)− θ0

)′ (
Ĥ
′
βV̂βĤβ

)−1 (
h(β̂)− θ0

)
. (6.1)

When h is a linear function of β, h(β) = R′β, then the Wald statistic takes the form

Wn = n
(
R′β̂ − θ0

)′ (
R′V̂βR

)−1 (
R′β̂ − θ0

)
.

The delta method (5.21) showed that
√
n
(
θ̂ − θ

)
d−→ Z ∼ N (0,V θ) , and Theorem 5.6.2

showed that V̂β
p−→ Vβ. Furthermore, Hβ(β) is a continuous function of β, so by the continuous

mapping theorem, Hβ(β̂)
p−→ Hβ. Thus V̂ θ = Ĥ

′
βV̂βĤβ

p−→ H ′βVβHβ = V θ > 0 if Hβ has
full rank q. Hence

Wn = n
(
θ̂ − θ0

)′
V̂
−1
θ

(
θ̂ − θ0

)
d−→ Z ′V −1

θ Z = χ2
q ,

by Theorem B.9.3. We have established:

Theorem 6.3.1 Under H0 and Assumption 5.4.1, if rank(Hβ) = q, then

Wn
d−→ χ2

q , a chi-square random variable with q degrees of freedom.

An asymptotic Wald test rejects H0 in favor of H1 if Wn exceeds χ2
q(α), the upper-α quantile

of the χ2
q distribution. For example, χ

2
1(.05) = 3.84 = z2

.025. The Wald test fails to reject if Wn is
less than χ2

q(α). As with t-tests, it is conventional to describe a Wald test as “significant” if Wn

exceeds the 5% critical value.
Notice that the asymptotic distribution in Theorem 6.3.1 depends solely on q —the number of

restrictions being tested. It does not depend on k —the number of parameters estimated.
The asymptotic p-value for Wn is pn = p(Wn), where p(x) = P

(
χ2
q ≥ x

)
is the tail probability

function of the χ2
q distribution. The Wald test rejects at the α% level if and only if pn < α, and

pn is asymptotically U[0, 1] under H0. In applied work it is good practice to report the p-value of
a Wald statistic, as it helps readers intrepret the magnitude of the statistic.
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6.4 F Tests

Take the linear model
y = X1β1 +X2β2 + e

where X1 is n× k1, X2 is n× k2, k = k1 + k2, and the null hypothesis is

H0 : β2 = 0.

In this case, θ = β2, and there are q = k2 restrictions. Also h(β) = R′β is linear with R =

(
0
I

)
a selector matrix. We know that the Wald statistic takes the form

Wn = nθ̂
′
V̂
−1
θ θ̂

= nβ̂
′
2

(
R′V̂βR

)−1
β̂2.

Now suppose that covariance matrix is computed under the assumption of homoskedasticity, so
that V̂β is replaced with V̂ 0

β = s2
(
n−1X ′X

)−1
. We define the “homoskedastic”Wald statistic

W 0
n = nθ̂

′ (
V̂

0
θ

)−1
θ̂

= nβ̂
′
2

(
R′V̂ 0

βR
)−1

β̂2.

What we show in this section is that this Wald statistic can be written very simply using the
formula

W 0
n = (n− k)

(
ẽ′ẽ− ê′ê
ê′ê

)
(6.2)

where
ẽ = y −X1β̃1, β̃1 =

(
X ′1X1

)−1
X ′1y

are from OLS of y on X1, and

ê = y −Xβ̂, β̂ =
(
X ′X

)−1
X ′y

are from OLS of y on X = (X1,X2).
The elegant feature about (6.2) is that it is directly computable from the standard output

from two simple OLS regressions, as the sum of squared errors is a typical output from statistical
packages. This statistic is typically reported as an “F-statistic”which is defined as

Fn =
W 0
n

k2
=

(
ẽ′ẽ− ê′ê

)
/k2

ê′ê/(n− k)
.

While it should be emphasized that equality (6.2) only holds if V̂ 0
β = s2

(
n−1X ′X

)−1
, still this

formula often finds good use in reading applied papers. Because of this connection we call (6.2) the
F form of the Wald statistic. (We can also call W 0

n a homoskedastic form of the Wald statistic.)
We now derive expression (6.2). First, note that by partitioned matrix inversion (A.3)

R′
(
X ′X

)−1
R = R′

(
X ′1X1 X ′1X2

X ′2X1 X ′2X2

)−1

R =
(
X ′2M1X2

)−1

whereM1 = I −X1(X ′1X1)−1X ′1. Thus(
R′V̂ 0

βR
)−1

= s−2n−1
(
R′
(
X ′X

)−1
R
)−1

= s−2n−1
(
X ′2M1X2

)
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and

W 0
n = nβ̂

′
2

(
R′V̂ 0

βR
)−1

β̂2

=
β̂
′
2 (X ′2M1X2) β̂2

s2
.

To simplify this expression further, note that if we regress y on X1 alone, the residual is
ẽ = M1y. Now consider the residual regression of ẽ on X̃2 = M1X2. By the FWL theorem,
ẽ = X̃2β̂2 + ê and X̃

′
2ê = 0. Thus

ẽ′ẽ =
(
X̃2β̂2 + ê

)′ (
X̃2β̂2 + ê

)
= β̂

′
2X̃
′
2X̃2β̂2 + ê′ê

= β̂
′
2X
′
2M1X2β̂2 + ê′ê,

or alternatively,
β̂
′
2X
′
2M1X2β̂2 = ẽ′ẽ− ê′ê.

Also, since
s2 = (n− k)−1 ê′ê

we conclude that

W 0
n = (n− k)

(
ẽ′ẽ− ê′ê
ê′ê

)
as claimed.

In many statistical packages, when an OLS regression is estimated, an “F-statistic”is reported.
This is Fn when X1 is a vector is ones, so H0 is an intercept-only model. This special F statistic is
testing the hypothesis that all slope coeffi cients (all coeffi cients other than the intercept) are zero.
This was a popular statistic in the early days of econometric reporting, when sample sizes were very
small and researchers wanted to know if there was “any explanatory power” to their regression.
This is rarely an issue today, as sample sizes are typically suffi ciently large that this F statistic is
nearly always highly significant. While there are special cases where this F statistic is useful, these
cases are atypical. As a general rule, there is no reason to report this F statistic.

6.5 Normal Regression Model

Now let us partition β = (β1,β2) and consider tests of the linear restriction

H0 : β2 = 0

H1 : β2 6= 0

in the normal regression model. In parametric models, a good test statistic is the likelihood ratio,
which is twice the difference in the log-likelihood function evaluated under the null and alternative
hypotheses. The estimator under the alternative is the unrestricted estimator (β̂1, β̂2, σ̂

2) discussed
above. The Gaussian log-likelihood at these estimates is

logL(β̂1, β̂2, σ̂
2) = −n

2
log
(
2πσ̂2

)
− 1

2σ̂2 ê
′ê

= −n
2

log
(
σ̂2
)
− n

2
log (2π)− n

2
.

The MLE under the null hypothesis is the restricted estimates (β̃1,0, σ̃
2) where β̃1 is the OLS

estimate from a regression of yi on x1i only, with residual variance σ̃2. The log-likelihood of this
model is

logL(β̃1,0, σ̃
2) = −n

2
log
(
σ̃2
)
− n

2
log (2π)− n

2
.
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The LR statistic for H0 against H1 is

LRn = 2
(

logL(β̂1, β̂2, σ̂
2)− logL(β̃1,0, σ̃

2)
)

= n
(
log
(
σ̃2
)
− log

(
σ̂2
))

= n log

(
σ̃2

σ̂2

)
.

By a first-order Taylor series approximation

LRn = n log

(
1 +

σ̃2

σ̂2 − 1

)
' n

(
σ̃2

σ̂2 − 1

)
= W 0

n .

the homoskedastic Wald statistic. This shows that the two statistics (LRn and W 0
n) can be numer-

ically close. It also shows that the homoskedastic Wald statistic for linear hypotheses can also be
interpreted as an appropriate likelihood ratio statistic under normality.

6.6 Problems with Tests of NonLinear Hypotheses

While the t and Wald tests work well when the hypothesis is a linear restriction on β, they
can work quite poorly when the restrictions are nonlinear. This can be seen by a simple example
introduced by Lafontaine and White (1986). Take the model

yi = β + ei

ei ∼ N(0, σ2)

and consider the hypothesis
H0 : β = 1.

Let β̂ and σ̂2 be the sample mean and variance of yi. The standard Wald test for H0 is

Wn = n

(
β̂ − 1

)2

σ̂2 .

Now notice that H0 is equivalent to the hypothesis

H0(r) : βr = 1

for any positive integer r. Letting h(β) = βr, and noting Hβ = rβr−1, we find that the standard
Wald test for H0(r) is

Wn(r) = n

(
β̂
r − 1

)2

σ̂2r2β̂
2r−2 .

While the hypothesis βr = 1 is unaffected by the choice of r, the statistic Wn(r) varies with r. This
is an unfortunate feature of the Wald statistic.

To demonstrate this effect, we have plotted in Figure 6.1 the Wald statistic Wn(r) as a function
of r, setting n/σ2 = 10. The increasing solid line is for the case β̂ = 0.8. The decreasing dashed
line is for the case β̂ = 1.6. It is easy to see that in each case there are values of r for which the
test statistic is significant relative to asymptotic critical values, while there are other values of r
for which the test statistic is insignificant. This is distressing since the choice of r is arbitrary and
irrelevant to the actual hypothesis.

Our first-order asymptotic theory is not useful to help pick r, asWn(r)
d−→ χ2

1 under H0 for any
r. This is a context where Monte Carlo simulation can be quite useful as a tool to study and
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Figure 6.1: Wald Statistic as a function of s

compare the exact distributions of statistical procedures in finite samples. The method uses random
simulation to create artificial datasets, to which we apply the statistical tools of interest. This
produces random draws from the statistic’s sampling distribution. Through repetition, features of
this distribution can be calculated.

In the present context of the Wald statistic, one feature of importance is the Type I error
of the test using the asymptotic 5% critical value 3.84 — the probability of a false rejection,
P (Wn(r) > 3.84 | β = 1) . Given the simplicity of the model, this probability depends only on r, n,
and σ2. In Table 2.1 we report the results of a Monte Carlo simulation where we vary these three
parameters. The value of r is varied from 1 to 10, n is varied among 20, 100 and 500, and σ is
varied among 1 and 3. Table 4.1 reports the simulation estimate of the Type I error probability
from 50,000 random samples. Each row of the table corresponds to a different value of r —and thus
corresponds to a particular choice of test statistic. The second through seventh columns contain the
Type I error probabilities for different combinations of n and σ. These probabilities are calculated
as the percentage of the 50,000 simulated Wald statistics Wn(r) which are larger than 3.84. The
null hypothesis βr = 1 is true, so these probabilities are Type I error.

To interpret the table, remember that the ideal Type I error probability is 5% (.05) with devia-
tions indicating distortion. Type I error rates between 3% and 8% are considered reasonable. Error
rates above 10% are considered excessive. Rates above 20% are unacceptable. When comparing
statistical procedures, we compare the rates row by row, looking for tests for which rejection rates
are close to 5% and rarely fall outside of the 3%-8% range. For this particular example the only
test which meets this criterion is the conventional Wn = Wn(1) test. Any other choice of r leads
to a test with unacceptable Type I error probabilities.

In Table 4.1 you can also see the impact of variation in sample size. In each case, the Type I
error probability improves towards 5% as the sample size n increases. There is, however, no magic
choice of n for which all tests perform uniformly well. Test performance deteriorates as r increases,
which is not surprising given the dependence of Wn(r) on r as shown in Figure 6.1.

Table 4.1
Type I error Probability of Asymptotic 5% Wn(r) Test
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σ = 1 σ = 3

r n = 20 n = 100 n = 500 n = 20 n = 100 n = 500

1 .06 .05 .05 .07 .05 .05
2 .08 .06 .05 .15 .08 .06
3 .10 .06 .05 .21 .12 .07
4 .13 .07 .06 .25 .15 .08
5 .15 .08 .06 .28 .18 .10
6 .17 .09 .06 .30 .20 .11
7 .19 .10 .06 .31 .22 .13
8 .20 .12 .07 .33 .24 .14
9 .22 .13 .07 .34 .25 .15
10 .23 .14 .08 .35 .26 .16

Note: Rejection frequencies from 50,000 simulated random samples

In this example it is not surprising that the choice r = 1 yields the best test statistic. Other
choices are arbitrary and would not be used in practice. While this is clear in this particular
example, in other examples natural choices are not always obvious and the best choices may in fact
appear counter-intuitive at first.

This point can be illustrated through another example which is similar to one developed in
Gregory and Veall (1985). Take the model

yi = β0 + x1iβ1 + x2iβ2 + ei (6.3)

E (xiei) = 0

and the hypothesis

H0 :
β1

β2

= r

where r is a known constant. Equivalently, define θ = β1/β2, so the hypothesis can be stated as
H0 : θ = r.

Let β̂ = (β̂0, β̂1, β̂2) be the least-squares estimates of (6.3), let V̂ β̂ be an estimate of the

asymptotic covariance matrix for β̂ and set θ̂ = β̂1/β̂2. Define

Ĥ1 =



0

1

β̂2

− β̂1

β̂
2

2


so that the standard error for θ̂ is s(θ̂) =

(
n−1Ĥ

′
1V̂ Ĥ1

)1/2
. In this case a t-statistic for H0 is

t1n =

(
β̂1
β̂2
− r
)

s(θ̂)
.

An alternative statistic can be constructed through reformulating the null hypothesis as

H0 : β1 − rβ2 = 0.

A t-statistic based on this formulation of the hypothesis is

t2n =
β̂1 − rβ̂2(

n−1H ′2V̂β̂H2

)1/2
.
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where

H2 =

 0
1
−r

 .

To compare t1n and t2n we perform another simple Monte Carlo simulation. We let x1i and x2i

be mutually independent N(0, 1) variables, ei be an independent N(0, σ2) draw with σ = 3, and
normalize β0 = 0 and β1 = 1. This leaves β2 as a free parameter, along with sample size n. We
vary β2 among .1, .25, .50, .75, and 1.0 and n among 100 and 500.

Table 4.2
Type I error Probability of Asymptotic 5% t-tests

n = 100 n = 500

P (tn < −1.645) P (tn > 1.645) P (tn < −1.645) P (tn > 1.645)

β2 t1n t2n t1n t2n t1n t2n t1n t2n
.10 .47 .06 .00 .06 .28 .05 .00 .05
.25 .26 .06 .00 .06 .15 .05 .00 .05
.50 .15 .06 .00 .06 .10 .05 .00 .05
.75 .12 .06 .00 .06 .09 .05 .00 .05
1.00 .10 .06 .00 .06 .07 .05 .02 .05

The one-sided Type I error probabilities P (tn < −1.645) and P (tn > 1.645) are calculated from
50,000 simulated samples. The results are presented in Table 4.2. Ideally, the entries in the table
should be 0.05. However, the rejection rates for the t1n statistic diverge greatly from this value,
especially for small values of β2. The left tail probabilities P (t1n < −1.645) greatly exceed 5%, while
the right tail probabilities P (t1n > 1.645) are close to zero in most cases. In contrast, the rejection
rates for the linear t2n statistic are invariant to the value of β2, and are close to the ideal 5% rate for
both sample sizes. The implication of Table 4.2 is that the two t-ratios have dramatically different
sampling behavior.

The common message from both examples is that Wald statistics are sensitive to the algebraic
formulation of the null hypothesis. In all cases, if the hypothesis can be expressed as a linear
restriction on the model parameters, this formulation should be used. If no linear formulation is
feasible, then the “most linear”formulation should be selected (as suggested by the theory of Park
and Phillips (1988)), and alternatives to asymptotic critical values should be considered. It is also
prudent to consider alternative tests to the Wald statistic, such as the GMM distance statistic
which will be presented in Section 9.7 (as advocated by Hansen (2006)).

6.7 Monte Carlo Simulation

In the previous section we introduced the method of Monte Carlo simulation to illustrate the
small sample problems with tests of nonlinear hypotheses. In this section we describe the method
in more detail.

Recall, our data consist of observations (yi,xi) which are random draws from a population
distribution F. Let θ be a parameter and let Tn = Tn ((y1,x1) , ..., (yn,xn) ,θ) be a statistic of
interest, for example an estimator θ̂ or a t-statistic (θ̂ − θ)/s(θ̂). The exact distribution of Tn is

Gn(u, F ) = P (Tn ≤ u | F ) .

While the asymptotic distribution of Tn might be known, the exact (finite sample) distribution Gn
is generally unknown.

Monte Carlo simulation uses numerical simulation to compute Gn(u, F ) for selected choices of F.
This is useful to investigate the performance of the statistic Tn in reasonable situations and sample
sizes. The basic idea is that for any given F, the distribution function Gn(u, F ) can be calculated
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numerically through simulation. The name Monte Carlo derives from the famous Mediterranean
gambling resort where games of chance are played.

The method of Monte Carlo is quite simple to describe. The researcher chooses F (the dis-
tribution of the data) and the sample size n. A “true” value of θ is implied by this choice, or
equivalently the value θ is selected directly by the researcher which implies restrictions on F .

Then the following experiment is conducted

• n independent random pairs (y∗i ,x
∗
i ) , i = 1, ..., n, are drawn from the distribution F using

the computer’s random number generator.

• The statistic Tn = Tn ((y∗1,x
∗
1) , ..., (y∗n,x

∗
n) ,θ) is calculated on this pseudo data.

For step 1, most computer packages have built-in procedures for generating U[0, 1] and N(0, 1)
random numbers, and from these most random variables can be constructed. (For example, a
chi-square can be generated by sums of squares of normals.)

For step 2, it is important that the statistic be evaluated at the “true”value of θ corresponding
to the choice of F.

The above experiment creates one random draw from the distribution Gn(u, F ). This is one
observation from an unknown distribution. Clearly, from one observation very little can be said.
So the researcher repeats the experiment B times, where B is a large number. Typically, we set
B = 1000 or B = 5000. We will discuss this choice later.

Notationally, let the b′th experiment result in the draw Tnb, b = 1, ..., B. These results are stored.
They constitute a random sample of size B from the distribution of Gn(u, F ) = P (Tnb ≤ u) =
P (Tn ≤ u | F ) .

From a random sample, we can estimate any feature of interest using (typically) a method of
moments estimator. For example:

Suppose we are interested in the bias, mean-squared error (MSE), or variance of the distribution
of θ̂ − θ. We then set Tn = θ̂ − θ, run the above experiment, and calculate

B̂ias(θ̂) =
1

B

B∑
b=1

Tnb =
1

B

B∑
b=1

θ̂b − θ

M̂SE(θ̂) =
1

B

B∑
b=1

(Tnb)
2 =

1

B

B∑
b=1

(
θ̂b − θ

)2

v̂ar(θ̂) = M̂SE(θ̂)−
(
B̂ias(θ̂)

)2

Suppose we are interested in the Type I error associated with an asymptotic 5% two-sided t-test.

We would then set Tn =
∣∣∣θ̂ − θ∣∣∣ /s(θ̂) and calculate

P̂ =
1

B

B∑
b=1

1 (Tnb ≥ 1.96) , (6.4)

the percentage of the simulated t-ratios which exceed the asymptotic 5% critical value.
Suppose we are interested in the 5% and 95% quantile of Tn = θ̂.We then compute the 5% and

95% sample quantiles of the sample {Tnb}. The α% sample quantile is a number qα such that α% of
the sample are less than qα. A simple way to compute sample quantiles is to sort the sample {Tnb}
from low to high. Then qα is the N’th number in this ordered sequence, where N = (B + 1)α. It
is therefore convenient to pick B so that N is an integer. For example, if we set B = 999, then the
5% sample quantile is 50’th sorted value and the 95% sample quantile is the 950’th sorted value.

The typical purpose of a Monte Carlo simulation is to investigate the performance of a statistical
procedure (estimator or test) in realistic settings. Generally, the performance will depend on n and
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F. In many cases, an estimator or test may perform wonderfully for some values, and poorly for
others. It is therefore useful to conduct a variety of experiments, for a selection of choices of n and
F.

As discussed above, the researcher must select the number of experiments, B. Often this is
called the number of replications. Quite simply, a larger B results in more precise estimates of
the features of interest of Gn, but requires more computational time. In practice, therefore, the
choice of B is often guided by the computational demands of the statistical procedure. Since the
results of a Monte Carlo experiment are estimates computed from a random sample of size B, it
is straightforward to calculate standard errors for any quantity of interest. If the standard error is
too large to make a reliable inference, then B will have to be increased.

In particular, it is simple to make inferences about rejection probabilities from statistical
tests, such as the percentage estimate reported in (6.4). The random variable 1 (Tnb ≥ 1.96) is
iid Bernoulli, equalling 1 with probability p = E1 (Tnb ≥ 1.96) . The average (6.4) is therefore an
unbiased estimator of p with standard error s (p̂) =

√
p (1− p) /B. As p is unknown, this may be

approximated by replacing p with p̂ or with an hypothesized value. For example, if we are assessing
an asymptotic 5% test, then we can set s (p̂) =

√
(.05) (.95) /B ' .22/

√
B. Hence, standard errors

for B = 100, 1000, and 5000, are, respectively, s (p̂) = .022, .007, and .003.

6.8 Estimating a Wage Equation

We again return to our wage equation. We use the sample of wage earners from the March 2004
Current Population Survey, excluding military. For the dependent variable we use the natural log
of wages so that coeffi cients may be interpreted as semi-elasticities. For regressors we include years
of education, potential work experience, experience squared, and dummy variable indicators for
the following: married, female, union member, immigrant, hispanic, and non-white. Furthermore,
we included a dummy variable for state of residence (including the District of Columbia, this adds
50 regressors). The available sample is 18,808 so the parameter estimates are quite precise and
reported in Table 4.1, excluding the coeffi cients on the state dummy variables.

Table 4.1 displays the parameter estimates in a standard format. The Table clearly states the
estimation method (OLS), the dependent variable (log(Wage)), and the regressors are clearly la-
beled. Parameter estimates are both reported for the coeffi cients of interest (the coeffi cients on the
state dummy variables are omitted) and standard errors are reported for all reported coeffi cient es-
timates. In addition to the coeffi cient estimates, the table also reports the estimated error standard
deviation, and the sample size. These are useful summary measures of fit which aid readers.

Table 4.1
OLS Estimates of Linear Equation for Log(Wage)

β̂ s(β̂)
Intercept 1.027 .032
Education .101 .002
Experience .033 .001
Experience2 −.00057 .00002
Married .102 .008
Female −.232 .007
Union Member .097 .010
Immigrant −.121 .013
Hispanic −.102 .014
Non-White −.070 .010
σ̂ .4877
Sample Size 18,808
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Note: Equation also includes state dummy variables.

As a general rule, it is best to always report standard errors along with parameter estimates
(as done in Table 4.1). This allows readers to assess the precision of the parameter estimates, and
form confidence intervals and t-tests on individual coeffi cients if desired. For example, if you are
interested in the difference in mean wages between men and women, you can read from the table
that the estimated coeffi cient on the Female dummy variable is −0.232, implying a mean wage
difference of 23%. To assess the precision, you can see that the standard error for this coeffi cient
estimate is 0.007. This implies a 95% asymptotic confidence interval for the coeffi cient estimate of
[−.246,−.218]. This means that we have estimated the difference in mean wages between men and
women to lie between 22% and 25%. I interpret this as a precise estimate because there is not an
important difference between the lower and upper bound.

Instead of reporting standard errors, some empirical researchers report t-ratios for each pa-
rameter estimate. “t-ratios” are t-statistics which test the hypothesis that the coeffi cient equals
zero. An example is reported in Table 4.2. In this example, all the t-ratios are highly significant,
ranging in magnitude from 9.3 to 50. What we learn from these statistics is that these coeffi cients
are non-zero, but not much more. In a sample of this size this finding is rather uninteresting;
consequently the reporting of t-ratios is a waste of space. Again consider the male-female wage
difference. Table 4.2 reports that the t-ratio is 33, enabling us to reject the hypothesis that the
coeffi cient is zero. But how precise is the reported estimate of a wage gap of 23%? It is hard to
assess from a quick reading of Table 4.2 Standard errors are much more useful, for they enable for
quick and easy assessment of the degree of estimation uncertainty.

Table 4.2
OLS Estimates of Linear Equation for Log(Wage)

Improper Reporting: t-ratios replacing standard errors

β̂ t
Intercept 1.027 32
Education .101 50
Experience .033 33
Experience2 −.00057 28
Married .102 12.8
Female −.232 33
Union Member .097 9.7
Immigrant −.121 9.3
Hispanic −.102 7.3
Non-White −.070 7

Returning to the estimated wage equation, one might question whether or not the state dummy
variables are relevant. Computing the Wald statistic (6.1) that the state coeffi cients are jointly zero,
we find Wn = 550. Alternatively, re-estimating the model with the 50 state dummies excluded, the
restricted standard deviation estimate is σ̃ = .4945. The F form of the Wald statistic (6.2) is

Wn = n

(
σ̃2

σ̂2 − 1

)
= 18, 808

(
.49452

.48772
− 1

)
= 528.

Notice that the two statistics are close, but not equal. Using either statistic the hypothesis is easily
rejected, as the 1% critical value for the χ2

50 distribution is 76.
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Another interesting question which can be addressed from these estimates is the maximal impact
of experience on mean wages. Ignoring the other coeffi cients, we can write this effect as

log(Wage) = β2Experience+ β3Experience
2 + · · ·

Our question is: At which level of experience θ do workers achieve the highest wage? In this
quadratic model, if β2 > 0 and β3 < 0 the solution is

θ = − β2

2β3

.

From Table 4.1 we find the point estimate

θ̂ = − β̂2

2β̂3

= 28.69.

Using the Delta Method, we can calculate a standard error of s(θ̂) = .40, implying a 95% confidence
interval of [27.9, 29.5].

However, this is a poor choice, as the coverage probability of this confidence interval is one
minus the Type I error of the hypothesis test based on the t-test. In Section 6.6 we discovered
that such t-tests have very poor Type I error rates. Instead, we found better Type I error rates by
reformulating the hypothesis as a linear restriction. These t-statistics take the form

tn(θ) =
β̂2 + 2β̂3θ(
h′θV̂ hθ

)1/2

where

hθ =

(
1
2θ

)
and V̂ is the covariance matrix for (β̂2 β̂3).

In the present context we are interested in forming a confidence interval, not testing a hypothesis,
so we have to go one step further. Our desired confidence interval will be the set of parameter values
θ which are not rejected by the hypothesis test. This is the set of θ such that |tn(θ)| ≤ 1.96. Since
tn(θ) is a non-linear function of θ, there is not a simple expression for this set, but it can be found
numerically quite easily. This set is [27.0, 29.5]. Notice that the upper end of the confidence interval
is the same as that from the delta method, but the lower end is substantially lower.
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Exercises

For exercises 1-4, the following definition is used. In the model y = Xβ + e, the least-squares
estimate of β subject to the restriction h(β) = 0 is

β̃ = argmin
h(β)=0

Sn(β)

Sn(β) = (y −Xβ)′ (y −Xβ) .

That is, β̃ minimizes the sum of squared errors Sn(β) over all β such that the restriction holds.

Exercise 6.1 In the model y = X1β1 +X2β2 + e, show that the least-squares estimate of β =
(β1,β2) subject to the constraint that β2 = 0 is the OLS regression of y on X1.

Exercise 6.2 In the model y = X1β1 +X2β2 + e, show that the least-squares estimate of β =
(β1,β2), subject to the constraint that β1 = c (where c is some given vector) is simply the OLS
regression of y −X1c on X2.

Exercise 6.3 In the model y = X1β1 +X2β2 + e, with X1 and X2 each n × k, find the least-
squares estimate of β = (β1,β2), subject to the constraint that β1 = −β2.

Exercise 6.4 Take the model y = Xβ + e with the restriction R′β = r where R is a known
k × s matrix, r is a known s × 1 vector, 0 < s < k, and rank(R) = s. Explain why β̃ solves the
minimization of the Lagrangian

L(β,λ) =
1

2
Sn(β) + λ′

(
R′β − r

)
where λ is s× 1.

(a) Show that the solution is

β̃ = β̂ −
(
X ′X

)−1
R
[
R′
(
X ′X

)−1
R
]−1 (

R′β̂ − r
)

λ̂ =
[
R′
(
X ′X

)−1
R
]−1 (

R′β̂ − r
)

where
β̂ =

(
X ′X

)−1
X ′y

is the unconstrained OLS estimator.

(b) Verify that R′β̃ = r.

(c) Show that if R′β = r is true, then

β̃ − β =

(
Ik −

(
X ′X

)−1
R
[
R′
(
X ′X

)−1
R
]−1

R′
)(
X ′X

)−1
X ′e.

(d) Under the standard assumptions plusR′β = r, find the asymptotic distribution of
√
n
(
β̃ − β

)
as n→∞.

(e) Find an appropriate formula to calculate standard errors for the elements of β̃.
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Exercise 6.5 Prove that if an additional regressor Xk+1 is added to X, Theil’s adjusted R
2

increases if and only if |tk+1| > 1, where tk+1 = β̂k+1/s(β̂k+1) is the t-ratio for β̂k+1 and

s(β̂k+1) =
(
s2[(X ′X)−1]k+1,k+1

)1/2
is the homoskedasticity-formula standard error.

Exercise 6.6 The data set invest.dat contains data on 565 U.S. firms extracted from Compustat
for the year 1987. The variables, in order, are

• Ii Investment to Capital Ratio (multiplied by 100).

• Qi Total Market Value to Asset Ratio (Tobin’s Q).

• Ci Cash Flow to Asset Ratio.

• Di Long Term Debt to Asset Ratio.

The flow variables are annual sums for 1987. The stock variables are beginning of year.

(a) Estimate a linear regression of Ii on the other variables. Calculate appropriate standard
errors.

(b) Calculate asymptotic confidence intervals for the coeffi cients.

(c) This regression is related to Tobin’s q theory of investment, which suggests that investment
should be predicted solely by Qi. Thus the coeffi cient on Qi should be positive and the others
should be zero. Test the joint hypothesis that the coeffi cients on Ci and Di are zero. Test the
hypothesis that the coeffi cient on Qi is zero. Are the results consistent with the predictions
of the theory?

(d) Now try a non-linear (quadratic) specification. Regress Ii on Qi, Ci, Di, Q
2
i , C

2
i , D

2
i , QiCi,

QiDi, CiDi. Test the joint hypothesis that the six interaction and quadratic coeffi cients are
zero.

Exercise 6.7 In a paper in 1963, Marc Nerlove analyzed a cost function for 145 American electric
companies. (The problem is discussed in Example 8.3 of Greene, section 1.7 of Hayashi, and the
empirical exercise in Chapter 1 of Hayashi). The data file nerlov.dat contains his data. The
variables are described on page 77 of Hayashi. Nerlov was interested in estimating a cost function:
TC = f(Q,PL, PF, PK).

(a) First estimate an unrestricted Cobb-Douglass specification

log TCi = β1 + β2 logQi + β3 logPLi + β4 logPKi + β5 logPFi + ei. (6.5)

Report parameter estimates and standard errors. You should obtain the same OLS estimates
as in Hayashi’s equation (1.7.7), but your standard errors may differ.

(b) Using a Wald statistic, test the hypothesis H0 : β3 + β4 + β5 = 1.

(c) Estimate (6.5) by least-squares imposing this restriction by substitution. Report your para-
meter estimates and standard errors.

(d) Estimate (6.5) subject to β3 + β4 + β5 = 1 using the restricted least-squares estimator from
problem 4. Do you obtain the same estimates as in part (c)?
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Chapter 7

Additional Regression Topics

7.1 Generalized Least Squares

In the projection model, we know that the least-squares estimator is semi-parametrically effi cient
for the projection coeffi cient. However, in the linear regression model

yi = x′iβ + ei

E (ei | xi) = 0,

the least-squares estimator is ineffi cient. The theory of Chamberlain (1987) can be used to show
that in this model the semiparametric effi ciency bound is obtained by the Generalized Least
Squares (GLS) estimator (4.11) introduced in Section 4.5.1. The GLS estimator is sometimes
called the Aitken estimator. The GLS estimator (7.1) is infeasible since the matrix D is unknown.
A feasible GLS (FGLS) estimator replaces the unknown D with an estimate D̂ = diag{σ̂2

1, ..., σ̂
2
n}.

We now discuss this estimation problem.
Suppose that we model the conditional variance using the parametric form

σ2
i = α0 + z′1iα1

= α′zi,

where z1i is some q × 1 function of xi. Typically, z1i are squares (and perhaps levels) of some (or
all) elements of xi. Often the functional form is kept simple for parsimony.

Let ηi = e2
i . Then

E (ηi | xi) = α0 + z′1iα1

and we have the regression equation

ηi = α0 + z′1iα1 + ξi (7.1)

E (ξi | xi) = 0.

This regression error ξi is generally heteroskedastic and has the conditional variance

var (ξi | xi) = var
(
e2
i | xi

)
= E

((
e2
i − E

(
e2
i | xi

))2 | xi)
= E

(
e4
i | xi

)
−
(
E
(
e2
i | xi

))2
.

Suppose ei (and thus ηi) were observed. Then we could estimate α by OLS:

α̂ =
(
Z ′Z

)−1
Z ′η

p−→ α
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and √
n (α̂−α)

d−→ N (0,V α)

where
V α =

(
E
(
ziz
′
i

))−1 E
(
ziz
′
iξ

2
i

) (
E
(
ziz
′
i

))−1
. (7.2)

While ei is not observed, we have the OLS residual êi = yi − x′iβ̂ = ei − x′i(β̂ − β). Thus

φi ≡ η̂ − ηi
= ê2

i − e2
i

= −2eix
′
i

(
β̂ − β

)
+ (β̂ − β)′xix

′
i(β̂ − β).

And then

1√
n

n∑
i=1

ziφi =
−2

n

n∑
i=1

zieix
′
i

√
n
(
β̂ − β

)
+

1

n

n∑
i=1

zi(β̂ − β)′xix
′
i(β̂ − β)

√
n

p−→ 0

Let
α̃ =

(
Z ′Z

)−1
Z ′η̂ (7.3)

be from OLS regression of η̂i on zi. Then
√
n (α̃−α) =

√
n (α̂−α) +

(
n−1Z ′Z

)−1
n−1/2Z ′φ

d−→ N (0,V α) (7.4)

Thus the fact that ηi is replaced with η̂i is asymptotically irrelevant. We call (7.3) the skedastic
regression, as it is estimating the conditional variance of the regression of yi on xi. We have shown
that α is consistently estimated by a simple procedure, and hence we can estimate σ2

i = z′iα by

σ̃2
i = α̃′zi. (7.5)

Suppose that σ̃2
i > 0 for all i. Then set

D̃ = diag{σ̃2
1, ..., σ̃

2
n}

and
β̃ =

(
X ′D̃

−1
X
)−1

X ′D̃
−1
y.

This is the feasible GLS, or FGLS, estimator of β. Since there is not a unique specification for
the conditional variance the FGLS estimator is not unique, and will depend on the model (and
estimation method) for the skedastic regression.

One typical problem with implementation of FGLS estimation is that in the linear specification
(7.1), there is no guarantee that σ̃2

i > 0 for all i. If σ̃2
i < 0 for some i, then the FGLS estimator

is not well defined. Furthermore, if σ̃2
i ≈ 0 for some i then the FGLS estimator will force the

regression equation through the point (yi,xi), which is undesirable. This suggests that there is a
need to bound the estimated variances away from zero. A trimming rule takes the form

σ2
i = max[σ̃2

i , cσ̂
2]

for some c > 0. For example, setting c = 1/4 means that the conditional variance function is
constrained to exceed one-fourth of the unconditional variance. As there is no clear method to
select c, this introduces a degree of arbitrariness. In this context it is useful to re-estimate the
model with several choices for the trimming parameter. If the estimates turn out to be sensitive to
its choice, the estimation method should probably be reconsidered.

It is possible to show that if the skedastic regression is correctly specified, then FGLS is asymp-
totically equivalent to GLS. As the proof is tricky, we just state the result without proof.
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Theorem 7.1.1 If the skedastic regression is correctly specified,

√
n
(
β̃GLS − β̃FGLS

)
p−→ 0,

and thus √
n
(
β̃FGLS − β

)
d−→ N (0,V β) ,

where
V β =

(
E
(
σ−2
i xix

′
i

))−1
.

Examining the asymptotic distribution of Theorem 7.1.1, the natural estimator of the asymp-
totic variance of β̃ is

Ṽ
0
β =

(
1

n

n∑
i=1

σ̃−2
i xix

′
i

)−1

=

(
1

n
X ′D̃

−1
X

)−1

.

which is consistent for V β as n → ∞. This estimator Ṽ 0
β is appropriate when the skedastic

regression (7.1) is correctly specified.
It may be the case that α′zi is only an approximation to the true conditional variance σ2

i =
E(e2

i | xi). In this case we interpret α′zi as a linear projection of e2
i on zi. β̃ should perhaps be

called a quasi-FGLS estimator of β. Its asymptotic variance is not that given in Theorem 7.1.1.
Instead,

V β =
(
E
((
α′zi

)−1
xix

′
i

))−1 (
E
((
α′zi

)−2
σ2
ixix

′
i

))(
E
((
α′zi

)−1
xix

′
i

))−1
.

V β takes a sandwich form similar to the covariance matrix of the OLS estimator. Unless σ2
i = α′zi,

Ṽ
0
β is inconsistent for V β.

An appropriate solution is to use a White-type estimator in place of Ṽ
0
β. This may be written

as

Ṽ β =

(
1

n

n∑
i=1

σ̃−2
i xix

′
i

)−1(
1

n

n∑
i=1

σ̃−4
i ê2

ixix
′
i

)(
1

n

n∑
i=1

σ̃−2
i xix

′
i

)−1

=

(
1

n
X ′D̃

−1
X

)−1( 1

n
X ′D̃

−1
D̂D̃

−1
X

)(
1

n
X ′D̃

−1
X

)−1

where D̂ = diag{ê2
1, ..., ê

2
n}. This is estimator is robust to misspecification of the conditional vari-

ance, and was proposed by Cragg (1992).
In the linear regression model, FGLS is asymptotically superior to OLS. Why then do we not

exclusively estimate regression models by FGLS? This is a good question. There are three reasons.
First, FGLS estimation depends on specification and estimation of the skedastic regression.

Since the form of the skedastic regression is unknown, and it may be estimated with considerable
error, the estimated conditional variances may contain more noise than information about the true
conditional variances. In this case, FGLS can do worse than OLS in practice.

Second, individual estimated conditional variances may be negative, and this requires trimming
to solve. This introduces an element of arbitrariness which is unsettling to empirical researchers.

Third, and probably most importantly, OLS is a robust estimator of the parameter vector. It
is consistent not only in the regression model, but also under the assumptions of linear projection.
The GLS and FGLS estimators, on the other hand, require the assumption of a correct conditional
mean. If the equation of interest is a linear projection and not a conditional mean, then the OLS
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and FGLS estimators will converge in probability to different limits as they will be estimating two
different projections. The FGLS probability limit will depend on the particular function selected for
the skedastic regression. The point is that the effi ciency gains from FGLS are built on the stronger
assumption of a correct conditional mean, and the cost is a loss of robustness to misspecification.

7.2 Testing for Heteroskedasticity

The hypothesis of homoskedasticity is that E
(
e2
i | xi

)
= σ2, or equivalently that

H0 : α1 = 0

in the regression (7.1). We may therefore test this hypothesis by the estimation (7.3) and con-
structing a Wald statistic. In the classic literature it is typical to impose the stronger assumption
that ei is independent of xi, in which case ξi is independent of xi and the asymptotic variance (7.2)
for α̃ simplifies to

Vα =
(
E
(
ziz
′
i

))−1 E
(
ξ2
i

)
. (7.6)

Hence the standard test of H0 is a classic F (or Wald) test for exclusion of all regressors from
the skedastic regression (7.3). The asymptotic distribution (7.4) and the asymptotic variance (7.6)
under independence show that this test has an asymptotic chi-square distribution.

Theorem 7.2.1 Under H0 and ei independent of xi, the Wald test of H0 is asymptotically χ2
q .

Most tests for heteroskedasticity take this basic form. The main differences between popular
tests are which transformations of xi enter zi. Motivated by the form of the asymptotic variance
of the OLS estimator β̂, White (1980) proposed that the test for heteroskedasticity be based on
setting zi to equal all non-redundant elements of xi, its squares, and all cross-products. Breusch-
Pagan (1979) proposed what might appear to be a distinct test, but the only difference is that they
allowed for general choice of zi, and replaced E

(
ξ2
i

)
with 2σ4 which holds when ei is N

(
0, σ2

)
. If

this simplification is replaced by the standard formula (under independence of the error), the two
tests coincide.

It is important not to misuse tests for heteroskedasticity. It should not be used to determine
whether to estimate a regression equation by OLS or FGLS, nor to determine whether classic or
White standard errors should be reported. Hypothesis tests are not designed for these purposes.
Rather, tests for heteroskedasticity should be used to answer the scientific question of whether or
not the conditional variance is a function of the regressors. If this question is not of economic
interest, then there is no value in conducting a test for heteorskedasticity.

7.3 Forecast Intervals

In the linear regression model the conditional mean of yi given xi = x is

m(x) = E (yi | xi = x) = x′β.

In some cases, we want to estimate m(x) at a particular point x. Notice that this is a (linear)
function of β. Letting h(β) = x′β and θ = h(β), we see that m̂(x) = θ̂ = x′β̂ and Hβ = x, so

s(θ̂) =
√
n−1x′V̂βx. Thus an asymptotic 95% confidence interval for m(x) is[

x′β̂ ± 2

√
n−1x′V̂βx

]
.

It is interesting to observe that if this is viewed as a function of x, the width of the confidence set
is dependent on x.
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For a given value of xi = x, we may want to forecast (guess) yi out-of-sample. A reasonable
rule is the conditional mean m(x) as it is the mean-square-minimizing forecast. A point forecast is
the estimated conditional mean m̂(x) = x′β̂. We would also like a measure of uncertainty for the
forecast.

The forecast error is êi = yi − m̂(x) = ei − x′
(
β̂ − β

)
. As the out-of-sample error ei is

independent of the in-sample estimate β̂, this has variance

Eê2
i = E

(
e2
i | xi = x

)
+ x′E

(
β̂ − β

)(
β̂ − β

)′
x

= σ2(x) + n−1x′Vβx.

Assuming E
(
e2
i | xi

)
= σ2, the natural estimate of this variance is σ̂2 + n−1x′V̂βx, so a standard

error for the forecast is ŝ(x) =
√
σ̂2 + n−1x′V̂βx. Notice that this is different from the standard

error for the conditional mean. If we have an estimate of the conditional variance function, e.g.

σ̃2(x) = α̃′z from (7.5), then the forecast standard error is ŝ(x) =
√
σ̃2(x) + n−1x′V̂βx

It would appear natural to conclude that an asymptotic 95% forecast interval for yi is[
x′β̂ ± 2ŝ(x)

]
,

but this turns out to be incorrect. In general, the validity of an asymptotic confidence interval is
based on the asymptotic normality of the studentized ratio. In the present case, this would require
the asymptotic normality of the ratio

ei − x′
(
β̂ − β

)
ŝ(x)

.

But no such asymptotic approximation can be made. The only special exception is the case where
ei has the exact distribution N(0, σ2), which is generally invalid.

To get an accurate forecast interval, we need to estimate the conditional distribution of ei given
xi = x, which is a much more diffi cult task. Perhaps due to this diffi culty, many applied forecasters

use the simple approximate interval
[
x′β̂ ± 2ŝ(x)

]
despite the lack of a convincing justification.

7.4 NonLinear Least Squares

In some cases we might use a parametric regression function m (x,θ) = E (yi | xi = x) which
is a non-linear function of the parameters θ. We describe this setting as non-linear regression.
Examples of nonlinear regression functions include

m (x,θ) = θ1 + θ2
x

1 + θ3x

m (x,θ) = θ1 + θ2x
θ3

m (x,θ) = θ1 + θ2 exp(θ3x)

m (x,θ) = G(x′θ), G known

m (x,θ) = θ′1x1 +
(
θ′2x1

)
Φ

(
x2 − θ3

θ4

)
m (x,θ) = θ1 + θ2x+ θ3 (x− θ4) 1 (x > θ4)

m (x,θ) =
(
θ′1x1

)
1 (x2 < θ3) +

(
θ′2x1

)
1 (x2 > θ3)

In the first five examples, m (x,θ) is (generically) differentiable in the parameters θ. In the final
two examples, m is not differentiable with respect to θ4 and θ3 which alters some of the analysis.
When it exists, let

mθ (x,θ) =
∂

∂θ
m (x,θ) .
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Nonlinear regression is sometimes adopted because the functional form m (x,θ) is suggested
by an economic model. In other cases, it is adopted as a flexible approximation to an unknown
regression function.

The least squares estimator θ̂ minimizes the normalized sum-of-squared-errors

Sn(θ) =
1

n

n∑
i=1

(yi −m (xi,θ))2 .

When the regression function is nonlinear, we call this the nonlinear least squares (NLLS)
estimator. The NLLS residuals are êi = yi −m

(
xi, θ̂

)
.

One motivation for the choice of NLLS as the estimation method is that the parameter θ is the
solution to the population problem minθ E (yi −m (xi,θ))2

Since sum-of-squared-errors function Sn(θ) is not quadratic, θ̂ must be found by numerical
methods. See Appendix E. When m(x,θ) is differentiable, then the FOC for minimization are

0 =
n∑
i=1

mθ

(
xi, θ̂

)
êi. (7.7)

Theorem 7.4.1 Asymptotic Distribution of NLLS Estimator
If the model is identified and m (x,θ) is differentiable with respect to θ,

√
n
(
θ̂ − θ

)
d−→ N (0,V θ)

V θ =
(
E
(
mθim

′
θi

))−1 (E (mθim
′
θie

2
i

)) (
E
(
mθim

′
θi

))−1

where mθi = mθ(xi,θ0).

Based on Theorem 7.4.1, an estimate of the asymptotic variance V θ is

V̂ θ =

(
1

n

n∑
i=1

m̂θim̂
′
θi

)−1(
1

n

n∑
i=1

m̂θim̂
′
θiê

2
i

)(
1

n

n∑
i=1

m̂θim̂
′
θi

)−1

where m̂θi = mθ(xi, θ̂) and êi = yi −m(xi, θ̂).
Identification is often tricky in nonlinear regression models. Suppose that

m(xi,θ) = β′1zi + β′2xi(γ)

where xi (γ) is a function of xi and the unknown parameter γ. Examples include xi (γ) = xγi ,
xi (γ) = exp (γxi) , and xi (γ) = xi1 (g (xi) > γ). The model is linear when β2 = 0, and this is
often a useful hypothesis (sub-model) to consider. Thus we want to test

H0 : β2 = 0.

However, under H0, the model is
yi = β′1zi + ei

and both β2 and γ have dropped out. This means that under H0, γ is not identified. This renders
the distribution theory presented in the previous section invalid. Thus when the truth is that

109



β2 = 0, the parameter estimates are not asymptotically normally distributed. Furthermore, tests
of H0 do not have asymptotic normal or chi-square distributions.

The asymptotic theory of such tests have been worked out by Andrews and Ploberger (1994)
and B. Hansen (1996). In particular, Hansen shows how to use simulation (similar to the bootstrap)
to construct the asymptotic critical values (or p-values) in a given application.

Proof of Theorem 7.4.1 (Sketch). NLLS estimation falls in the class of optimization estimators.
For this theory, it is useful to denote the true value of the parameter θ as θ0.

The first step is to show that θ̂
p−→ θ0. Proving that nonlinear estimators are consistent is more

challenging than for linear estimators. We sketch the main argument. The idea is that θ̂ minimizes
the sample criterion function Sn(θ), which (for any θ) converges in probability to the mean-squared
error function E (yi −m (xi,θ))2 . Thus it seems reasonable that the minimizer θ̂ will converge in
probability to θ0, the minimizer of E (yi −m (xi,θ))2. It turns out that to show this rigorously, we
need to show that Sn(θ) converges uniformly to its expectation E (yi −m (xi,θ))2 , which means
that the maximum discrepancy must converge in probability to zero, to exclude the possibility that
Sn(θ) is excessively wiggly in θ. Proving uniform convergence is technically challenging, but it
can be shown to hold broadly for relevant nonlinear regression models, especially if the regression
function m (xi,θ) is differentiabel in θ. For a complete treatment of the theory of optimization
estimators see Newey and McFadden (1994).

Since θ̂
p−→ θ0, θ̂ is close to θ0 for n large, so the minimization of Sn(θ) only needs to be

examined for θ close to θ0. Let
y0
i = ei +m′θiθ0.

For θ close to the true value θ0, by a first-order Taylor series approximation,

m (xi,θ) ' m (xi,θ0) +m′θi (θ − θ0) .

Thus

yi −m (xi,θ) ' (ei +m (xi,θ0))−
(
m (xi,θ0) +m′θi (θ − θ0)

)
= ei −m′θi (θ − θ0)

= y0
i −m′θiθ.

Hence the sum of squared errors function is

Sn(θ) =
n∑
i=1

(yi −m (xi,θ))2 '
n∑
i=1

(
y0
i −m′θiθ

)2
and the right-hand-side is the SSE function for a linear regression of y0

i on mθi. Thus the NLLS
estimator θ̂ has the same asymptotic distribution as the (infeasible) OLS regression of y0

i on mθi,
which is that stated in the theorem.

7.5 Least Absolute Deviations

We stated that a conventional goal in econometrics is estimation of impact of variation in xi
on the central tendency of yi. We have discussed projections and conditional means, but these are
not the only measures of central tendency. An alternative good measure is the conditional median.

To recall the definition and properties of the median, let y be a continuous random variable.
The median θ = med(y) is the value such that P(y ≤ θ) = P (y ≥ θ0) = .5. Two useful facts about
the median are that

θ = argmin
θ

E |y − θ| (7.8)
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and
E sgn (y − θ) = 0

where

sgn (u) =

{
1 if u ≥ 0
−1 if u < 0

is the sign function.
These facts and definitions motivate three estimators of θ. The first definition is the 50th

empirical quantile. The second is the value which minimizes 1
n

∑n
i=1 |yi − θ| , and the third definition

is the solution to the moment equation 1
n

∑n
i=1 sgn (yi − θ) . These distinctions are illusory, however,

as these estimators are indeed identical.
Now let’s consider the conditional median of y given a random vector x. Let m(x) = med (y | x)

denote the conditional median of y given x. The linear median regression model takes the form

yi = x′iβ + ei

med (ei | xi) = 0

In this model, the linear function med (yi | xi = x) = x′β is the conditional median function, and
the substantive assumption is that the median function is linear in x.

Conditional analogs of the facts about the median are

• P(yi ≤ x′β0 | xi = x) = P(yi > x
′β | xi = x) = .5

• E (sgn (ei) | xi) = 0

• E (xi sgn (ei)) = 0

• β = minβ E |yi − x′iβ|

These facts motivate the following estimator. Let

LADn(β) =
1

n

n∑
i=1

∣∣yi − x′iβ∣∣
be the average of absolute deviations. The least absolute deviations (LAD) estimator of β
minimizes this function

β̂ = argmin
β

LADn(β)

Equivalently, it is a solution to the moment condition

1

n

n∑
i=1

xi sgn
(
yi − x′iβ̂

)
= 0. (7.9)

The LAD estimator has an asymptotic normal distribution.

Theorem 7.5.1 Asymptotic Distribution of LAD Estimator
When the conditional median is linear in x

√
n
(
β̂ − β

)
d−→ N (0,V )

where

V =
1

4

(
E
(
xix

′
if (0 | xi)

))−1 (Exix′i) (E (xix′if (0 | xi)
))−1

and f (e | x) is the conditional density of ei given xi = x.
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The variance of the asymptotic distribution inversely depends on f (0 | x) , the conditional
density of the error at its median. When f (0 | x) is large, then there are many innovations near
to the median, and this improves estimation of the median. In the special case where the error is
independent of xi, then f (0 | x) = f (0) and the asymptotic variance simplifies

V =
(Exix′i)

−1

4f (0)2 (7.10)

This simplification is similar to the simplification of the asymptotic covariance of the OLS estimator
under homoskedasticity.

Computation of standard error for LAD estimates typically is based on equation (7.10). The
main diffi culty is the estimation of f(0), the height of the error density at its median. This can be
done with kernel estimation techniques. See Chapter 16. While a complete proof of Theorem 7.5.1
is advanced, we provide a sketch here for completeness.

Proof of Theorem 7.5.1: Similar to NLLS, LAD is an optimization estimator. Let β0 denote
the true value of β0.

The first step is to show that β̂
p−→ β0. The general nature of the proof is similar to that for the

NLLS estimator, and is sketched here. For any fixed β, by the WLLN, LADn(β)
p−→ E |yi − x′iβ| .

Furthermore, it can be shown that this convergence is uniform in β. (Proving uniform convergence
is more challenging than for the NLLS criterion since the LAD criterion is not differentiable in
β.) It follows that β̂, the minimizer of LADn(β), converges in probability to β0, the minimizer of
E |yi − x′iβ|.

Since sgn (a) = 1−2 ·1 (a ≤ 0) , (7.9) is equivalent to gn(β̂) = 0, where gn(β) = n−1
∑n

i=1 gi(β)
and gi(β) = xi (1− 2 · 1 (yi ≤ x′iβ)) . Let g(β) = Egi(β). We need three preliminary results. First,
by the central limit theorem (Theorem C.2.1)

√
n (gn(β0)− g(β0)) = −n−1/2

n∑
i=1

gi(β0)
d−→ N

(
0,Exix′i

)
since Egi(β0)gi(β0)′ = Exix′i. Second using the law of iterated expectations and the chain rule of
differentiation,

∂

∂β′
g(β) =

∂

∂β′
Exi

(
1− 2 · 1

(
yi ≤ x′iβ

))
= −2

∂

∂β′
E
[
xiE

(
1
(
ei ≤ x′iβ − x′iβ0

)
| xi
)]

= −2
∂

∂β′
E

[
xi

∫ x′iβ−x′iβ0

−∞
f (e | xi) de

]
= −2E

[
xix

′
if
(
x′iβ − x′iβ0 | xi

)]
so

∂

∂β′
g(β) = −2E

[
xix

′
if (0 | xi)

]
.

Third, by a Taylor series expansion and the fact g(β) = 0

g(β̂) ' ∂

∂β′
g(β)

(
β̂ − β

)
.
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Together

√
n
(
β̂ − β0

)
'
(

∂

∂β′
g(β0)

)−1√
ng(β̂)

=
(
−2E

[
xix

′
if (0 | xi)

])−1√
n
(
g(β̂)− gn(β̂)

)
' 1

2

(
E
[
xix

′
if (0 | xi)

])−1√
n (gn(β0)− g(β0))

d−→ 1

2

(
E
[
xix

′
if (0 | xi)

])−1
N
(
0,Exix′i

)
= N (0,V ) .

The third line follows from an asymptotic empirical process argument and the fact that β̂
p−→ β0.

7.6 Quantile Regression

Quantile regression has become quite popular in recent econometric practice. For τ ∈ [0, 1] the
τ’th quantile Qτ of a random variable with distribution function F (u) is defined as

Qτ = inf {u : F (u) ≥ τ}

When F (u) is continuous and strictly monotonic, then F (Qτ ) = τ , so you can think of the quantile
as the inverse of the distribution function. The quantile Qτ is the value such that τ (percent) of
the mass of the distribution is less than Qτ . The median is the special case τ = .5.

The following alternative representation is useful. If the random variable U has τ’th quantile
Qτ , then

Qτ = argmin
θ

Eρτ (U − θ) . (7.11)

where ρτ (q) is the piecewise linear function

ρτ (q) =

{
−q (1− τ) q < 0

qτ q ≥ 0
(7.12)

= q (τ − 1 (q < 0)) .

This generalizes representation (7.8) for the median to all quantiles.
For the random variables (yi,xi) with conditional distribution function F (y | x) the conditional

quantile function qτ (x) is
Qτ (x) = inf {y : F (y | x) ≥ τ} .

Again, when F (y | x) is continuous and strictly monotonic in y, then F (Qτ (x) | x) = τ . For
fixed τ , the quantile regression function qτ (x) describes how the τ’th quantile of the conditional
distribution varies with the regressors.

As functions of x, the quantile regression functions can take any shape. However for computa-
tional convenience it is typical to assume that they are (approximately) linear in x (after suitable
transformations). This linear specification assumes that Qτ (x) = β′τx where the coeffi cients βτ
vary across the quantiles τ . We then have the linear quantile regression model

yi = x′iβτ + ei

where ei is the error defined to be the difference between yi and its τ’th conditional quantile x′iβτ .
By construction, the τ’th conditional quantile of ei is zero, otherwise its properties are unspecified
without further restrictions.
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Given the representation (7.11), the quantile regression estimator β̂τ for βτ solves the mini-
mization problem

β̂τ = argmin
β

Sτn(β)

where

Sτn(β) =
1

n

n∑
i=1

ρτ
(
yi − x′iβ

)
and ρτ (q) is defined in (7.12).

Since the quanitle regression criterion function Sτn(β) does not have an algebraic solution,
numerical methods are necessary for its minimization. Furthermore, since it has discontinuous
derivatives, conventional Newton-type optimization methods are inappropriate. Fortunately, fast
linear programming methods have been developed for this problem, and are widely available.

An asymptotic distribution theory for the quantile regression estimator can be derived using
similar arguments as those for the LAD estimator in Theorem 7.5.1.

Theorem 7.6.1 Asymptotic Distribution of the Quantile Regres-
sion Estimator
When the τ’th conditional quantile is linear in x

√
n
(
β̂τ − βτ

)
d−→ N (0,V τ ) ,

where

V τ = τ (1− τ)
(
E
(
xix

′
if (0 | xi)

))−1 (Exix′i) (E (xix′if (0 | xi)
))−1

and f (e | x) is the conditional density of ei given xi = x.

In general, the asymptotic variance depends on the conditional density of the quantile regression
error. When the error ei is independent of xi, then f (0 | xi) = f (0) , the unconditional density of
ei at 0, and we have the simplification

V τ =
τ (1− τ)

f (0)2

(
E
(
xix

′
i

))−1
.

A recent monograph on the details of quantile regression is Koenker (2005).

7.7 Testing for Omitted NonLinearity

If the goal is to estimate the conditional expectation E (yi | xi) , it is useful to have a general
test of the adequacy of the specification.

One simple test for neglected nonlinearity is to add nonlinear functions of the regressors to the
regression, and test their significance using a Wald test. Thus, if the model yi = x′iβ̂+ êi has been
fit by OLS, let zi = h(xi) denote functions of xi which are not linear functions of xi (perhaps
squares of non-binary regressors) and then fit yi = x′iβ̃+z′iγ̃+ ẽi by OLS, and form a Wald statistic
for γ = 0.

Another popular approach is the RESET test proposed by Ramsey (1969). The null model is

yi = x′iβ + ei

114



which is estimated by OLS, yielding predicted values ŷi = x′iβ̂. Now let

zi =

 ŷ2
i
...
ŷmi


be an (m− 1)-vector of powers of ŷi. Then run the auxiliary regression

yi = x′iβ̃ + z′iγ̃ + ẽi (7.13)

by OLS, and form the Wald statistic Wn for γ = 0. It is easy (although somewhat tedious) to

show that under the null hypothesis, Wn
d−→ χ2

m−1. Thus the null is rejected at the α% level if Wn

exceeds the upper α% tail critical value of the χ2
m−1 distribution.

To implement the test, m must be selected in advance. Typically, small values such as m = 2,
3, or 4 seem to work best.

The RESET test appears to work well as a test of functional form against a wide range of
smooth alternatives. It is particularly powerful at detecting single-index models of the form

yi = G(x′iβ) + ei

where G(·) is a smooth “link”function. To see why this is the case, note that (7.13) may be written
as

yi = x′iβ̃ +
(
x′iβ̂

)2
γ̃1 +

(
x′iβ̂

)3
γ̃2 + · · ·

(
x′iβ̂

)m
γ̃m−1 + ẽi

which has essentially approximated G(·) by a m’th order polynomial.

7.8 Irrelevant Variables

In the model

yi = x′1iβ1 + x′2iβ2 + ei

E (xiei) = 0,

x2i is “irrelevant”if β1 is the parameter of interest and β2 = 0. One estimator of β1 is to regress
yi on x1i alone, β̃1 = (X ′1X1)

−1
(X ′1y) . Another is to regress yi on x1i and x2i jointly, yielding

(β̂1, β̂2). Under which conditions is β̂1 or β̃1 superior?
It is easy to see that both estimators are consistent for β1. However, they will (typically) have

different asymptotic variances.
The comparison between the two estimators is straightforward when the error is conditionally

homoskedastic E
(
e2
i | xi

)
= σ2. In this case

lim
n→∞

n var( β̃1) =
(
Ex1ix

′
1i

)−1
σ2 = Q−1

11 σ
2,

say, and

lim
n→∞

n var(β̂1) =
(
Ex1ix

′
1i − Ex1ix

′
2i

(
Ex2ix

′
2i

)−1 Ex2ix
′
1i

)−1
σ2 =

(
Q11 −Q12Q

−1
22 Q21

)−1
σ2,

say. If Q12 = 0 (so the variables are orthogonal) then these two variance matrices equal, and the
two estimators have equal asymptotic effi ciency. Otherwise, since Q12Q

−1
22 Q21 > 0, then Q11 >

Q11 −Q12Q
−1
22 Q21, and consequently

Q−1
11 σ

2 <
(
Q11 −Q12Q

−1
22 Q21

)−1
σ2.
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This means that β̃1 has a lower asymptotic variance matrix than β̂1.We conclude that the inclusion
of irrelevant variable reduces estimation effi ciency if these variables are correlated with the relevant
variables.

For example, take the model yi = β0 + β1xi + ei and suppose that β0 = 0. Let β̂1 be the
estimate of β1 from the unconstrained model, and β̃1 be the estimate under the constraint β0 = 0.
(The least-squares estimate with the intercept omitted.). Let Exi = µ, and E (xi − µ)2 = σ2

x. Then
under (5.13),

lim
n→∞

n var( β̃1) =
σ2

σ2
x + µ2

while

lim
n→∞

n var( β̂1) =
σ2

σ2
x

.

When µ 6= 0, we see that β̃1 has a lower asymptotic variance.
However, this result can be reversed when the error is conditionally heteroskedastic. In the

absence of the homoskedasticity assumption, there is no clear ranking of the effi ciency of the
restricted estimator β̃1 versus the unrestricted estimator.

7.9 Model Selection

In earlier sections we discussed the costs and benefits of inclusion/exclusion of variables. How
does a researcher go about selecting an econometric specification, when economic theory does not
provide complete guidance? This is the question of model selection. It is important that the model
selection question be well-posed. For example, the question: “What is the right model for y?”
is not well-posed, because it does not make clear the conditioning set. In contrast, the question,
“Which subset of (x1, ..., xK) enters the regression function E (yi | x1i = x1, ..., xKi = xK)?”is well
posed.

In many cases the problem of model selection can be reduced to the comparison of two nested
models, as the larger problem can be written as a sequence of such comparisons. We thus consider
the question of the inclusion of X2 in the linear regression

y = X1β1 +X2β2 + e,

where X1 is n× k1 and X2 is n× k2. This is equivalent to the comparison of the two models

M1 : y = X1β1 + e, E (e |X1,X2) = 0

M2 : y = X1β1 +X2β2 + e, E (e |X1,X2) = 0.

Note thatM1 ⊂M2. To be concrete, we say thatM2 is true if β2 6= 0.
To fix notation, models 1 and 2 are estimated by OLS, with residual vectors ê1 and ê2, estimated

variances σ̂2
1 and σ̂

2
2, etc., respectively. To simplify some of the statistical discussion, we will on

occasion use the homoskedasticity assumption E
(
e2
i | x1i,x2i

)
= σ2.

A model selection procedure is a data-dependent rule which selects one of the two models. We
can write this as M̂. There are many possible desirable properties for a model selection procedure.
One useful property is consistency, that it selects the true model with probability one if the sample
is suffi ciently large. A model selection procedure is consistent if

P
(
M̂ =M1 | M1

)
→ 1

P
(
M̂ =M2 | M2

)
→ 1

However, this rule only makes sense when the true model is finite dimensional. If the truth is
infinite dimensional, it is more appropriate to view model selection as determining the best finite
sample approximation.
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A common approach to model selection is to base the decision on a statistical test such as
the Wald Wn. The model selection rule is as follows. For some critical level α, let cα satisfy
P
(
χ2
k2
> cα

)
= α. Then selectM1 if Wn ≤ cα, else selectM2.

A major problem with this approach is that the critical level α is indeterminate. The reasoning
which helps guide the choice of α in hypothesis testing (controlling Type I error) is not relevant for

model selection. That is, if α is set to be a small number, then P
(
M̂ =M1 | M1

)
≈ 1 − α but

P
(
M̂ =M2 | M2

)
could vary dramatically, depending on the sample size, etc. Another problem is

that if α is held fixed, then this model selection procedure is inconsistent, as P
(
M̂ =M1 | M1

)
→

1− α < 1.
Another common approach to model selection is to use a selection criterion. One popular choice

is the Akaike Information Criterion (AIC). The AIC under normality for model m is

AICm = log
(
σ̂2
m

)
+ 2

km
n
. (7.14)

where σ̂2
m is the variance estimate for model m, and km is the number of coeffi cients in the model.

The AIC can be derived as an estimate of the KullbackLeibler information distance K(M) =
E (log f(y |X)− log f(y |X,M)) between the true density and the model density. The rule is
to select M1 if AIC1 < AIC2, else select M2. AIC selection is inconsistent, as the rule tends to
overfit. Indeed, since underM1,

LRn = n
(
log σ̂2

1 − log σ̂2
2

)
'Wn

d−→ χ2
k2 , (7.15)

then

P
(
M̂ =M1 | M1

)
= P (AIC1 < AIC2 | M1)

= P
(

log(σ̂2
1) + 2

k1

n
< log(σ̂2

2) + 2
k1 + k2

n
| M1

)
= P (LRn < 2k2 | M1)

→ P
(
χ2
k2 < 2k2

)
< 1.

While many criterions similar to the AIC have been proposed, the most popular is one proposed
by Schwarz based on Bayesian arguments. His criterion, known as the BIC, is

BICm = log
(
σ̂2
m

)
+ log(n)

km
n
. (7.16)

Since log(n) > 2 (if n > 8), the BIC places a larger penalty than the AIC on the number of
estimated parameters and is more parsimonious.

In contrast to the AIC, BIC model selection is consistent. Indeed, since (7.15) holds underM1,

LRn
log(n)

p−→ 0,

so

P
(
M̂ =M1 | M1

)
= P (BIC1 < BIC2 | M1)

= P (LRn < log(n)k2 | M1)

= P
(
LRn

log(n)
< k2 | M1

)
→ P (0 < k2) = 1.
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Also underM2, one can show that
LRn

log(n)

p−→∞,

thus

P
(
M̂ =M2 | M2

)
= P

(
LRn

log(n)
> k2 | M2

)
→ 1.

We have discussed model selection between two models. The methods extend readily to the
issue of selection among multiple regressors. The general problem is the model

yi = β1x1i + β2x2i + · · ·+ βKxKi + ei, E (ei | xi) = 0

and the question is which subset of the coeffi cients are non-zero (equivalently, which regressors
enter the regression).

There are two leading cases: ordered regressors and unordered.
In the ordered case, the models are

M1 : β1 6= 0, β2 = β3 = · · · = βK = 0

M2 : β1 6= 0, β2 6= 0, β3 = · · · = βK = 0

...

MK : β1 6= 0, β2 6= 0, . . . , βK 6= 0.

which are nested. The AIC selection criteria estimates the K models by OLS, stores the residual
variance σ̂2 for each model, and then selects the model with the lowest AIC (7.14). Similarly for
the BIC, selecting based on (7.16).

In the unordered case, a model consists of any possible subset of the regressors {x1i, ..., xKi},
and the AIC or BIC in principle can be implemented by estimating all possible subset models.
However, there are 2K such models, which can be a very large number. For example, 210 = 1024,
and 220 = 1, 048, 576. In the latter case, a full-blown implementation of the BIC selection criterion
would seem computationally prohibitive.
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Exercises

Exercise 7.1 The data file cps78.dat contains 550 observations on 20 variables taken from the
May 1978 current population survey. Variables are listed in the file cps78.pdf. The goal of the
exercise is to estimate a model for the log of earnings (variable LNWAGE) as a function of the
conditioning variables.

(a) Start by an OLS regression of LNWAGE on the other variables. Report coeffi cient estimates
and standard errors.

(b) Consider augmenting the model by squares and/or cross-products of the conditioning vari-
ables. Estimate your selected model and report the results.

(c) Are there any variables which seem to be unimportant as a determinant of wages? You may
re-estimate the model without these variables, if desired.

(d) Test whether the error variance is different for men and women. Interpret.

(e) Test whether the error variance is different for whites and nonwhites. Interpret.

(f) Construct a model for the conditional variance. Estimate such a model, test for general
heteroskedasticity and report the results.

(g) Using this model for the conditional variance, re-estimate the model from part (c) using
FGLS. Report the results.

(h) Do the OLS and FGLS estimates differ greatly? Note any interesting differences.

(i) Compare the estimated standard errors. Note any interesting differences.

Exercise 7.2 In the homoskedastic regression model y = Xβ + e with E(ei | xi) = 0 and E(e2
i |

xi) = σ2, suppose β̂ is the OLS estimate of β with covariance matrix V̂ , based on a sample of
size n. Let σ̂2 be the estimate of σ2. You wish to forecast an out-of-sample value of yn+1 given
that xn+1 = x. Thus the available information is the sample (y,X), the estimates (β̂, V̂ , σ̂2), the
residuals ê, and the out-of-sample value of the regressors, xn+1.

(a) Find a point forecast of yn+1.

(b) Find an estimate of the variance of this forecast.

Exercise 7.3 Suppose that yi = g(xi,θ)+ei with E (ei | xi) = 0, θ̂ is the NLLS estimator, and V̂ is

the estimate of var
(
θ̂
)
. You are interested in the conditional mean function E (yi | xi = x) = g(x)

at some x. Find an asymptotic 95% confidence interval for g(x).

Exercise 7.4 For any predictor g(xi) for yi, the mean absolute error (MAE) is

E |yi − g(xi)| .

Show that the function g(x) which minimizes the MAE is the conditional median m (x) = med(yi |
xi).

Exercise 7.5 Define
g(u) = τ − 1 (u < 0)

where 1 (·) is the indicator function (takes the value 1 if the argument is true, else equals zero).
Let θ satisfy Eg(yi − θ) = 0. Is θ a quantile of the distribution of yi?
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Exercise 7.6 Verify equation (7.11).

Exercise 7.7 In Exercise 6.7, you estimated a cost function on a cross-section of electric companies.
The equation you estimated was

log TCi = β1 + β2 logQi + β3 logPLi + β4 logPKi + β5 logPFi + ei. (7.17)

(a) Following Nerlove, add the variable (logQi)
2 to the regression. Do so. Assess the merits of

this new specification using (i) a hypothesis test; (ii) AIC criterion; (iii) BIC criterion. Do
you agree with this modification?

(b) Now try a non-linear specification. Consider model (7.17) plus the extra term β6zi, where

zi = logQi (1 + exp (− (logQi − β7)))−1 .

In addition, impose the restriction β3 + β4 + β5 = 1. This model is called a smooth threshold
model. For values of logQi much below β7, the variable logQi has a regression slope of β2.
For values much above β7, the regression slope is β2 + β6, and the model imposes a smooth
transition between these regimes. The model is non-linear because of the parameter β7.

The model works best when β7 is selected so that several values (in this example, at least
10 to 15) of logQi are both below and above β7. Examine the data and pick an appropriate
range for β7.

(c) Estimate the model by non-linear least squares. I recommend the concentration method:
Pick 10 (or more or you like) values of β7 in this range. For each value of β7, calculate zi
and estimate the model by OLS. Record the sum of squared errors, and find the value of β7

for which the sum of squared errors is minimized.

(d) Calculate standard errors for all the parameters (β1, ..., β7).
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Chapter 8

The Bootstrap

8.1 Definition of the Bootstrap

Let F denote a distribution function for the population of observations (yi,xi) . Let

Tn = Tn ((y1,x1) , ..., (yn,xn) , F )

be a statistic of interest, for example an estimator θ̂ or a t-statistic
(
θ̂ − θ

)
/s(θ̂). Note that we

write Tn as possibly a function of F . For example, the t-statistic is a function of the parameter θ
which itself is a function of F.

The exact CDF of Tn when the data are sampled from the distribution F is

Gn(u, F ) = P(Tn ≤ u | F )

In general, Gn(u, F ) depends on F, meaning that G changes as F changes.
Ideally, inference would be based on Gn(u, F ). This is generally impossible since F is unknown.
Asymptotic inference is based on approximating Gn(u, F ) with G(u, F ) = limn→∞Gn(u, F ).

When G(u, F ) = G(u) does not depend on F, we say that Tn is asymptotically pivotal and use the
distribution function G(u) for inferential purposes.

In a seminal contribution, Efron (1979) proposed the bootstrap, which makes a different ap-
proximation. The unknown F is replaced by a consistent estimate Fn (one choice is discussed in
the next section). Plugged into Gn(u, F ) we obtain

G∗n(u) = Gn(u, Fn). (8.1)

We call G∗n the bootstrap distribution. Bootstrap inference is based on G
∗
n(u).

Let (y∗i ,x
∗
i ) denote random variables with the distribution Fn. A random sample from this dis-

tribution is called the bootstrap data. The statistic T ∗n = Tn ((y∗1,x
∗
1) , ..., (y∗n,x

∗
n) , Fn) constructed

on this sample is a random variable with distribution G∗n. That is, P(T ∗n ≤ u) = G∗n(u). We call T ∗n
the bootstrap statistic. The distribution of T ∗n is identical to that of Tn when the true CDF of Fn
rather than F.

The bootstrap distribution is itself random, as it depends on the sample through the estimator
Fn.

In the next sections we describe computation of the bootstrap distribution.

8.2 The Empirical Distribution Function

Recall that F (y,x) = P (yi ≤ y,xi ≤ x) = E (1 (yi ≤ y) 1 (xi ≤ x)) , where 1(·) is the indicator
function. This is a population moment. The method of moments estimator is the corresponding
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sample moment:

Fn (y,x) =
1

n

n∑
i=1

1 (yi ≤ y) 1 (xi ≤ x) . (8.2)

Fn (y,x) is called the empirical distribution function (EDF). Fn is a nonparametric estimate of F.
Note that while F may be either discrete or continuous, Fn is by construction a step function.

The EDF is a consistent estimator of the CDF. To see this, note that for any (y,x), 1 (yi ≤ y) 1 (xi ≤ x)

is an iid random variable with expectation F (y,x). Thus by theWLLN (Theorem 5.2.1), Fn (y,x)
p−→

F (y,x) . Furthermore, by the CLT (Theorem C.2.1),

√
n (Fn (y,x)− F (y,x))

d−→ N (0, F (y,x) (1− F (y,x))) .

To see the effect of sample size on the EDF, in the Figure below, I have plotted the EDF and
true CDF for three random samples of size n = 25, 50, 100, and 500. The random draws are from
the N (0, 1) distribution. For n = 25, the EDF is only a crude approximation to the CDF, but the
approximation appears to improve for the large n. In general, as the sample size gets larger, the
EDF step function gets uniformly close to the true CDF.

Figure 8.1: Empirical Distribution Functions

The EDF is a valid discrete probability distribution which puts probability mass 1/n at each
pair (yi,xi), i = 1, ..., n. Notationally, it is helpful to think of a random pair (y∗i ,x

∗
i ) with the

distribution Fn. That is,
P(y∗i ≤ y,x∗i ≤ x) = Fn(y,x).

We can easily calculate the moments of functions of (y∗i ,x
∗
i ) :

Eh (y∗i ,x
∗
i ) =

∫
h(y,x)dFn(y,x)

=
n∑
i=1

h (yi,xi)P (y∗i = yi,x
∗
i = xi)

=
1

n

n∑
i=1

h (yi,xi) ,

the empirical sample average.
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8.3 Nonparametric Bootstrap

The nonparametric bootstrap is obtained when the bootstrap distribution (8.1) is defined
using the EDF (8.2) as the estimate Fn of F.

Since the EDF Fn is a multinomial (with n support points), in principle the distributionG∗n could
be calculated by direct methods. However, as there are 2n possible samples {(y∗1,x∗1) , ..., (y∗n,x

∗
n)},

such a calculation is computationally infeasible. The popular alternative is to use simulation to ap-
proximate the distribution. The algorithm is identical to our discussion of Monte Carlo simulation,
with the following points of clarification:

• The sample size n used for the simulation is the same as the sample size.

• The random vectors (y∗i ,x
∗
i ) are drawn randomly from the empirical distribution. This is

equivalent to sampling a pair (yi,xi) randomly from the sample.

The bootstrap statistic T ∗n = Tn ((y∗1,x
∗
1) , ..., (y∗n,x

∗
n) , Fn) is calculated for each bootstrap sam-

ple. This is repeated B times. B is known as the number of bootstrap replications. A theory
for the determination of the number of bootstrap replications B has been developed by Andrews
and Buchinsky (2000). It is desirable for B to be large, so long as the computational costs are
reasonable. B = 1000 typically suffi ces.

When the statistic Tn is a function of F, it is typically through dependence on a parameter.

For example, the t-ratio
(
θ̂ − θ

)
/s(θ̂) depends on θ. As the bootstrap statistic replaces F with

Fn, it similarly replaces θ with θn, the value of θ implied by Fn. Typically θn = θ̂, the parameter
estimate. (When in doubt use θ̂.)

Sampling from the EDF is particularly easy. Since Fn is a discrete probability distribution
putting probability mass 1/n at each sample point, sampling from the EDF is equivalent to random
sampling a pair (yi,xi) from the observed data with replacement. In consequence, a bootstrap
sample {(y∗1,x∗1) , ..., (y∗n,x

∗
n)} will necessarily have some ties and multiple values, which is generally

not a problem.

8.4 Bootstrap Estimation of Bias and Variance

The bias of θ̂ is τn = E(θ̂ − θ0). Let Tn(θ) = θ̂ − θ. Then τn = E(Tn(θ0)). The bootstrap
counterparts are θ̂

∗
= θ̂((y∗1,x

∗
1) , ..., (y∗n,x

∗
n)) and T ∗n = θ̂

∗ − θn = θ̂
∗ − θ̂. The bootstrap estimate

of τn is
τ∗n = E(T ∗n).

If this is calculated by the simulation described in the previous section, the estimate of τ∗n is

τ̂∗n =
1

B

B∑
b=1

T ∗nb

=
1

B

B∑
b=1

θ̂
∗
b − θ̂

= θ̂
∗ − θ̂.

If θ̂ is biased, it might be desirable to construct a biased-corrected estimator (one with reduced
bias). Ideally, this would be

θ̃ = θ̂ − τn,
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but τn is unknown. The (estimated) bootstrap biased-corrected estimator is

θ̃
∗

= θ̂ − τ̂∗n
= θ̂ − (θ̂

∗ − θ̂)

= 2θ̂ − θ̂∗.

Note, in particular, that the biased-corrected estimator is not θ̂
∗
. Intuitively, the bootstrap makes

the following experiment. Suppose that θ̂ is the truth. Then what is the average value of θ̂

calculated from such samples? The answer is θ̂
∗
. If this is lower than θ̂, this suggests that the

estimator is downward-biased, so a biased-corrected estimator of θ should be larger than θ̂, and the

best guess is the difference between θ̂ and θ̂
∗
. Similarly if θ̂

∗
is higher than θ̂, then the estimator is

upward-biased and the biased-corrected estimator should be lower than θ̂.
Let Tn = θ̂. The variance of θ̂ is

Vn = E(Tn − ETn)2.

Let T ∗n = θ̂
∗
. It has variance

V ∗n = E(T ∗n − ET ∗n)2.

The simulation estimate is

V̂ ∗n =
1

B

B∑
b=1

(
θ̂
∗
b − θ̂

∗)2

.

A bootstrap standard error for θ̂ is the square root of the bootstrap estimate of variance,

s∗(θ̂) =

√
V̂ ∗n .

While this standard error may be calculated and reported, it is not clear if it is useful. The
primary use of asymptotic standard errors is to construct asymptotic confidence intervals, which are
based on the asymptotic normal approximation to the t-ratio. However, the use of the bootstrap
presumes that such asymptotic approximations might be poor, in which case the normal approxi-
mation is suspected. It appears superior to calculate bootstrap confidence intervals, and we turn
to this next.

8.5 Percentile Intervals

For a distribution function Gn(u, F ), let qn(α, F ) denote its quantile function. This is the
function which solves

Gn(qn(α, F ), F ) = α.

[When Gn(u, F ) is discrete, qn(α, F ) may be non-unique, but we will ignore such complications.]
Let qn(α) denote the quantile function of the true sampling distribution, and q∗n(α) = qn(α, Fn)
denote the quantile function of the bootstrap distribution. Note that this function will change
depending on the underlying statistic Tn whose distribution is Gn.

Let Tn = θ̂, an estimate of a parameter of interest. In (1− α)% of samples, θ̂ lies in the region
[qn(α/2), qn(1− α/2)]. This motivates a confidence interval proposed by Efron:

C1 = [q∗n(α/2), q∗n(1− α/2)].

This is often called the percentile confidence interval.
Computationally, the quantile q∗n(α) is estimated by q̂∗n(α), the α’th sample quantile of the

simulated statistics {T ∗n1, ..., T
∗
nB}, as discussed in the section on Monte Carlo simulation. The

(1− α)% Efron percentile interval is then [q̂∗n(α/2), q̂∗n(1− α/2)].
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The interval C1 is a popular bootstrap confidence interval often used in empirical practice. This
is because it is easy to compute, simple to motivate, was popularized by Efron early in the history
of the bootstrap, and also has the feature that it is translation invariant. That is, if we define
φ = f(θ) as the parameter of interest for a monotonically increasing function f, then percentile
method applied to this problem will produce the confidence interval [f(q∗n(α/2)), f(q∗n(1−α/2))],
which is a naturally good property.

However, as we show now, C1 is in a deep sense very poorly motivated.
It will be useful if we introduce an alternative definition C1. Let Tn(θ) = θ̂ − θ and let qn(α)

be the quantile function of its distribution. (These are the original quantiles, with θ subtracted.)
Then C1 can alternatively be written as

C1 = [θ̂ + q∗n(α/2), θ̂ + q∗n(1− α/2)].

This is a bootstrap estimate of the “ideal”confidence interval

C0
1 = [θ̂ + qn(α/2), θ̂ + qn(1− α/2)].

The latter has coverage probability

P
(
θ0 ∈ C0

1

)
= P

(
θ̂ + qn(α/2) ≤ θ0 ≤ θ̂ + qn(1− α/2)

)
= P

(
−qn(1− α/2) ≤ θ̂ − θ0 ≤ −qn(α/2)

)
= Gn(−qn(α/2), F0)−Gn(−qn(1− α/2), F0)

which generally is not 1−α! There is one important exception. If θ̂−θ0 has a symmetric distribution,
then Gn(−u, F0) = 1−Gn(u, F0), so

P
(
θ0 ∈ C0

1

)
= Gn(−qn(α/2), F0)−Gn(−qn(1− α/2), F0)

= (1−Gn(qn(α/2), F0))− (1−Gn(qn(1− α/2), F0))

=
(

1− α

2

)
−
(

1−
(

1− α

2

))
= 1− α

and this idealized confidence interval is accurate. Therefore, C0
1 and C1 are designed for the case

that θ̂ has a symmetric distribution about θ0.
When θ̂ does not have a symmetric distribution, C1 may perform quite poorly.
However, by the translation invariance argument presented above, it also follows that if there

exists some monotonically increasing transformation f(·) such that f(θ̂) is symmetrically distributed
about f(θ0), then the idealized percentile bootstrap method will be accurate.

Based on these arguments, many argue that the percentile interval should not be used unless
the sampling distribution is close to unbiased and symmetric.

The problems with the percentile method can be circumvented, at least in principle, by an
alternative method.

Let Tn(θ) = θ̂ − θ. Then

1− α = P (qn(α/2) ≤ Tn(θ0) ≤ qn(1− α/2))

= Pθ̂ − qn(1− α/2) ≤ θ0 ≤ θ̂ − qn(α/2),

so an exact (1− α)% confidence interval for θ0 would be

C0
2 = [θ̂ − qn(1− α/2), θ̂ − qn(α/2)].

This motivates a bootstrap analog

C2 = [θ̂ − q∗n(1− α/2), θ̂ − q∗n(α/2)].
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Notice that generally this is very different from the Efron interval C1! They coincide in the special
case that G∗n(u) is symmetric about θ̂, but otherwise they differ.

Computationally, this interval can be estimated from a bootstrap simulation by sorting the

bootstrap statistics T ∗n =
(
θ̂
∗ − θ̂

)
, which are centered at the sample estimate θ̂. These are sorted

to yield the quantile estimates q̂∗n(.025) and q̂∗n(.975). The 95% confidence interval is then [θ̂ −
q̂∗n(.975), θ̂ − q̂∗n(.025)].

This confidence interval is discussed in most theoretical treatments of the bootstrap, but is not
widely used in practice.

8.6 Percentile-t Equal-Tailed Interval

Suppose we want to test H0 : θ = θ0 against H1 : θ < θ0 at size α. We would set Tn(θ) =(
θ̂ − θ

)
/s(θ̂) and reject H0 in favor of H1 if Tn(θ0) < c, where c would be selected so that

P (Tn(θ0) < c) = α.

Thus c = qn(α). Since this is unknown, a bootstrap test replaces qn(α) with the bootstrap estimate
q∗n(α), and the test rejects if Tn(θ0) < q∗n(α).

Similarly, if the alternative is H1 : θ > θ0, the bootstrap test rejects if Tn(θ0) > q∗n(1− α).
Computationally, these critical values can be estimated from a bootstrap simulation by sorting

the bootstrap t-statistics T ∗n =
(
θ̂
∗ − θ̂

)
/s(θ̂

∗
). Note, and this is important, that the bootstrap test

statistic is centered at the estimate θ̂, and the standard error s(θ̂
∗
) is calculated on the bootstrap

sample. These t-statistics are sorted to find the estimated quantiles q̂∗n(α) and/or q̂∗n(1− α).

Let Tn(θ) =
(
θ̂ − θ

)
/s(θ̂). Then taking the intersection of two one-sided intervals,

1− α = P (qn(α/2) ≤ Tn(θ0) ≤ qn(1− α/2))

= P
(
qn(α/2) ≤

(
θ̂ − θ0

)
/s(θ̂) ≤ qn(1− α/2)

)
= P

(
θ̂ − s(θ̂)qn(1− α/2) ≤ θ0 ≤ θ̂ − s(θ̂)qn(α/2)

)
,

so an exact (1− α)% confidence interval for θ0 would be

C0
3 = [θ̂ − s(θ̂)qn(1− α/2), θ̂ − s(θ̂)qn(α/2)].

This motivates a bootstrap analog

C3 = [θ̂ − s(θ̂)q∗n(1− α/2), θ̂ − s(θ̂)q∗n(α/2)].

This is often called a percentile-t confidence interval. It is equal-tailed or central since the probability
that θ0 is below the left endpoint approximately equals the probability that θ0 is above the right
endpoint, each α/2.

Computationally, this is based on the critical values from the one-sided hypothesis tests, dis-
cussed above.

8.7 Symmetric Percentile-t Intervals

Suppose we want to test H0 : θ = θ0 against H1 : θ 6= θ0 at size α. We would set Tn(θ) =(
θ̂ − θ

)
/s(θ̂) and reject H0 in favor of H1 if |Tn(θ0)| > c, where c would be selected so that

P (|Tn(θ0)| > c) = α.
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Note that

P (|Tn(θ0)| < c) = P (−c < Tn(θ0) < c)

= Gn(c)−Gn(−c)
≡ Gn(c),

which is a symmetric distribution function. The ideal critical value c = qn(α) solves the equation

Gn(qn(α)) = 1− α.

Equivalently, qn(α) is the 1− α quantile of the distribution of |Tn(θ0)| .
The bootstrap estimate is q∗n(α), the 1 − α quantile of the distribution of |T ∗n | , or the number

which solves the equation

G
∗
n(q∗n(α)) = G∗n(q∗n(α))−G∗n(−q∗n(α)) = 1− α.

Computationally, q∗n(α) is estimated from a bootstrap simulation by sorting the bootstrap t-

statistics |T ∗n | =
∣∣∣θ̂∗ − θ̂∣∣∣ /s(θ̂∗), and taking the upper α% quantile. The bootstrap test rejects if

|Tn(θ0)| > q∗n(α).
Let

C4 = [θ̂ − s(θ̂)q∗n(α), θ̂ + s(θ̂)q∗n(α)],

where q∗n(α) is the bootstrap critical value for a two-sided hypothesis test. C4 is called the symmetric
percentile-t interval. It is designed to work well since

P (θ0 ∈ C4) = P
(
θ̂ − s(θ̂)q∗n(α) ≤ θ0 ≤ θ̂ + s(θ̂)q∗n(α)

)
= P (|Tn(θ0)| < q∗n(α))

' P (|Tn(θ0)| < qn(α))

= 1− α.

If θ is a vector, then to test H0 : θ = θ0 against H1 : θ 6= θ0 at size α, we would use a Wald
statistic

Wn(θ) = n
(
θ̂ − θ

)′
V̂
−1
θ

(
θ̂ − θ

)
or some other asymptotically chi-square statistic. Thus here Tn(θ) = Wn(θ). The ideal test rejects
if Wn ≥ qn(α), where qn(α) is the (1− α)% quantile of the distribution of Wn. The bootstrap test
rejects if Wn ≥ q∗n(α), where q∗n(α) is the (1− α)% quantile of the distribution of

W ∗n = n
(
θ̂
∗ − θ̂

)′
V̂
∗−1
θ

(
θ̂
∗ − θ̂

)
.

Computationally, the critical value q∗n(α) is found as the quantile from simulated values of W ∗n .

Note in the simulation that the Wald statistic is a quadratic form in
(
θ̂
∗ − θ̂

)
, not

(
θ̂
∗ − θ0

)
.

[This is a typical mistake made by practitioners.]

8.8 Asymptotic Expansions

Let Tn ∈ R be a statistic such that

Tn
d−→ N(0, σ2). (8.3)

In some cases, such as when Tn is a t-ratio, then σ2 = 1. In other cases σ2 is unknown. Equivalently,
writing Tn ∼ Gn(u, F ) then

lim
n→∞

Gn(u, F ) = Φ
(u
σ

)
,
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or
Gn(u, F ) = Φ

(u
σ

)
+ o (1) . (8.4)

While (8.4) says that Gn converges to Φ
(
u
σ

)
as n → ∞, it says nothing, however, about the rate

of convergence, or the size of the divergence for any particular sample size n. A better asymptotic
approximation may be obtained through an asymptotic expansion.

The following notation will be helpful. Let an be a sequence.

Definition 8.8.1 an = o(1) if an → 0 as n→∞

Definition 8.8.2 an = O(1) if |an| is uniformly bounded.

Definition 8.8.3 an = o(n−r) if nr |an| → 0 as n→∞.

Basically, an = O(n−r) if it declines to zero like n−r.
We say that a function g(u) is even if g(−u) = g(u), and a function h(u) is odd if h(−u) = −h(u).

The derivative of an even function is odd, and vice-versa.

Theorem 8.8.1 Under regularity conditions and (8.3),

Gn(u, F ) = Φ
(u
σ

)
+

1

n1/2
g1(u, F ) +

1

n
g2(u, F ) +O(n−3/2)

uniformly over u, where g1 is an even function of u, and g2 is an odd
function of u. Moreover, g1 and g2 are differentiable functions of u and
continuous in F relative to the supremum norm on the space of distribution
functions.

The expansion in Theorem 8.8.1 is often called an Edgeworth expansion.
We can interpret Theorem 8.8.1 as follows. First, Gn(u, F ) converges to the normal limit at

rate n1/2. To a second order of approximation,

Gn(u, F ) ≈ Φ
(u
σ

)
+ n−1/2g1(u, F ).

Since the derivative of g1 is odd, the density function is skewed. To a third order of approximation,

Gn(u, F ) ≈ Φ
(u
σ

)
+ n−1/2g1(u, F ) + n−1g2(u, F )

which adds a symmetric non-normal component to the approximate density (for example, adding
leptokurtosis).

[Side Note: When Tn =
√
n
(
X̄n − µ

)
/σ, a standardized sample mean, then

g1(u) = −1

6
κ3

(
u2 − 1

)
φ(u)

g2(u) = −
(

1

24
κ4

(
u3 − 3u

)
+

1

72
κ2

3

(
u5 − 10u3 + 15u

))
φ(u)
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where φ(u) is the standard normal pdf, and

κ3 = E (X − µ)3 /σ3

κ4 = E (X − µ)4 /σ4 − 3

the standardized skewness and excess kurtosis of the distribution of X. Note that when κ3 = 0
and κ4 = 0, then g1 = 0 and g2 = 0, so the second-order Edgeworth expansion corresponds to the
normal distribution.]

Francis Edgeworth

Francis Ysidro Edgeworth (1845-1926) of Ireland, founding editor of the Economic Journal,
was a profound economic and statistical theorist, developing the theories of indifference
curves and asymptotic expansions. He also could be viewed as the first econometrician due
to his early use of mathematical statistics in the study of economic data.

8.9 One-Sided Tests

Using the expansion of Theorem 8.8.1, we can assess the accuracy of one-sided hypothesis tests
and confidence regions based on an asymptotically normal t-ratio Tn. An asymptotic test is based
on Φ(u).

To the second order, the exact distribution is

P (Tn < u) = Gn(u, F0) = Φ(u) +
1

n1/2
g1(u, F0) +O(n−1)

since σ = 1. The difference is

Φ(u)−Gn(u, F0) =
1

n1/2
g1(u, F0) +O(n−1)

= O(n−1/2),

so the order of the error is O(n−1/2).
A bootstrap test is based on G∗n(u), which from Theorem 8.8.1 has the expansion

G∗n(u) = Gn(u, Fn) = Φ(u) +
1

n1/2
g1(u, Fn) +O(n−1).

Because Φ(u) appears in both expansions, the difference between the bootstrap distribution and
the true distribution is

G∗n(u)−Gn(u, F0) =
1

n1/2
(g1(u, Fn)− g1(u, F0)) +O(n−1).

Since Fn converges to F at rate
√
n, and g1 is continuous with respect to F, the difference

(g1(u, Fn)− g1(u, F0)) converges to 0 at rate
√
n. Heuristically,

g1(u, Fn)− g1(u, F0) ≈ ∂

∂F
g1(u, F0) (Fn − F0)

= O(n−1/2),

The “derivative” ∂
∂F g1(u, F ) is only heuristic, as F is a function. We conclude that

G∗n(u)−Gn(u, F0) = O(n−1),
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or
P (T ∗n ≤ u) = P (Tn ≤ u) +O(n−1),

which is an improved rate of convergence over the asymptotic test (which converged at rate
O(n−1/2)). This rate can be used to show that one-tailed bootstrap inference based on the t-
ratio achieves a so-called asymptotic refinement —the Type I error of the test converges at a faster
rate than an analogous asymptotic test.

8.10 Symmetric Two-Sided Tests

If a random variable y has distribution function H(u) = P(y ≤ u), then the random variable |y|
has distribution function

H(u) = H(u)−H(−u)

since

P (|y| ≤ u) = P (−u ≤ y ≤ u)

= P (y ≤ u)− P (y ≤ −u)

= H(u)−H(−u).

For example, if Z ∼ N(0, 1), then |Z| has distribution function

Φ(u) = Φ(u)− Φ(−u) = 2Φ(u)− 1.

Similarly, if Tn has exact distribution Gn(u, F ), then |Tn| has the distribution function

Gn(u, F ) = Gn(u, F )−Gn(−u, F ).

A two-sided hypothesis test rejects H0 for large values of |Tn| . Since Tn
d−→ Z, then |Tn|

d−→
|Z| ∼ Φ. Thus asymptotic critical values are taken from the Φ distribution, and exact critical values
are taken from the Gn(u, F0) distribution. From Theorem 8.8.1, we can calculate that

Gn(u, F ) = Gn(u, F )−Gn(−u, F )

=

(
Φ(u) +

1

n1/2
g1(u, F ) +

1

n
g2(u, F )

)
−
(

Φ(−u) +
1

n1/2
g1(−u, F ) +

1

n
g2(−u, F )

)
+O(n−3/2)

= Φ(u) +
2

n
g2(u, F ) +O(n−3/2), (8.5)

where the simplifications are because g1 is even and g2 is odd. Hence the difference between the
asymptotic distribution and the exact distribution is

Φ(u)−Gn(u, F0) =
2

n
g2(u, F0) +O(n−3/2) = O(n−1).

The order of the error is O(n−1).
Interestingly, the asymptotic two-sided test has a better coverage rate than the asymptotic

one-sided test. This is because the first term in the asymptotic expansion, g1, is an even function,
meaning that the errors in the two directions exactly cancel out.

Applying (8.5) to the bootstrap distribution, we find

G
∗
n(u) = Gn(u, Fn) = Φ(u) +

2

n
g2(u, Fn) +O(n−3/2).
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Thus the difference between the bootstrap and exact distributions is

G
∗
n(u)−Gn(u, F0) =

2

n
(g2(u, Fn)− g2(u, F0)) +O(n−3/2)

= O(n−3/2),

the last equality because Fn converges to F0 at rate
√
n, and g2 is continuous in F. Another way

of writing this is
P (|T ∗n | < u) = P (|Tn| < u) +O(n−3/2)

so the error from using the bootstrap distribution (relative to the true unknown distribution) is
O(n−3/2). This is in contrast to the use of the asymptotic distribution, whose error is O(n−1). Thus
a two-sided bootstrap test also achieves an asymptotic refinement, similar to a one-sided test.

A reader might get confused between the two simultaneous effects. Two-sided tests have better
rates of convergence than the one-sided tests, and bootstrap tests have better rates of convergence
than asymptotic tests.

The analysis shows that there may be a trade-off between one-sided and two-sided tests. Two-
sided tests will have more accurate size (Reported Type I error), but one-sided tests might have
more power against alternatives of interest. Confidence intervals based on the bootstrap can be
asymmetric if based on one-sided tests (equal-tailed intervals) and can therefore be more informative
and have smaller length than symmetric intervals. Therefore, the choice between symmetric and
equal-tailed confidence intervals is unclear, and needs to be determined on a case-by-case basis.

8.11 Percentile Confidence Intervals

To evaluate the coverage rate of the percentile interval, set Tn =
√
n
(
θ̂ − θ0

)
. We know that

Tn
d−→ N(0, V ), which is not pivotal, as it depends on the unknown V. Theorem 8.8.1 shows that

a first-order approximation

Gn(u, F ) = Φ
(u
σ

)
+O(n−1/2),

where σ =
√
V , and for the bootstrap

G∗n(u) = Gn(u, Fn) = Φ
(u
σ

)
+O(n−1/2),

where σ̂ = V (Fn) is the bootstrap estimate of σ. The difference is

G∗n(u)−Gn(u, F0) = Φ
(u
σ

)
− Φ

(u
σ

)
+O(n−1/2)

= −φ
(u
σ

) u
σ

(σ̂ − σ) +O(n−1/2)

= O(n−1/2)

Hence the order of the error is O(n−1/2).
The good news is that the percentile-type methods (if appropriately used) can yield

√
n-

convergent asymptotic inference. Yet these methods do not require the calculation of standard
errors! This means that in contexts where standard errors are not available or are diffi cult to
calculate, the percentile bootstrap methods provide an attractive inference method.

The bad news is that the rate of convergence is disappointing. It is no better than the rate
obtained from an asymptotic one-sided confidence region. Therefore if standard errors are available,
it is unclear if there are any benefits from using the percentile bootstrap over simple asymptotic
methods.

Based on these arguments, the theoretical literature (e.g. Hall, 1992, Horowitz, 2001) tends to
advocate the use of the percentile-t bootstrap methods rather than percentile methods.
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8.12 Bootstrap Methods for Regression Models

The bootstrap methods we have discussed have set G∗n(u) = Gn(u, Fn), where Fn is the EDF.
Any other consistent estimate of F may be used to define a feasible bootstrap estimator. The
advantage of the EDF is that it is fully nonparametric, it imposes no conditions, and works in
nearly any context. But since it is fully nonparametric, it may be ineffi cient in contexts where
more is known about F. We discuss bootstrap methods appropriate for the linear regression model

yi = x′iβ + ei

E (ei | xi) = 0.

The non-parametric bootstrap resamples the observations (y∗i ,x
∗
i ) from the EDF, which implies

y∗i = x∗′i β̂ + e∗i
E (x∗i e

∗
i ) = 0

but generally
E (e∗i | x∗i ) 6= 0.

The the bootstrap distribution does not impose the regression assumption, and is thus an ineffi cient
estimator of the true distribution (when in fact the regression assumption is true.)

One approach to this problem is to impose the very strong assumption that the error εi is
independent of the regressor xi. The advantage is that in this case it is straightforward to con-
struct bootstrap distributions. The disadvantage is that the bootstrap distribution may be a poor
approximation when the error is not independent of the regressors.

To impose independence, it is suffi cient to sample the x∗i and e
∗
i independently, and then create

y∗i = x∗′i β̂ + e∗i . There are different ways to impose independence. A non-parametric method
is to sample the bootstrap errors e∗i randomly from the OLS residuals {ê1, ..., ên}. A parametric
method is to generate the bootstrap errors e∗i from a parametric distribution, such as the normal
e∗i ∼ N(0, σ̂2).

For the regressors x∗i , a nonparametric method is to sample the x
∗
i randomly from the EDF

or sample values {x1, ...,xn}. A parametric method is to sample x∗i from an estimated parametric
distribution. A third approach sets x∗i = xi. This is equivalent to treating the regressors as fixed
in repeated samples. If this is done, then all inferential statements are made conditionally on the
observed values of the regressors, which is a valid statistical approach. It does not really matter,
however, whether or not the xi are really “fixed”or random.

The methods discussed above are unattractive for most applications in econometrics because
they impose the stringent assumption that xi and ei are independent. Typically what is desirable
is to impose only the regression condition E (ei | xi) = 0. Unfortunately this is a harder problem.

One proposal which imposes the regression condition without independence is the Wild Boot-
strap. The idea is to construct a conditional distribution for e∗i so that

E (e∗i | xi) = 0

E
(
e∗2i | xi

)
= ê2

i

E
(
e∗3i | xi

)
= ê3

i .

A conditional distribution with these features will preserve the main important features of the data.
This can be achieved using a two-point distribution of the form

P

(
e∗i =

(
1 +
√

5

2

)
êi

)
=

√
5− 1

2
√

5

P

(
e∗i =

(
1−
√

5

2

)
êi

)
=

√
5 + 1

2
√

5

For each xi, you sample e∗i using this two-point distribution.
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Exercises

Exercise 8.1 Let Fn(x) denote the EDF of a random sample. Show that
√
n (Fn(x)− F0(x))

d−→ N (0, F0(x) (1− F0(x))) .

Exercise 8.2 Take a random sample {y1, ..., yn} with µ = Eyi and σ2 = var (yi) . Let the statistic
of interest be the sample mean Tn = yn. Find the population moments ETn and var (Tn) . Let
{y∗1, ..., y∗n} be a random sample from the empirical distribution function and let T ∗n = y∗n be its
sample mean. Find the bootstrap moments ET ∗n and var (T ∗n) .

Exercise 8.3 Consider the following bootstrap procedure for a regression of yi on xi. Let β̂ denote
the OLS estimator from the regression of y on X, and ê = y −Xβ̂ the OLS residuals.

(a) Draw a random vector (x∗, e∗) from the pair {(xi, êi) : i = 1, ..., n} . That is, draw a random
integer i′ from [1, 2, ..., n], and set x∗ = xi′ and e∗ = êi′ . Set y∗ = x∗′β̂ + e∗. Draw (with
replacement) n such vectors, creating a random bootstrap data set (y∗,X∗).

(b) Regress y∗ on X∗, yielding OLS estimates β̂
∗
and any other statistic of interest.

Show that this bootstrap procedure is (numerically) identical to the non-parametric boot-
strap.

Exercise 8.4 Consider the following bootstrap procedure. Using the non-parametric bootstrap,
generate bootstrap samples, calculate the estimate θ̂

∗
on these samples and then calculate

T ∗n = (θ̂
∗ − θ̂)/s(θ̂),

where s(θ̂) is the standard error in the original data. Let q∗n(.05) and q∗n(.95) denote the 5% and
95% quantiles of T ∗n , and define the bootstrap confidence interval

C =
[
θ̂ − s(θ̂)q∗n(.95), θ̂ − s(θ̂)q∗n(.05)

]
.

Show that C exactly equals the Alternative percentile interval (not the percentile-t interval).

Exercise 8.5 You want to test H0 : θ = 0 against H1 : θ > 0. The test for H0 is to reject if
Tn = θ̂/s(θ̂) > c where c is picked so that Type I error is α. You do this as follows. Using the non-
parametric bootstrap, you generate bootstrap samples, calculate the estimates θ̂

∗
on these samples

and then calculate
T ∗n = θ̂

∗
/s(θ̂

∗
).

Let q∗n(.95) denote the 95% quantile of T ∗n . You replace c with q∗n(.95), and thus reject H0 if
Tn = θ̂/s(θ̂) > q∗n(.95). What is wrong with this procedure?

Exercise 8.6 Suppose that in an application, θ̂ = 1.2 and s(θ̂) = .2. Using the non-parametric
bootstrap, 1000 samples are generated from the bootstrap distribution, and θ̂

∗
is calculated on each

sample. The θ̂
∗
are sorted, and the 2.5% and 97.5% quantiles of the θ̂

∗
are .75 and 1.3, respectively.

(a) Report the 95% Efron Percentile interval for θ.

(b) Report the 95% Alternative Percentile interval for θ.

(c) With the given information, can you report the 95% Percentile-t interval for θ?

Exercise 8.7 The datafile hprice1.dat contains data on house prices (sales), with variables listed
in the file hprice1.pdf. Estimate a linear regression of price on the number of bedrooms, lot
size, size of house, and the colonial dummy. Calculate 95% confidence intervals for the regression
coeffi cients using both the asymptotic normal approximation and the percentile-t bootstrap.
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Chapter 9

Generalized Method of Moments

9.1 Overidentified Linear Model

Consider the linear model

yi = x′iβ + ei

= x′1iβ1 + x′2iβ2 + ei

E (xiei) = 0

where x1i is k × 1 and x2 is r × 1 with ` = k + r. We know that without further restrictions, an
asymptotically effi cient estimator of β is the OLS estimator. Now suppose that we are given the
information that β2 = 0. Now we can write the model as

yi = x′1iβ1 + ei

E (xiei) = 0.

In this case, how should β1 be estimated? One method is OLS regression of yi on x1i alone. This
method, however, is not necessarily effi cient, as there are ` restrictions in E (xiei) = 0, while β1 is
of dimension k < `. This situation is called overidentified. There are ` − k = r more moment
restrictions than free parameters. We call r the number of overidentifying restrictions.

This is a special case of a more general class of moment condition models. Let g(y,x, z,β) be
an `× 1 function of a k × 1 parameter β with ` ≥ k such that

Eg(yi,xi, zi,β0) = 0 (9.1)

where β0 is the true value of β. In our previous example, g(y,z,β) = z·(y−x′1β). In econometrics,
this class of models are called moment condition models. In the statistics literature, these are
known as estimating equations.

As an important special case we will devote special attention to linear moment condition models,
which can be written as

yi = x′iβ + ei

E (ziei) = 0.

where the dimensions of xi and zi are k × 1 and ` × 1 , with ` ≥ k. If k = ` the model is just
identified, otherwise it is overidentified. The variables xi may be components and functions of
zi, but this is not required. This model falls in the class (9.1) by setting

g(y,x, z,β0) = z·(y − x′β) (9.2)
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9.2 GMM Estimator

Define the sample analog of (9.2)

gn(β) =
1

n

n∑
i=1

gi(β) =
1

n

n∑
i=1

zi
(
yi − x′iβ

)
=

1

n

(
Z ′y −Z ′Xβ

)
. (9.3)

The method of moments estimator for β is defined as the parameter value which sets gn(β) = 0.
This is generally not possible when ` > k, as there are more equations than free parameters. The
idea of the generalized method of moments (GMM) is to define an estimator which sets gn(β)
“close”to zero.

For some `× ` weight matrix W n > 0, let

Jn(β) = n · gn(β)′W n gn(β).

This is a non-negative measure of the “length”of the vector gn(β). For example, ifW n = I, then,
Jn(β) = n · gn(β)′gn(β) = n · ‖gn(β)‖2 , the square of the Euclidean length. The GMM estimator
minimizes Jn (β).

Definition 9.2.1 βGMM = argmin
β

Jn (β) .

Note that if k = `, then gn(β̂) = 0, and the GMM estimator is the method of moments
estimator. The first order conditions for the GMM estimator are

0 =
∂

∂β
Jn(β̂)

= 2
∂

∂β
gn(β̂)′W ngn(β̂)

= −2

(
1

n
X ′Z

)
W n

(
1

n
Z ′
(
y −Xβ̂

))
so

2
(
X ′Z

)
W n

(
Z ′X

)
β̂ = 2

(
X ′Z

)
W n

(
Z ′y

)
which establishes the following.

Proposition 9.2.1

β̂GMM =
((
X ′Z

)
W n

(
Z ′X

))−1 (
X ′Z

)
W n

(
Z ′y

)
.

While the estimator depends onW n, the dependence is only up to scale, for ifW n is replaced
by cW n for some c > 0, β̂GMM does not change.
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9.3 Distribution of GMM Estimator

Assume that W n
p−→W > 0. Let

Q = E
(
zix

′
i

)
and

Ω = E
(
ziz
′
ie

2
i

)
= E

(
gig
′
i

)
,

where gi = ziei. Then (
1

n
X ′Z

)
W n

(
1

n
Z ′X

)
p−→ Q′WQ

and (
1

n
X ′Z

)
W n

(
1√
n
Z ′e

)
d−→ Q′WN (0,Ω) .

We conclude:

Theorem 9.3.1 Asymptotic Distribution of GMM Estimator

√
n
(
β̂ − β

)
d−→ N (0,V β) ,

where
V β =

(
Q′WQ

)−1 (
Q′WΩWQ

) (
Q′WQ

)−1
.

In general, GMM estimators are asymptotically normal with “sandwich form”asymptotic vari-
ances.

The optimal weight matrix W 0 is one which minimizes V β. This turns out to be W 0 = Ω−1.
The proof is left as an exercise. This yields the effi cient GMM estimator:

β̂ =
(
X ′ZΩ−1Z ′X

)−1
X ′ZΩ−1Z ′y.

Thus we have

Theorem 9.3.2 Asymptotic Distribution of Effi cient GMM Esti-
mator √

n
(
β̂ − β

)
d−→ N

(
0,
(
Q′Ω−1Q

)−1
)
.

W 0 = Ω−1 is not known in practice, but it can be estimated consistently. For anyW n
p−→W 0,

we still call β̂ the effi cient GMM estimator, as it has the same asymptotic distribution.
By “effi cient”, we mean that this estimator has the smallest asymptotic variance in the class

of GMM estimators with this set of moment conditions. This is a weak concept of optimality, as
we are only considering alternative weight matrices W n. However, it turns out that the GMM
estimator is semiparametrically effi cient, as shown by Gary Chamberlain (1987).

If it is known that E (gi(β)) = 0, and this is all that is known, this is a semi-parametric
problem, as the distribution of the data is unknown. Chamberlain showed that in this context,
no semiparametric estimator (one which is consistent globally for the class of models considered)
can have a smaller asymptotic variance than

(
G′Ω−1G

)−1
where G = E ∂

∂β′
gi(β). Since the GMM

estimator has this asymptotic variance, it is semiparametrically effi cient.
This result shows that in the linear model, no estimator has greater asymptotic effi ciency than

the effi cient linear GMM estimator. No estimator can do better (in this first-order asymptotic
sense), without imposing additional assumptions.
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9.4 Estimation of the Effi cient Weight Matrix

Given any weight matrix W n > 0, the GMM estimator β̂ is consistent yet ineffi cient. For
example, we can set W n = I`. In the linear model, a better choice is W n = (Z ′Z)

−1
. Given

any such first-step estimator, we can define the residuals êi = yi − x′iβ̂ and moment equations
ĝi = ziêi = g(yi,xi, zi, β̂). Construct

gn = gn(β̂) =
1

n

n∑
i=1

ĝi,

ĝ∗i = ĝi − gn,
and define

W n =

(
1

n

n∑
i=1

ĝ∗i ĝ
∗′
i

)−1

=

(
1

n

n∑
i=1

ĝiĝ
′
i − gng′n

)−1

. (9.4)

Then W n
p−→ Ω−1 = W 0, and GMM using W n as the weight matrix is asymptotically effi cient.

A common alternative choice is to set

W n =

(
1

n

n∑
i=1

ĝiĝ
′
i

)−1

which uses the uncentered moment conditions. Since Egi = 0, these two estimators are asymptot-
ically equivalent under the hypothesis of correct specification. However, Alastair Hall (2000) has
shown that the uncentered estimator is a poor choice. When constructing hypothesis tests, under
the alternative hypothesis the moment conditions are violated, i.e. Egi 6= 0, so the uncentered
estimator will contain an undesirable bias term and the power of the test will be adversely affected.
A simple solution is to use the centered moment conditions to construct the weight matrix, as in
(9.4) above.

Here is a simple way to compute the effi cient GMM estimator for the linear model. First, set
W n = (Z ′Z)−1, estimate β̂ using this weight matrix, and construct the residual êi = yi − x′iβ̂.
Then set ĝi = ziêi, and let ĝ be the associated n× ` matrix. Then the effi cient GMM estimator is

β̂ =
(
X ′Z

(
ĝ′ĝ − ngng′n

)−1
Z ′X

)−1
X ′Z

(
ĝ′ĝ − ngng′n

)−1
Z ′y.

In most cases, when we say “GMM”, we actually mean “effi cient GMM”. There is little point in
using an ineffi cient GMM estimator when the effi cient estimator is easy to compute.

An estimator of the asymptotic variance of β̂ can be seen from the above formula. Set

V̂ = n
(
X ′Z

(
ĝ′ĝ − ngng′n

)−1
Z ′X

)−1
.

Asymptotic standard errors are given by the square roots of the diagonal elements of V̂ .
There is an important alternative to the two-step GMM estimator just described. Instead, we

can let the weight matrix be considered as a function of β. The criterion function is then

J(β) = n · gn(β)′

(
1

n

n∑
i=1

g∗i (β)g∗i (β)′

)−1

gn(β).

where
g∗i (β) = gi(β)− gn(β)

The β̂ which minimizes this function is called the continuously-updated GMM estimator, and
was introduced by L. Hansen, Heaton and Yaron (1996).

The estimator appears to have some better properties than traditional GMM, but can be nu-
merically tricky to obtain in some cases. This is a current area of research in econometrics.
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9.5 GMM: The General Case

In its most general form, GMM applies whenever an economic or statistical model implies the
`× 1 moment condition

E (gi(β)) = 0.

Often, this is all that is known. Identification requires l ≥ k = dim(β). The GMM estimator
minimizes

J(β) = n · gn(β)′W n gn(β)

where

gn(β) =
1

n

n∑
i=1

gi(β)

and

W n =

(
1

n

n∑
i=1

ĝiĝ
′
i − gng′n

)−1

,

with ĝi = gi(β̃) constructed using a preliminary consistent estimator β̃, perhaps obtained by first
settingW n = I. Since the GMM estimator depends upon the first-stage estimator, often the weight
matrix W n is updated, and then β̂ recomputed. This estimator can be iterated if needed.

Theorem 9.5.1 Distribution of Nonlinear GMM Estimator
Under general regularity conditions,

√
n
(
β̂ − β

)
d−→ N

(
0,
(
G′Ω−1G

)−1
)
,

where
Ω =

(
E
(
gig
′
i

))−1

and

G = E
∂

∂β′
gi(β).

The variance of β̂ may be estimated by

V̂ β =
(
Ĝ
′
Ω̂
−1
Ĝ
)−1

where
Ω̂ = n−1

∑
i

ĝ∗i ĝ
∗′
i

and

Ĝ = n−1
∑
i

∂

∂β′
gi(β̂).

The general theory of GMM estimation and testing was exposited by L. Hansen (1982).

9.6 Over-Identification Test

Overidentified models (` > k) are special in the sense that there may not be a parameter value
β such that the moment condition
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Eg(yi,xi, zi,β) = 0

holds. Thus the model —the overidentifying restrictions —are testable.
For example, take the linear model yi = β′1x1i+β

′
2x2i+ei with E (x1iei) = 0 and E (x2iei) = 0.

It is possible that β2 = 0, so that the linear equation may be written as yi = β′1x1i + ei. However,
it is possible that β2 6= 0, and in this case it would be impossible to find a value of β1 so that
both E (x1i (yi − x′1iβ1)) = 0 and E (x2i (yi − x′1iβ1)) = 0 hold simultaneously. In this sense an
exclusion restriction can be seen as an overidentifying restriction.

Note that gn
p−→ Egi, and thus gn can be used to assess whether or not the hypothesis that

Egi = 0 is true or not. The criterion function at the parameter estimates is

J = n g′nW ngn

= n2g′n
(
ĝ′ĝ − ngng′n

)−1
gn.

is a quadratic form in gn, and is thus a natural test statistic for H0 : Egi = 0.

Theorem 9.6.1 (Sargan-Hansen). Under the hypothesis of correct speci-
fication, and if the weight matrix is asymptotically effi cient,

J = J(β̂)
d−→ χ2

`−k.

The proof of the theorem is left as an exercise. This result was established by Sargan (1958)
for a specialized case, and by L. Hansen (1982) for the general case.

The degrees of freedom of the asymptotic distribution are the number of overidentifying restric-
tions. If the statistic J exceeds the chi-square critical value, we can reject the model. Based on
this information alone, it is unclear what is wrong, but it is typically cause for concern. The GMM
overidentification test is a very useful by-product of the GMM methodology, and it is advisable to
report the statistic J whenever GMM is the estimation method.

When over-identified models are estimated by GMM, it is customary to report the J statistic
as a general test of model adequacy.

9.7 Hypothesis Testing: The Distance Statistic

We described before how to construct estimates of the asymptotic covariance matrix of the
GMM estimates. These may be used to construct Wald tests of statistical hypotheses.

If the hypothesis is non-linear, a better approach is to directly use the GMM criterion function.
This is sometimes called the GMM Distance statistic, and sometimes called a LR-like statistic (the
LR is for likelihood-ratio). The idea was first put forward by Newey and West (1987).

For a given weight matrix W n, the GMM criterion function is

J(β) = n · gn(β)′W n gn(β)

For h : Rk → Rr, the hypothesis is

H0 : h(β) = 0.

The estimates under H1 are
β̂ = argmin

β
J(β)
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and those under H0 are
β̃ = argmin

h(β)=0
J(β).

The two minimizing criterion functions are J(β̂) and J(β̃). The GMM distance statistic is the
difference

D = J(β̃)− J(β̂).

Proposition 9.7.1 If the same weight matrix W n is used for both null
and alternative,

1. D ≥ 0

2. D d−→ χ2
r

3. If h is linear in β, then D equals the Wald statistic.

If h is non-linear, the Wald statistic can work quite poorly. In contrast, current evidence
suggests that the D statistic appears to have quite good sampling properties, and is the preferred
test statistic.

Newey and West (1987) suggested to use the same weight matrix W n for both null and alter-
native, as this ensures that D ≥ 0. This reasoning is not compelling, however, and some current
research suggests that this restriction is not necessary for good performance of the test.

This test shares the useful feature of LR tests in that it is a natural by-product of the compu-
tation of alternative models.

9.8 Conditional Moment Restrictions

In many contexts, the model implies more than an unconditional moment restriction of the form
Egi(β) = 0. It implies a conditional moment restriction of the form

E (ei(β) | zi) = 0

where ei(β) is some s× 1 function of the observation and the parameters. In many cases, s = 1.
It turns out that this conditional moment restriction is much more powerful, and restrictive,

than the unconditional moment restriction discussed above.
Our linear model yi = x′iβ + ei with instruments zi falls into this class under the stronger

assumption E (ei | zi) = 0. Then ei(β) = yi − x′iβ.
It is also helpful to realize that conventional regression models also fall into this class, except

that in this case xi = zi. For example, in linear regression, ei(β) = yi − x′iβ, while in a nonlinear
regression model ei(β) = yi − g(xi,β). In a joint model of the conditional mean and variance

ei (β,γ) =


yi − x′iβ

(yi − x′iβ)2 − f (xi)
′ γ

.

Here s = 2.
Given a conditional moment restriction, an unconditional moment restriction can always be

constructed. That is for any ` × 1 function φ (xi,β) , we can set gi(β) = φ (xi,β) ei(β) which
satisfies Egi(β) = 0 and hence defines a GMM estimator. The obvious problem is that the class of
functions φ is infinite. Which should be selected?
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This is equivalent to the problem of selection of the best instruments. If xi ∈ R is a valid
instrument satisfying E (ei | xi) = 0, then xi, x

2
i , x

3
i , ..., etc., are all valid instruments. Which

should be used?
One solution is to construct an infinite list of potent instruments, and then use the first k

instruments. How is k to be determined? This is an area of theory still under development. A
recent study of this problem is Donald and Newey (2001).

Another approach is to construct the optimal instrument. The form was uncovered by Cham-
berlain (1987). Take the case s = 1. Let

Ri = E
(
∂

∂β
ei(β) | zi

)
and

σ2
i = E

(
ei(β)2 | zi

)
.

Then the “optimal instrument”is
Ai = −σ−2

i Ri

so the optimal moment is
gi(β) = Aiei(β).

Setting gi (β) to be this choice (which is k×1, so is just-identified) yields the best GMM estimator
possible.

In practice, Ai is unknown, but its form does help us think about construction of optimal
instruments.

In the linear model ei(β) = yi − x′iβ, note that

Ri = −E (xi | zi)

and
σ2
i = E

(
e2
i | zi

)
,

so
Ai = σ−2

i E (xi | zi) .

In the case of linear regression, xi = zi, so Ai = σ−2
i zi. Hence effi cient GMM is GLS, as we

discussed earlier in the course.
In the case of endogenous variables, note that the effi cient instrumentAi involves the estimation

of the conditional mean of xi given zi. In other words, to get the best instrument for xi, we need the
best conditional mean model for xi given zi, not just an arbitrary linear projection. The effi cient
instrument is also inversely proportional to the conditional variance of ei. This is the same as the
GLS estimator; namely that improved effi ciency can be obtained if the observations are weighted
inversely to the conditional variance of the errors.

9.9 Bootstrap GMM Inference

Let β̂ be the 2SLS or GMM estimator of β. Using the EDF of (yi, zi,xi), we can apply the
bootstrap methods discussed in Chapter 8 to compute estimates of the bias and variance of β̂,
and construct confidence intervals for β, identically as in the regression model. However, caution
should be applied when interpreting such results.

A straightforward application of the nonparametric bootstrap works in the sense of consistently
achieving the first-order asymptotic distribution. This has been shown by Hahn (1996). However,
it fails to achieve an asymptotic refinement when the model is over-identified, jeopardizing the
theoretical justification for percentile-t methods. Furthermore, the bootstrap applied J test will
yield the wrong answer.

141



The problem is that in the sample, β̂ is the “true”value and yet gn(β̂) 6= 0. Thus according to
random variables (y∗i , z

∗
i ,x
∗
i ) drawn from the EDF Fn,

E
(
gi

(
β̂
))

= gn(β̂) 6= 0.

This means that (y∗i , z
∗
i ,x
∗
i ) do not satisfy the same moment conditions as the population distrib-

ution.
A correction suggested by Hall and Horowitz (1996) can solve the problem. Given the bootstrap

sample (y∗,Z∗,X∗), define the bootstrap GMM criterion

J∗(β) = n ·
(
g∗n(β)− gn(β̂)

)′
W ∗

n

(
g∗n(β)− gn(β̂)

)
where gn(β̂) is from the in-sample data, not from the bootstrap data.

Let β̂
∗
minimize J∗(β), and define all statistics and tests accordingly. In the linear model, this

implies that the bootstrap estimator is

β̂
∗

=
(
X∗′Z∗W ∗

nZ
∗′X∗

)−1 (
X∗′Z∗W ∗

n

(
Z∗′y∗ −Z ′ê

))
.

where ê = y −Xβ̂ are the in-sample residuals. The bootstrap J statistic is J∗(β̂∗).
Brown and Newey (2002) have an alternative solution. They note that we can sample from

the observations with the empirical likelihood probabilities p̂i described in Chapter 10. Since∑n
i=1 p̂igi

(
β̂
)

= 0, this sampling scheme preserves the moment conditions of the model, so no

recentering or adjustments is needed. Brown and Newey argue that this bootstrap procedure will
be more effi cient than the Hall-Horowitz GMM bootstrap.
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Exercises

Exercise 9.1 Take the model

yi = x′iβ + ei

E (xiei) = 0

e2
i = z′iγ + ηi

E (ziηi) = 0.

Find the method of moments estimators
(
β̂, γ̂

)
for (β,γ) .

Exercise 9.2 Take the single equation

y = Xβ + e

E (e | Z) = 0

Assume E
(
e2
i | zi

)
= σ2. Show that if β̂ is estimated by GMM with weight matrixW n = (Z ′Z)

−1
,

then √
n
(
β̂ − β

)
d−→ N

(
0, σ2

(
Q′M−1Q

)−1
)

where Q = E (zix
′
i) andM = E (ziz

′
i) .

Exercise 9.3 Take the model yi = x′iβ + ei with E (ziei) = 0. Let êi = yi − x′iβ̂ where β̂ is
consistent for β (e.g. a GMM estimator with arbitrary weight matrix). Define the estimate of the
optimal GMM weight matrix

W n =

(
1

n

n∑
i=1

ziz
′
iê

2
i

)−1

.

Show that W n
p−→ Ω−1 where Ω = E

(
ziz
′
ie

2
i

)
.

Exercise 9.4 In the linear model estimated by GMM with general weight matrixW , the asymp-
totic variance of β̂GMM is

V =
(
Q′WQ

)−1
Q′WΩWQ

(
Q′WQ

)−1

(a) Let V 0 be this matrix when W = Ω−1. Show that V 0 =
(
Q′Ω−1Q

)−1
.

(b) We want to show that for anyW , V −V 0 is positive semi-definite (for then V 0 is the smaller
possible covariance matrix andW = Ω−1 is the effi cient weight matrix). To do this, start by
finding matrices A and B such that V = A′ΩA and V 0 = B′ΩB.

(c) Show that B′ΩA = B′ΩB and therefore that B′Ω (A−B) = 0.

(d) Use the expressions V = A′ΩA, A = B + (A−B) , and B′Ω (A−B) = 0 to show that
V ≥ V 0.

Exercise 9.5 The equation of interest is

yi = g(xi,β) + ei

E (ziei) = 0.

The observed data is (yi, zi,xi). zi is `×1 and β is k×1, ` ≥ k. Show how to construct an effi cient
GMM estimator for β.
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Exercise 9.6 In the linear model y = Xβ+e with E(xiei) = 0, a Generalized Method of Moments
(GMM) criterion function for β is defined as

Jn(β) =
1

n
(y −Xβ)′XΩ̂

−1
n X

′ (y −Xβ) (9.5)

where Ω̂n = 1
n

∑n
i=1 xix

′
iê

2
i , êi = yi − x′iβ̂ are the OLS residuals, and β̂ = (X ′X)

−1
X ′Y is LS.

The GMM estimator of β, subject to the restriction h(β) = 0, is defined as

β̃ = argmin
h(β)=0

Jn(β).

The GMM test statistic (the distance statistic) of the hypothesis h(β) = 0 is

D = Jn(β̃) = min
h(β)=0

Jn(β). (9.6)

(a) Show that you can rewrite Jn(β) in (9.5) as

Jn(β) =
(
β − β̂

)′
V̂
−1
n

(
β − β̂

)
where

V̂ n =
(
X ′X

)−1

(
n∑
i=1

xix
′
iê

2
i

)(
X ′X

)−1
.

(b) Now focus on linear restrictions: h(β) = R′β − r. Thus

β̃ = argmin
R′β−r=0

Jn(β)

and hence R′β̃ = r. Define the Lagrangian (β,λ) = 1
2Jn(β) + λ′ (R′β − r) where λ is s× 1.

Show that the minimizer is

β̃ = β̂ − V̂ nR
(
R′nV̂ R

)−1 (
R′β̂ − r

)
λ̂ =

(
R′nV̂ R

)−1 (
R′β̂ − r

)
.

(c) Show that if R′β = r then
√
n
(
β̃ − β

)
d−→ N (0,V R) where

V R = V − V R
(
R′V R

)−1
R′V .

(d) Show that in this setting, the distance statistic D in (9.6) equals the Wald statistic.

Exercise 9.7 Take the linear model

yi = x′iβ + ei

E (ziei) = 0.

and consider the GMM estimator β̂ of β. Let

Jn = ngn(β̂)′Ω̂
−1
gn(β̂)

denote the test of overidentifying restrictions. Show that Jn
d−→ χ2

`−k as n→∞ by demonstrating
each of the following:
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(a) Since Ω > 0, we can write Ω−1 = CC ′ and Ω = C ′−1C−1

(b) Jn = n
(
C ′gn(β̂)

)′ (
C ′Ω̂C

)−1
C ′gn(β̂)

(c) C ′gn(β̂) = DnC
′gn(β0) where

Dn = I` −C ′
(

1

n
Z ′X

)((
1

n
X ′Z

)
Ω̂
−1
(

1

n
Z ′X

))−1( 1

n
X ′Z

)
Ω̂
−1
C ′−1

gn(β0) =
1

n
Z ′e.

(d) Dn
p−→ I` −R (R′R)

−1
R′ where R = C ′E (zix

′
i)

(e) n1/2C ′gn(β0)
d−→X ∼ N (0, I`)

(f) Jn
d−→X ′

(
I` −R (R′R)

−1
R′
)
X

(g) X ′
(
I` −R (R′R)

−1
R′
)
X ∼ χ2

`−k.

Hint: I` −R (R′R)
−1
R′ is a projection matrix.
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Chapter 10

Empirical Likelihood

10.1 Non-Parametric Likelihood

An alternative to GMM is empirical likelihood. The idea is due to Art Owen (1988, 2001) and
has been extended to moment condition models by Qin and Lawless (1994). It is a non-parametric
analog of likelihood estimation.

The idea is to construct a multinomial distribution F (p1, ..., pn) which places probability pi
at each observation. To be a valid multinomial distribution, these probabilities must satisfy the
requirements that pi ≥ 0 and

n∑
i=1

pi = 1. (10.1)

Since each observation is observed once in the sample, the log-likelihood function for this multino-
mial distribution is

logL (p1, ..., pn) =

n∑
i=1

log(pi). (10.2)

First let us consider a just-identified model. In this case the moment condition places no
additional restrictions on the multinomial distribution. The maximum likelihood estimators of
the probabilities (p1, ..., pn) are those which maximize the log-likelihood subject to the constraint
(10.1). This is equivalent to maximizing

n∑
i=1

log(pi)− µ
(

n∑
i=1

pi − 1

)

where µ is a Lagrange multiplier. The n first order conditions are 0 = p−1
i −µ. Combined with the

constraint (10.1) we find that the MLE is pi = n−1 yielding the log-likelihood −n log(n).
Now consider the case of an overidentified model with moment condition

Egi(β0) = 0

where g is `× 1 and β is k× 1 and for simplicity we write gi(β) = g(yi, zi,xi,β). The multinomial
distribution which places probability pi at each observation (yi,xi, zi) will satisfy this condition if
and only if

n∑
i=1

pigi(β) = 0 (10.3)

The empirical likelihood estimator is the value of β which maximizes the multinomial log-
likelihood (10.2) subject to the restrictions (10.1) and (10.3).
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The Lagrangian for this maximization problem is

L (β, p1, ..., pn,λ, µ) =

n∑
i=1

log(pi)− µ
(

n∑
i=1

pi − 1

)
− nλ′

n∑
i=1

pigi (β)

where λ and µ are Lagrange multipliers. The first-order-conditions of L with respect to pi, µ, and
λ are

1

pi
= µ+ nλ′gi (β)

n∑
i=1

pi = 1

n∑
i=1

pigi (β) = 0.

Multiplying the first equation by pi, summing over i, and using the second and third equations, we
find µ = n and

pi =
1

n
(
1 + λ′gi (β)

) .
Substituting into L we find

R (β,λ) = −n log (n)−
n∑
i=1

log
(
1 + λ′gi (β)

)
. (10.4)

For given β, the Lagrange multiplier λ(β) minimizes R (β,λ) :

λ(β) = argmin
λ

R(β,λ). (10.5)

This minimization problem is the dual of the constrained maximization problem. The solution
(when it exists) is well defined since R(β,λ) is a convex function of λ. The solution cannot be
obtained explicitly, but must be obtained numerically (see section 6.5). This yields the (profile)
empirical log-likelihood function for β.

R(β) = R(β,λ(β))

= −n log (n)−
n∑
i=1

log
(
1 + λ(β)′gi (β)

)
The EL estimate β̂ is the value which maximizes R(β), or equivalently minimizes its negative

β̂ = argmin
β

[−R(β)] (10.6)

Numerical methods are required for calculation of β̂ (see Section 10.5).
As a by-product of estimation, we also obtain the Lagrange multiplier λ̂ = λ(β̂), probabilities

p̂i =
1

n
(

1 + λ̂
′
gi

(
β̂
)) .

and maximized empirical likelihood

R(β̂) =
n∑
i=1

log (p̂i) . (10.7)
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10.2 Asymptotic Distribution of EL Estimator

Define

Gi (β) =
∂

∂β′
gi (β) (10.8)

G = EGi (β0)

Ω = E
(
gi (β0) gi (β0)′

)
and

V =
(
G′Ω−1G

)−1
(10.9)

V λ = Ω−G
(
G′Ω−1G

)−1
G′ (10.10)

For example, in the linear model, Gi (β) = −zix′i, G = −E (zix
′
i), and Ω = E

(
ziz
′
ie

2
i

)
.

Theorem 10.2.1 Under regularity conditions,

√
n
(
β̂ − β0

)
d−→ N (0,V β)

√
nλ̂

d−→ Ω−1N (0,V λ)

where V and V λ are defined in (10.9) and (10.10), and
√
n
(
β̂ − β0

)
and

√
nλ̂ are asymptotically independent.

The theorem shows that asymptotic variance V β for β̂ is the same as for effi cient GMM. Thus
the EL estimator is asymptotically effi cient.

Chamberlain (1987) showed that V β is the semiparametric effi ciency bound for β in the overi-
dentified moment condition model. This means that no consistent estimator for this class of models
can have a lower asymptotic variance than V β. Since the EL estimator achieves this bound, it is
an asymptotically effi cient estimator for β.

Proof of Theorem 10.2.1. (β̂, λ̂) jointly solve

0 =
∂

∂λ
R(β,λ) = −

n∑
i=1

gi

(
β̂
)

(
1 + λ̂

′
gi

(
β̂
)) (10.11)

0 =
∂

∂β
R(β,λ) = −

n∑
i=1

Gi

(
β̂
)′
λ

1 + λ̂
′
gi

(
β̂
) . (10.12)

Let Gn = 1
n

∑n
i=1Gi (β0) , gn = 1

n

∑n
i=1 gi (β0) and Ωn = 1

n

∑n
i=1 gi (β0) gi (β0)′ .

Expanding (10.12) around β = β0 and λ = λ0 = 0 yields

0 ' G′n
(
λ̂− λ0

)
. (10.13)

Expanding (10.11) around β = β0 and λ = λ0 = 0 yields

0 ' −gn −Gn

(
β̂ − β0

)
+ Ωnλ̂ (10.14)
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Premultiplying by G′nΩ
−1
n and using (10.13) yields

0 ' −G′nΩ−1
n gn −G′nΩ−1

n Gn

(
β̂ − β0

)
+G′nΩ

−1
n Ωnλ̂

= −G′nΩ−1
n gn −G′nΩ−1

n Gn

(
β̂ − β0

)
Solving for β̂ and using the WLLN and CLT yields

√
n
(
β̂ − β0

)
' −

(
G′nΩ

−1
n Gn

)−1
G′nΩ

−1
n

√
ngn (10.15)

d−→
(
G′Ω−1G

)−1
G′Ω−1N (0,Ω)

= N (0,V β)

Solving (10.14) for λ̂ and using (10.15) yields

√
nλ̂ ' Ω−1

n

(
I −Gn

(
G′nΩ

−1
n Gn

)−1
G′nΩ

−1
n

)√
ngn (10.16)

d−→ Ω−1
(
I −G

(
G′Ω−1G

)−1
G′Ω−1

)
N (0,Ω)

= Ω−1N (0,V λ)

Furthermore, since

G′
(
I −Ω−1G

(
G′Ω−1G

)−1
G′
)

= 0

√
n
(
β̂ − β0

)
and
√
nλ̂ are asymptotically uncorrelated and hence independent.

10.3 Overidentifying Restrictions

In a parametric likelihood context, tests are based on the difference in the log likelihood func-
tions. The same statistic can be constructed for empirical likelihood. Twice the difference between
the unrestricted empirical log-likelihood −n log (n) and the maximized empirical log-likelihood for
the model (10.7) is

LRn =
n∑
i=1

2 log
(

1 + λ̂
′
gi

(
β̂
))

. (10.17)

Theorem 10.3.1 If Egi(β0) = 0 then LRn
d−→ χ2

`−k.

The EL overidentification test is similar to the GMM overidentification test. They are asymp-
totically first-order equivalent, and have the same interpretation. The overidentification test is a
very useful by-product of EL estimation, and it is advisable to report the statistic LRn whenever
EL is the estimation method.

Proof of Theorem 10.3.1. First, by a Taylor expansion, (10.15), and (10.16),

1√
n

n∑
i=1

gi

(
β̂
)
'
√
n
(
gn +Gn

(
β̂ − β0

))
'

(
I −Gn

(
G′nΩ

−1
n Gn

)−1
G′nΩ

−1
n

)√
ngn

' Ωn

√
nλ̂.
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Second, since log(1 + u) ' u− u2/2 for u small,

LRn =

n∑
i=1

2 log
(

1 + λ̂
′
gi

(
β̂
))

' 2λ̂
′
n∑
i=1

gi

(
β̂
)
− λ̂′

n∑
i=1

gi

(
β̂
)
gi

(
β̂
)′
λ̂

' nλ̂′Ωnλ̂

d−→ N (0,V λ)′Ω−1N (0,V λ)

= χ2
`−k

where the proof of the final equality is left as an exercise.

10.4 Testing

Let the maintained model be
Egi(β) = 0 (10.18)

where g is ` × 1 and β is k × 1. By “maintained” we mean that the overidentfying restrictions
contained in (10.18) are assumed to hold and are not being challenged (at least for the test discussed
in this section). The hypothesis of interest is

h(β) = 0.

where h : Rk → Ra. The restricted EL estimator and likelihood are the values which solve

β̃ = argmax
h(β)=0

R(β)

R(β̃) = max
h(β)=0

R(β).

Fundamentally, the restricted EL estimator β̃ is simply an EL estimator with `−k+a overidentifying
restrictions, so there is no fundamental change in the distribution theory for β̃ relative to β̂. To test
the hypothesis h(β) while maintaining (10.18), the simple overidentifying restrictions test (10.17)
is not appropriate. Instead we use the difference in log-likelihoods:

LRn = 2
(
R(β̂)−R(β̃)

)
.

This test statistic is a natural analog of the GMM distance statistic.

Theorem 10.4.1 Under (10.18) and H0 : h(β) = 0, LRn
d−→ χ2

a.

The proof of this result is more challenging and is omitted.
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10.5 Numerical Computation

Gauss code which implements the methods discussed below can be found at

http://www.ssc.wisc.edu/~bhansen/progs/elike.prc

Derivatives
The numerical calculations depend on derivatives of the dual likelihood function (10.4). Define

g∗i (β,λ) =
gi (β)(

1 + λ′gi (β)
)

G∗i (β,λ) =
Gi (β)′ λ

1 + λ′gi (β)

The first derivatives of (10.4) are

Rλ =
∂

∂λ
R (β,λ) = −

n∑
i=1

g∗i (β,λ)

Rβ =
∂

∂β
R (β,λ) = −

n∑
i=1

G∗i (β,λ) .

The second derivatives are

Rλλ =
∂2

∂λ∂λ′
R (β,λ) =

n∑
i=1

g∗i (β,λ) g∗i (β,λ)′

Rλβ =
∂2

∂λ∂β′
R (β,λ) =

n∑
i=1

(
g∗i (β,λ)G∗i (β,λ)′ − Gi (β)

1 + λ′gi (β)

)

Rββ =
∂2

∂β∂β′
R (β,λ) =

n∑
i=1

G∗i (β,λ)G∗i (β,λ)′ −
∂2

∂β∂β′
(
gi (β)′ λ

)
1 + λ′gi (β)


Inner Loop
The so-called “inner loop” solves (10.5) for given β. The modified Newton method takes a

quadratic approximation to Rn (β,λ) yielding the iteration rule

λj+1 = λj − δ (Rλλ (β,λj))
−1Rλ (β,λj) . (10.19)

where δ > 0 is a scalar steplength (to be discussed next). The starting value λ1 can be set to the
zero vector. The iteration (10.19) is continued until the gradient Rλ (β,λj) is smaller than some
prespecified tolerance.

Effi cient convergence requires a good choice of steplength δ. One method uses the following
quadratic approximation. Set δ0 = 0, δ1 = 1

2 and δ2 = 1. For p = 0, 1, 2, set

λp = λj − δp (Rλλ (β,λj))
−1Rλ (β,λj))

Rp = R (β,λp)

A quadratic function can be fit exactly through these three points. The value of δ which minimizes
this quadratic is

δ̂ =
R2 + 3R0 − 4R1

4R2 + 4R0 − 8R1
.

yielding the steplength to be plugged into (10.19).
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A complication is that λ must be constrained so that 0 ≤ pi ≤ 1 which holds if

n
(
1 + λ′gi (β)

)
≥ 1 (10.20)

for all i. If (10.20) fails, the stepsize δ needs to be decreased.
Outer Loop
The outer loop is the minimization (10.6). This can be done by the modified Newton method

described in the previous section. The gradient for (10.6) is

Rβ =
∂

∂β
R(β) =

∂

∂β
R(β,λ) = Rβ + λ′βRλ = Rβ

since Rλ (β,λ) = 0 at λ = λ(β), where

λβ =
∂

∂β′
λ(β) = −R−1

λλRλβ,

the second equality following from the implicit function theorem applied to Rλ (β,λ(β)) = 0.
The Hessian for (10.6) is

Rββ = − ∂

∂β∂β′
R(β)

= − ∂

∂β′
[
Rβ (β,λ(β)) + λ′βRλ (β,λ(β))

]
= −

(
Rββ (β,λ(β)) +R′λβλβ + λ′βRλβ + λ′βRλλλβ

)
= R′λβR

−1
λλRλβ −Rββ.

It is not guaranteed that Rββ > 0. If not, the eigenvalues of Rββ should be adjusted so that all
are positive. The Newton iteration rule is

βj+1 = βj − δR−1
ββRβ

where δ is a scalar stepsize, and the rule is iterated until convergence.
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Chapter 11

Endogeneity

We say that there is endogeneity in the linear model y = x′iβ + ei if β is the parameter of
interest and E(xiei) 6= 0. This cannot happen if β is defined by linear projection, so requires a
structural interpretation. The coeffi cient β must have meaning separately from the definition of a
conditional mean or linear projection.

Example: Measurement error in the regressor. Suppose that (yi,x
∗
i ) are joint random

variables, E(yi | x∗i ) = x∗′i β is linear, β is the parameter of interest, and x
∗
i is not observed. Instead

we observe xi = x∗i + ui where ui is an k × 1 measurement error, independent of yi and x∗i . Then

yi = x∗′i β + ei

= (xi − ui)′ β + ei

= x′iβ + vi

where
vi = ei − u′iβ.

The problem is that

E (xivi) = E
[
(x∗i + ui)

(
ei − u′iβ

)]
= −E

(
uiu

′
i

)
β 6= 0

if β 6= 0 and E (uiu
′
i) 6= 0. It follows that if β̂ is the OLS estimator, then

β̂
p−→ β∗ = β −

(
E
(
xix

′
i

))−1 E
(
uiu

′
i

)
β 6= β.

This is called measurement error bias.
Example: Supply and Demand. The variables qi and pi (quantity and price) are determined

jointly by the demand equation
qi = −β1pi + e1i

and the supply equation
qi = β2pi + e2i.

Assume that ei =

(
e1i

e2i

)
is iid, Eei = 0, β1 + β2 = 1 and Eeie′i = I2 (the latter for simplicity).

The question is, if we regress qi on pi, what happens?
It is helpful to solve for qi and pi in terms of the errors. In matrix notation,[

1 β1

1 −β2

](
qi
pi

)
=

(
e1i

e2i

)
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so (
qi
pi

)
=

[
1 β1

1 −β2

]−1(
e1i

e2i

)
=

[
β2 β1

1 −1

](
e1i

e2i

)
=

(
β2e1i + β1e2i

(e1i − e2i)

)
.

The projection of qi on pi yields

qi = β∗pi + εi

E (piεi) = 0

where

β∗ =
E (piqi)

E
(
p2
i

) =
β2 − β1

2

Hence if it is estimated by OLS, β̂
p−→ β∗, which does not equal either β1 or β2. This is called

simultaneous equations bias.

11.1 Instrumental Variables

Let the equation of interest be
yi = x′iβ + ei (11.1)

where xi is k × 1, and assume that E(xiei) 6= 0 so there is endogeneity. We call (11.1) the
structural equation. In matrix notation, this can be written as

y = Xβ + e. (11.2)

Any solution to the problem of endogeneity requires additional information which we call in-
struments.

Definition 11.1.1 The `×1 random vector zi is an instrumental vari-
able for (11.1) if E (ziei) = 0.

In a typical set-up, some regressors in xi will be uncorrelated with ei (for example, at least the
intercept). Thus we make the partition

xi =

(
x1i

x2i

)
k1

k2
(11.3)

where E(x1iei) = 0 yet E(x2iei) 6= 0. We call x1i exogenous and x2i endogenous. By the above
definition, x1i is an instrumental variable for (11.1), so should be included in zi. So we have the
partition

zi =

(
x1i

z2i

)
k1

`2
(11.4)

where x1i = z1i are the included exogenous variables, and z2i are the excluded exogenous
variables. That is z2i are variables which could be included in the equation for yi (in the sense
that they are uncorrelated with ei) yet can be excluded, as they would have true zero coeffi cients
in the equation.

The model is just-identified if ` = k (i.e., if `2 = k2) and over-identified if ` > k (i.e., if
`2 > k2).

We have noted that any solution to the problem of endogeneity requires instruments. This does
not mean that valid instruments actually exist.
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11.2 Reduced Form

The reduced form relationship between the variables or “regressors”xi and the instruments zi
is found by linear projection. Let

Γ = E
(
ziz
′
i

)−1 E
(
zix

′
i

)
be the `× k matrix of coeffi cients from a projection of xi on zi, and define

ui = xi − Γ′zi

as the projection error. Then the reduced form linear relationship between xi and zi is

xi = Γ′zi + ui. (11.5)

In matrix notation, we can write (11.5) as

X = ZΓ +U (11.6)

where U is n× k.
By construction,

E(ziu
′
i) = 0,

so (11.5) is a projection and can be estimated by OLS:

x = zΓ̂ + û

Γ̂ =
(
z′z
)−1 (

z′x
)
.

Substituting (11.6) into (11.2), we find

y = (ZΓ +U)β + e

= Zλ+ v, (11.7)

where
λ = Γβ (11.8)

and
v = Uβ + e.

Observe that
E (zivi) = E

(
ziu

′
i

)
β + E (ziei) = 0.

Thus (11.7) is a projection equation and may be estimated by OLS. This is

y = Zλ̂+ v̂,

λ̂ =
(
Z ′Z

)−1 (
Z ′y

)
The equation (11.7) is the reduced form for y. (11.6) and (11.7) together are the reduced form

equations for the system

y = Zλ+ v

x = ZΓ +U .

As we showed above, OLS yields the reduced-form estimates
(
λ̂, Γ̂

)
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11.3 Identification

The structural parameter β relates to (λ,Γ) through (11.8). The parameter β is identified,
meaning that it can be recovered from the reduced form, if

rank (Γ) = k. (11.9)

Assume that (11.9) holds. If ` = k, then β = Γ−1λ. If ` > k, then for any W > 0, β =
(Γ′WΓ)

−1
Γ′Wλ.

If (11.9) is not satisfied, then β cannot be recovered from (λ,Γ) . Note that a necessary (although
not suffi cient) condition for (11.9) is ` ≥ k.

Since Z and X have the common variables X1, we can rewrite some of the expressions. Using
(11.3) and (11.4) to make the matrix partitions Z = [Z1,Z2] and X = [Z1,X2] , we can partition
Γ as

Γ =

[
Γ11 Γ12

Γ21 Γ22

]
=

[
I Γ12

0 Γ22

]
(11.6) can be rewritten as

X1 = Z1

X2 = Z1Γ12 +Z2Γ22 +U2. (11.10)

β is identified if rank(Γ) = k, which is true if and only if rank(Γ22) = k2 (by the upper-diagonal
structure of Γ). Thus the key to identification of the model rests on the `2 × k2 matrix Γ22 in
(11.10).

11.4 Estimation

The model can be written as

yi = x′iβ + ei

E (ziei) = 0

or

Egi (β) = 0

gi (β) = zi
(
yi − x′iβ

)
.

This is a moment condition model. Appropriate estimators include GMM and EL. The estimators
and distribution theory developed in those Chapter 8 and 9 directly apply. Recall that the GMM
estimator, for given weight matrix W n, is

β̂ =
(
X ′ZW nZ

′X
)−1

X ′ZW nZ
′y.

11.5 Special Cases: IV and 2SLS

If the model is just-identified, so that k = `, then the formula for GMM simplifies. We find that

β̂ =
(
X ′ZW nZ

′X
)−1

X ′ZW nZ
′y

=
(
Z ′X

)−1
W−1

n

(
X ′Z

)−1
X ′ZW nZ

′y

=
(
Z ′X

)−1
Z ′y
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This estimator is often called the instrumental variables estimator (IV) of β, where Z is used
as an instrument forX. Observe that the weight matrixW n has disappeared. In the just-identified
case, the weight matrix places no role. This is also the MME estimator of β, and the EL estimator.
Another interpretation stems from the fact that since β = Γ−1λ, we can construct the Indirect
Least Squares (ILS) estimator:

β̂ = Γ̂
−1
λ̂

=
((
Z ′Z

)−1 (
Z ′X

))−1 ((
Z ′Z

)−1 (
Z ′y

))
=

(
Z ′X

)−1 (
Z ′Z

) (
Z ′Z

)−1 (
Z ′y

)
=

(
Z ′X

)−1 (
Z ′y

)
.

which again is the IV estimator.

Recall that the optimal weight matrix is an estimate of the inverse of Ω = E
(
ziz
′
ie

2
i

)
. In the

special case that E
(
e2
i | zi

)
= σ2 (homoskedasticity), then Ω = E (ziz

′
i)σ

2 ∝ E (ziz
′
i) suggesting

the weight matrix W n = (Z ′Z)
−1
. Using this choice, the GMM estimator equals

β̂2SLS =
(
X ′Z

(
Z ′Z

)−1
Z ′X

)−1
X ′Z

(
Z ′Z

)−1
Z ′y

This is called the two-stage-least squares (2SLS) estimator. It was originally proposed by Theil
(1953) and Basmann (1957), and is the classic estimator for linear equations with instruments.
Under the homoskedasticity assumption, the 2SLS estimator is effi cient GMM, but otherwise it is
ineffi cient.

It is useful to observe that writing

P = Z
(
Z ′Z

)−1
Z ′

X̂ = PX = ZΓ̂

then

β̂ =
(
X ′PX

)−1
X ′Py

=
(
Ẑ
′
Ẑ
)−1

Ẑ
′
y.

The source of the “two-stage”name is since it can be computed as follows

• First regress X on Z, vis., Γ̂ = (Z ′Z)
−1

(Z ′X) and X̂ = ZΓ̂ = PX.

• Second, regress y on Ẑ, vis., β̂ =
(
Ẑ
′
Ẑ
)−1

Ẑ
′
y.

It is useful to scrutinize the projection Ẑ. Recall, X = [X1,X2] and Z = [X1,Z2]. Then

X̂ =
[
X̂1, X̂2

]
= [PX1,PX2]

= [X1,PX2]

=
[
X1, X̂2

]
,

since X1 lies in the span of X. Thus in the second stage, we regress y on X1 and X̂2. So only the
endogenous variables X2 are replaced by their fitted values:

X̂2 = Z1Γ̂12 +Z2Γ̂22.
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11.6 Bekker Asymptotics

Bekker (1994) used an alternative asymptotic framework to analyze the finite-sample bias in
the 2SLS estimator. Here we present a simplified version of one of his results. In our notation, the
model is

y = Xβ + e (11.11)

X = ZΓ +U (11.12)

ξ = (e,U)

E (ξ | Z) = 0

E
(
ξ′ξ | Z

)
= S

As before, Z is n× l so there are l instruments.
First, let’s analyze the approximate bias of OLS applied to (11.11). Using (11.12),

E
(

1

n
X ′e

)
= E (xiei) = Γ′E (ziei) + E (uiei) = s21

and

E
(

1

n
X ′X

)
= E

(
xix

′
i

)
= Γ′E

(
ziz
′
i

)
Γ + E

(
uiz

′
i

)
Γ + Γ′E

(
ziu

′
i

)
+ E

(
uiu

′
i

)
= Γ′QΓ + S22

where Q = E (ziz
′
i) . Hence by a first-order approximation

E
(
β̂OLS − β

)
≈

(
E
(

1

n
X ′X

))−1

E
(

1

n
X ′e

)
=

(
Γ′QΓ + S22

)−1
s21 (11.13)

which is zero only when s21 = 0 (when X is exogenous).
We now derive a similar result for the 2SLS estimator.

β̂2SLS =
(
X ′PX

)−1 (
X ′Py

)
.

Let P = Z (Z ′Z)
−1
Z ′. By the spectral decomposition of an idempotent matrix, P = HΛH ′

where Λ = diag (I l,0) . Let Q = H ′ξS−1/2 which satisfies EQ′Q = In and partition Q = (q′1 Q
′
2)

where q1 is l × 1. Hence

E
(

1

n
ξ′Pξ | Z

)
=

1

n
S1/2′E

(
Q′ΛQ | Z

)
S1/2

=
1

n
S1/2′E

(
1

n
q′1q1

)
S1/2

=
l

n
S1/2′S1/2

= αS

where

α =
l

n
.

Using (11.12) and this result,

1

n
E
(
X ′Pe

)
=

1

n
E
(
Γ′Z ′e

)
+

1

n
E
(
U ′Pe

)
= αs21,
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and

1

n
E
(
X ′PX

)
= Γ′E

(
ziz
′
i

)
Γ + Γ′E (ziui) + E

(
uiz

′
i

)
Γ +

1

n
E
(
U ′PU

)
= Γ′QΓ + αS22.

Together

E
(
β̂2SLS − β

)
≈

(
E
(

1

n
X ′PX

))−1

E
(

1

n
X ′Pe

)
= α

(
Γ′QΓ + αS22

)−1
s21. (11.14)

In general this is non-zero, except when s21 = 0 (when X is exogenous). It is also close to zero
when α = 0. Bekker (1994) pointed out that it also has the reverse implication —that when α = l/n
is large, the bias in the 2SLS estimator will be large. Indeed as α → 1, the expression in (11.14)
approaches that in (11.13), indicating that the bias in 2SLS approaches that of OLS as the number
of instruments increases.

Bekker (1994) showed further that under the alternative asymptotic approximation that α is
fixed as n → ∞ (so that the number of instruments goes to infinity proportionately with sample
size) then the expression in (11.14) is the probability limit of β̂2SLS − β

11.7 Identification Failure

Recall the reduced form equation

X2 = Z1Γ12 +Z2Γ22 +U2.

The parameter β fails to be identified if Γ22 has deficient rank. The consequences of identification
failure for inference are quite severe.

Take the simplest case where k = l = 1 (so there is no Z1). Then the model may be written as

yi = xiβ + ei

xi = ziγ + ui

and Γ22 = γ = E (zixi) /Ez2
i . We see that β is identified if and only if γ 6= 0, which occurs

when E (xizi) 6= 0. Thus identification hinges on the existence of correlation between the excluded
exogenous variable and the included endogenous variable.

Suppose this condition fails, so E (xizi) = 0. Then by the CLT

1√
n

n∑
i=1

ziei
d−→ N1 ∼ N

(
0,E

(
z2
i e

2
i

))
(11.15)

1√
n

n∑
i=1

zixi =
1√
n

n∑
i=1

ziui
d−→ N2 ∼ N

(
0,E

(
z2
i u

2
i

))
(11.16)

therefore

β̂ − β =

1√
n

∑n
i=1 ziei

1√
n

∑n
i=1 zixi

d−→ N1

N2
∼ Cauchy,

since the ratio of two normals is Cauchy. This is particularly nasty, as the Cauchy distribution
does not have a finite mean. This result carries over to more general settings, and was examined
by Phillips (1989) and Choi and Phillips (1992).
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Suppose that identification does not completely fail, but is weak. This occurs when Γ22 is full
rank, but small. This can be handled in an asymptotic analysis by modeling it as local-to-zero, viz

Γ22 = n−1/2C,

where C is a full rank matrix. The n−1/2 is picked because it provides just the right balancing to
allow a rich distribution theory.

To see the consequences, once again take the simple case k = l = 1. Here, the instrument xi is
weak for zi if

γ = n−1/2c.

Then (11.15) is unaffected, but (11.16) instead takes the form

1√
n

n∑
i=1

zixi =
1√
n

n∑
i=1

z2
i γ +

1√
n

n∑
i=1

ziui

=
1

n

n∑
i=1

z2
i c+

1√
n

n∑
i=1

ziui

d−→ Qc+N2

therefore

β̂ − β d−→ N1

Qc+N2
.

As in the case of complete identification failure, we find that β̂ is inconsistent for β and the
asymptotic distribution of β̂ is non-normal. In addition, standard test statistics have non-standard
distributions, meaning that inferences about parameters of interest can be misleading.

The distribution theory for this model was developed by Staiger and Stock (1997) and extended
to nonlinear GMM estimation by Stock and Wright (2000). Further results on testing were obtained
by Wang and Zivot (1998).

The bottom line is that it is highly desirable to avoid identification failure. Once again, the
equation to focus on is the reduced form

X2 = Z1Γ12 +Z2Γ22 +U2

and identification requires rank(Γ22) = k2. If k2 = 1, this requires Γ22 6= 0, which is straightforward
to assess using a hypothesis test on the reduced form. Therefore in the case of k2 = 1 (one RHS
endogenous variable), one constructive recommendation is to explicitly estimate the reduced form
equation for X2, construct the test of Γ22 = 0, and at a minimum check that the test rejects
H0 : Γ22 = 0.

When k2 > 1, Γ22 6= 0 is not suffi cient for identification. It is not even suffi cient that each
column of Γ22 is non-zero (each column corresponds to a distinct endogenous variable in Z2). So
while a minimal check is to test that each columns of Γ22 is non-zero, this cannot be interpreted
as definitive proof that Γ22 has full rank. Unfortunately, tests of deficient rank are diffi cult to
implement. In any event, it appears reasonable to explicitly estimate and report the reduced form
equations for Z2, and attempt to assess the likelihood that Γ22 has deficient rank.
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Exercises

1. Consider the single equation model

yi = xiβ + ei,

where yi and zi are both real-valued (1× 1). Let β̂ denote the IV estimator of β using as an
instrument a dummy variable di (takes only the values 0 and 1). Find a simple expression
for the IV estimator in this context.

2. In the linear model

yi = x′iβ + ei

E (ei | xi) = 0

suppose σ2
i = E

(
e2
i |Xi

)
is known. Show that the GLS estimator of β can be written as an

IV estimator using some instrument zi. (Find an expression for zi.)

3. Take the linear model
y = Xβ + e.

Let the OLS estimator for β be β̂ and the OLS residual be ê = y −Xβ̂.
Let the IV estimator for β using some instrument Z be β̃ and the IV residual be ẽ = y−Xβ̃.
If Z is indeed endogeneous, will IV “fit” better than OLS, in the sense that ẽ′ẽ < ê′ê, at
least in large samples?

4. The reduced form between the regressors xi and instruments zi takes the form

xi = Γ′zi + ui

or
X = ZΓ +U

where Xi is k×1, zi is l×1, X is n×k, Z is n× l, U is n×k, and Γ is l×k. The parameter
Γ is defined by the population moment condition

E
(
ziu

′
i

)
= 0

Show that the method of moments estimator for Γ is Γ̂ = (Z ′Z)
−1

(Z ′X) .

5. In the structural model

y = Xβ + e

X = ZΓ +U

with Γ l× k, l ≥ k, we claim that β is identified (can be recovered from the reduced form) if
rank(Γ) = k. Explain why this is true. That is, show that if rank(Γ) < k then β cannot be
identified.

6. Take the linear model

yi = xiβ + ei

E (ei | xi) = 0.

where xi and β are 1× 1.
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(a) Show that E (xiei) = 0 and E
(
x2
i ei
)

= 0. Is zi = (xi x2
i )
′ a valid instrumental variable

for estimation of β?

(b) Define the 2SLS estimator of β, using zi as an instrument for xi. How does this differ
from OLS?

(c) Find the effi cient GMM estimator of β based on the moment condition

E (zi (yi − xiβ)) = 0.

Does this differ from 2SLS and/or OLS?

7. Suppose that price and quantity are determined by the intersection of the linear demand and
supply curves

Demand : Q = a0 + a1P + a2Y + e1

Supply : Q = b0 + b1P + b2W + e2

where income (Y ) and wage (W ) are determined outside the market. In this model, are the
parameters identified?

8. The data file card.dat is taken from David Card “Using Geographic Variation in College
Proximity to Estimate the Return to Schooling”in Aspects of Labour Market Behavior (1995).
There are 2215 observations with 29 variables, listed in card.pdf. We want to estimate a wage
equation

log(Wage) = β0 + β1Educ+ β2Exper + β3Exper
2 + β4South+ β5Black + e

where Educ = Eduation (Years) Exper = Experience (Years), and South and Black are
regional and racial dummy variables.

(a) Estimate the model by OLS. Report estimates and standard errors.

(b) Now treat Education as endogenous, and the remaining variables as exogenous. Estimate
the model by 2SLS, using the instrument near4, a dummy indicating that the observation
lives near a 4-year college. Report estimates and standard errors.

(c) Re-estimate by 2SLS (report estimates and standard errors) adding three additional
instruments: near2 (a dummy indicating that the observation lives near a 2-year college),
fatheduc (the education, in years, of the father) and motheduc (the education, in years,
of the mother).

(d) Re-estimate the model by effi cient GMM. I suggest that you use the 2SLS estimates as
the first-step to get the weight matrix, and then calculate the GMM estimator from this
weight matrix without further iteration. Report the estimates and standard errors.

(e) Calculate and report the J statistic for overidentification.

(f) Discuss your findings.
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Chapter 12

Univariate Time Series

A time series yt is a process observed in sequence over time, t = 1, ..., T . To indicate the
dependence on time, we adopt new notation, and use the subscript t to denote the individual
observation, and T to denote the number of observations.

Because of the sequential nature of time series, we expect that yt and yt−1 are not independent,
so classical assumptions are not valid.

We can separate time series into two categories: univariate (yt ∈ R is scalar); and multivariate
(yt ∈ Rm is vector-valued). The primary model for univariate time series is autoregressions (ARs).
The primary model for multivariate time series is vector autoregressions (VARs).

12.1 Stationarity and Ergodicity

Definition 12.1.1 {yt} is covariance (weakly) stationary if

E(yt) = µ

is independent of t, and

cov (yt, yt−k) = γ(k)

is independent of t for all k.γ(k) is called the autocovariance function.

ρ(k) = γ(k)/γ(0) = corr(yt, yt−k)

is the autocorrelation function.

Definition 12.1.2 {yt} is strictly stationary if the joint distribution of
(yt, ..., yt−k) is independent of t for all k.

Definition 12.1.3 A stationary time series is ergodic if γ(k) → 0 as
k →∞.

163



The following two theorems are essential to the analysis of stationary time series. There proofs
are rather diffi cult, however.

Theorem 12.1.1 If yt is strictly stationary and ergodic and xt =
f(yt, yt−1, ...) is a random variable, then xt is strictly stationary and er-
godic.

Theorem 12.1.2 (Ergodic Theorem). If yt is strictly stationary and er-
godic and E |yt| <∞, then as T →∞,

1

T

T∑
t=1

yt
p−→ E(yt).

This allows us to consistently estimate parameters using time-series moments:
The sample mean:

µ̂ =
1

T

T∑
t=1

yt

The sample autocovariance

γ̂(k) =
1

T

T∑
t=1

(yt − µ̂) (yt−k − µ̂) .

The sample autocorrelation

ρ̂(k) =
γ̂(k)

γ̂(0)
.

Theorem 12.1.3 If yt is strictly stationary and ergodic and Ey2
t < ∞,

then as T →∞,

1. µ̂
p−→ E(yt);

2. γ̂(k)
p−→ γ(k);

3. ρ̂(k)
p−→ ρ(k).

Proof of Theorem 12.1.3. Part (1) is a direct consequence of the Ergodic theorem. For Part
(2), note that

γ̂(k) =
1

T

T∑
t=1

(yt − µ̂) (yt−k − µ̂)

=
1

T

T∑
t=1

ytyt−k −
1

T

T∑
t=1

ytµ̂−
1

T

T∑
t=1

yt−kµ̂+ µ̂2.
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By Theorem 12.1.1 above, the sequence ytyt−k is strictly stationary and ergodic, and it has a finite
mean by the assumption that Ey2

t <∞. Thus an application of the Ergodic Theorem yields

1

T

T∑
t=1

ytyt−k
p−→ E(ytyt−k).

Thus
γ̂(k)

p−→ E(ytyt−k)− µ2 − µ2 + µ2 = E(ytyt−k)− µ2 = γ(k).

Part (3) follows by the continuous mapping theorem: ρ̂(k) = γ̂(k)/γ̂(0)
p−→ γ(k)/γ(0) = ρ(k).

12.2 Autoregressions

In time-series, the series {..., y1, y2, ..., yT , ...} are jointly random. We consider the conditional
expectation

E (yt | Ft−1)

where Ft−1 = {yt−1, yt−2, ...} is the past history of the series.
An autoregressive (AR) model specifies that only a finite number of past lags matter:

E (yt | Ft−1) = E (yt | yt−1, ..., yt−k) .

A linear AR model (the most common type used in practice) specifies linearity:

E (yt | Ft−1) = α+ ρ1yt−1 + ρ2yt−1 + · · ·+ ρkyt−k.

Letting
et = yt − E (yt | Ft−1) ,

then we have the autoregressive model

yt = α+ ρ1yt−1 + ρ2yt−1 + · · ·+ ρkyt−k + et

E (et | Ft−1) = 0.

The last property defines a special time-series process.

Definition 12.2.1 et is a martingale diff erence sequence (MDS) if
E (et | Ft−1) = 0.

Regression errors are naturally a MDS. Some time-series processes may be a MDS as a conse-
quence of optimizing behavior. For example, some versions of the life-cycle hypothesis imply that
either changes in consumption, or consumption growth rates, should be a MDS. Most asset pricing
models imply that asset returns should be the sum of a constant plus a MDS.

The MDS property for the regression error plays the same role in a time-series regression as
does the conditional mean-zero property for the regression error in a cross-section regression. In
fact, it is even more important in the time-series context, as it is diffi cult to derive distribution
theories without this property.

A useful property of a MDS is that et is uncorrelated with any function of the lagged information
Ft−1. Thus for k > 0, E (yt−ket) = 0.
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12.3 Stationarity of AR(1) Process

A mean-zero AR(1) is
yt = ρyt−1 + et.

Assume that et is iid, E(et) = 0 and Ee2
t = σ2 <∞.

By back-substitution, we find

yt = et + ρet−1 + ρ2et−2 + ...

=
∞∑
k=0

ρket−k.

Loosely speaking, this series converges if the sequence ρket−k gets small as k → ∞. This occurs
when |ρ| < 1.

Theorem 12.3.1 If |ρ| < 1 then yt is strictly stationary and ergodic.

We can compute the moments of yt using the infinite sum:

Eyt =
∞∑
k=0

ρkE (et−k) = 0

var(yt) =
∞∑
k=0

ρ2k var (et−k) =
σ2

1− ρ2
.

If the equation for yt has an intercept, the above results are unchanged, except that the mean
of yt can be computed from the relationship

Eyt = α+ ρEyt−1,

and solving for Eyt = Eyt−1 we find Eyt = α/(1− ρ).

12.4 Lag Operator

An algebraic construct which is useful for the analysis of autoregressive models is the lag oper-
ator.

Definition 12.4.1 The lag operator L satisfies Lyt = yt−1.

Defining L2 = LL, we see that L2yt = Lyt−1 = yt−2. In general, Lkyt = yt−k.
The AR(1) model can be written in the format

yt − ρyt−1 + et

or
(1− ρL) yt−1 = et.

The operator ρ(L) = (1 − ρL) is a polynomial in the operator L. We say that the root of the
polynomial is 1/ρ, since ρ(z) = 0 when z = 1/ρ. We call ρ(L) the autoregressive polynomial of yt.

From Theorem 12.3.1, an AR(1) is stationary iff |ρ| < 1. Note that an equivalent way to say
this is that an AR(1) is stationary iff the root of the autoregressive polynomial is larger than one
(in absolute value).
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12.5 Stationarity of AR(k)

The AR(k) model is
yt = ρ1yt−1 + ρ2yt−2 + · · ·+ ρkyt−k + et.

Using the lag operator,
yt − ρ1Lyt − ρ2L2yt − · · · − ρkLkyt = et,

or
ρ(L)yt = et

where
ρ(L) = 1− ρ1L− ρ2L2 − · · · − ρkLk.

We call ρ(L) the autoregressive polynomial of yt.
The Fundamental Theorem of Algebra says that any polynomial can be factored as

ρ(z) =
(
1− λ−1

1 z
) (

1− λ−1
2 z
)
· · ·
(
1− λ−1

k z
)

where the λ1, ..., λk are the complex roots of ρ(z), which satisfy ρ(λj) = 0.
We know that an AR(1) is stationary iff the absolute value of the root of its autoregressive

polynomial is larger than one. For an AR(k), the requirement is that all roots are larger than one.
Let |λ| denote the modulus of a complex number λ.

Theorem 12.5.1 The AR(k) is strictly stationary and ergodic if and only
if |λj | > 1 for all j.

One way of stating this is that “All roots lie outside the unit circle.”
If one of the roots equals 1, we say that ρ(L), and hence yt, “has a unit root”. This is a special

case of non-stationarity, and is of great interest in applied time series.

12.6 Estimation

Let

xt =
(

1 yt−1 yt−2 · · · yt−k
)′

β =
(
α ρ1 ρ2 · · · ρk

)′
.

Then the model can be written as
yt = x′tβ + et.

The OLS estimator is
β̂ =

(
X ′X

)−1
X ′y.

To study β̂, it is helpful to define the process ut = xtet. Note that ut is a MDS, since

E (ut | Ft−1) = E (xtet | Ft−1) = xtE (et | Ft−1) = 0.

By Theorem 12.1.1, it is also strictly stationary and ergodic. Thus

1

T

T∑
t=1

xtet =
1

T

T∑
t=1

ut
p−→ E (ut) = 0. (12.1)
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The vector xt is strictly stationary and ergodic, and by Theorem 12.1.1, so is xtx′t. Thus by the
Ergodic Theorem,

1

T

T∑
t=1

xtx
′
t

p−→ E
(
xtx

′
t

)
= Q.

Combined with (12.1) and the continuous mapping theorem, we see that

β̂ = β +

(
1

T

T∑
t=1

xtx
′
t

)−1(
1

T

T∑
t=1

xtet

)
p−→ Q−10 = 0.

We have shown the following:

Theorem 12.6.1 If the AR(k) process yt is strictly stationary and ergodic
and Ey2

t <∞, then β̂
p−→ β as T →∞.

12.7 Asymptotic Distribution

Theorem 12.7.1 MDS CLT. If ut is a strictly stationary and ergodic
MDS and E (utu

′
t) = Ω <∞, then as T →∞,

1√
T

T∑
t=1

ut
d−→ N (0,Ω) .

Since xtet is a MDS, we can apply Theorem 12.7.1 to see that

1√
T

T∑
t=1

xtet
d−→ N (0,Ω) ,

where
Ω = E(xtx

′
te

2
t ).

Theorem 12.7.2 If the AR(k) process yt is strictly stationary and ergodic
and Ey4

t <∞, then as T →∞,
√
T
(
β̂ − β

)
d−→ N

(
0,Q−1ΩQ−1

)
.

This is identical in form to the asymptotic distribution of OLS in cross-section regression. The
implication is that asymptotic inference is the same. In particular, the asymptotic covariance
matrix is estimated just as in the cross-section case.
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12.8 Bootstrap for Autoregressions

In the non-parametric bootstrap, we constructed the bootstrap sample by randomly resampling
from the data values {yt,xt}. This creates an iid bootstrap sample. Clearly, this cannot work in a
time-series application, as this imposes inappropriate independence.

Briefly, there are two popular methods to implement bootstrap resampling for time-series data.

Method 1: Model-Based (Parametric) Bootstrap.

1. Estimate β̂ and residuals êt.

2. Fix an initial condition (y−k+1, y−k+2, ..., y0).

3. Simulate iid draws e∗i from the empirical distribution of the residuals {ê1, ..., êT }.

4. Create the bootstrap series y∗t by the recursive formula

y∗t = α̂+ ρ̂1y
∗
t−1 + ρ̂2y

∗
t−2 + · · ·+ ρ̂ky

∗
t−k + e∗t .

This construction imposes homoskedasticity on the errors e∗i , which may be different than the
properties of the actual ei. It also presumes that the AR(k) structure is the truth.

Method 2: Block Resampling

1. Divide the sample into T/m blocks of length m.

2. Resample complete blocks. For each simulated sample, draw T/m blocks.

3. Paste the blocks together to create the bootstrap time-series y∗t .

4. This allows for arbitrary stationary serial correlation, heteroskedasticity, and for model-
misspecification.

5. The results may be sensitive to the block length, and the way that the data are partitioned
into blocks.

6. May not work well in small samples.

12.9 Trend Stationarity

yt = µ0 + µ1t+ St (12.2)

St = ρ1St−1 + ρ2St−2 + · · ·+ ρkSt−l + et, (12.3)

or
yt = α0 + α1t+ ρ1yt−1 + ρ2yt−1 + · · ·+ ρkyt−k + et. (12.4)

There are two essentially equivalent ways to estimate the autoregressive parameters (ρ1, ..., ρk).

• You can estimate (12.4) by OLS.

• You can estimate (12.2)-(12.3) sequentially by OLS. That is, first estimate (12.2), get the
residual Ŝt, and then perform regression (12.3) replacing St with Ŝt. This procedure is some-
times called Detrending.
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The reason why these two procedures are (essentially) the same is the Frisch-Waugh-Lovell
theorem.

Seasonal Effects

There are three popular methods to deal with seasonal data.

• Include dummy variables for each season. This presumes that “seasonality”does not change
over the sample.

• Use “seasonally adjusted” data. The seasonal factor is typically estimated by a two-sided
weighted average of the data for that season in neighboring years. Thus the seasonally
adjusted data is a “filtered”series. This is a flexible approach which can extract a wide range
of seasonal factors. The seasonal adjustment, however, also alters the time-series correlations
of the data.

• First apply a seasonal differencing operator. If s is the number of seasons (typically s = 4 or
s = 12),

∆syt = yt − yt−s,
or the season-to-season change. The series ∆syt is clearly free of seasonality. But the long-run
trend is also eliminated, and perhaps this was of relevance.

12.10 Testing for Omitted Serial Correlation

For simplicity, let the null hypothesis be an AR(1):

yt = α+ ρyt−1 + ut. (12.5)

We are interested in the question if the error ut is serially correlated. We model this as an AR(1):

ut = θut−1 + et (12.6)

with et a MDS. The hypothesis of no omitted serial correlation is

H0 : θ = 0

H1 : θ 6= 0.

We want to test H0 against H1.
To combine (12.5) and (12.6), we take (12.5) and lag the equation once:

yt−1 = α+ ρyt−2 + ut−1.

We then multiply this by θ and subtract from (12.5), to find

yt − θyt−1 = α− θα+ ρyt−1 − θρyt−1 + ut − θut−1,

or
yt = α(1− θ) + (ρ+ θ) yt−1 − θρyt−2 + et = AR(2).

Thus under H0, yt is an AR(1), and under H1 it is an AR(2). H0 may be expressed as the restriction
that the coeffi cient on yt−2 is zero.

An appropriate test of H0 against H1 is therefore a Wald test that the coeffi cient on yt−2 is
zero. (A simple exclusion test).

In general, if the null hypothesis is that yt is an AR(k), and the alternative is that the error is an
AR(m), this is the same as saying that under the alternative yt is an AR(k+m), and this is equivalent
to the restriction that the coeffi cients on yt−k−1, ..., yt−k−m are jointly zero. An appropriate test is
the Wald test of this restriction.
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12.11 Model Selection

What is the appropriate choice of k in practice? This is a problem of model selection.
One approach to model selection is to choose k based on a Wald tests.
Another is to minimize the AIC or BIC information criterion, e.g.

AIC(k) = log σ̂2(k) +
2k

T
,

where σ̂2(k) is the estimated residual variance from an AR(k)
One ambiguity in defining the AIC criterion is that the sample available for estimation changes

as k changes. (If you increase k, you need more initial conditions.) This can induce strange
behavior in the AIC. The best remedy is to fix a upper value k, and then reserve the first k as
initial conditions, and then estimate the models AR(1), AR(2), ..., AR(k) on this (unified) sample.

12.12 Autoregressive Unit Roots

The AR(k) model is

ρ(L)yt = µ+ et

ρ(L) = 1− ρ1L− · · · − ρkLk.

As we discussed before, yt has a unit root when ρ(1) = 0, or

ρ1 + ρ2 + · · ·+ ρk = 1.

In this case, yt is non-stationary. The ergodic theorem and MDS CLT do not apply, and test
statistics are asymptotically non-normal.

A helpful way to write the equation is the so-called Dickey-Fuller reparameterization:

∆yt = µ+ α0yt−1 + α1∆yt−1 + · · ·+ αk−1∆yt−(k−1) + et. (12.7)

These models are equivalent linear transformations of one another. The DF parameterization
is convenient because the parameter α0 summarizes the information about the unit root, since
ρ(1) = −α0. To see this, observe that the lag polynomial for the yt computed from (12.7) is

(1− L)− α0L− α1(L− L2)− · · · − αk−1(Lk−1 − Lk)

But this must equal ρ(L), as the models are equivalent. Thus

ρ(1) = (1− 1)− α0 − (1− 1)− · · · − (1− 1) = −α0.

Hence, the hypothesis of a unit root in yt can be stated as

H0 : α0 = 0.

Note that the model is stationary if α0 < 0. So the natural alternative is

H1 : α0 < 0.

Under H0, the model for yt is

∆yt = µ+ α1∆yt−1 + · · ·+ αk−1∆yt−(k−1) + et,

which is an AR(k-1) in the first-difference ∆yt. Thus if yt has a (single) unit root, then ∆yt is a
stationary AR process. Because of this property, we say that if yt is non-stationary but ∆dyt is
stationary, then yt is “integrated of order d”, or I(d). Thus a time series with unit root is I(1).
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Since α0 is the parameter of a linear regression, the natural test statistic is the t-statistic for
H0 from OLS estimation of (12.7). Indeed, this is the most popular unit root test, and is called the
Augmented Dickey-Fuller (ADF) test for a unit root.

It would seem natural to assess the significance of the ADF statistic using the normal table.
However, under H0, yt is non-stationary, so conventional normal asymptotics are invalid. An
alternative asymptotic framework has been developed to deal with non-stationary data. We do not
have the time to develop this theory in detail, but simply assert the main results.

Theorem 12.12.1 Dickey-Fuller Theorem.
Assume α0 = 0. As T →∞,

T α̂0
d−→ (1− α1 − α2 − · · · − αk−1)DFα

ADF =
α̂0

s(α̂0)
→ DFt.

The limit distributions DFα and DFt are non-normal. They are skewed to the left, and have
negative means.

The first result states that α̂0 converges to its true value (of zero) at rate T, rather than the
conventional rate of T 1/2. This is called a “super-consistent”rate of convergence.

The second result states that the t-statistic for α̂0 converges to a limit distribution which is
non-normal, but does not depend on the parameters α. This distribution has been extensively
tabulated, and may be used for testing the hypothesis H0. Note: The standard error s(α̂0) is the
conventional (“homoskedastic”) standard error. But the theorem does not require an assumption
of homoskedasticity. Thus the Dickey-Fuller test is robust to heteroskedasticity.

Since the alternative hypothesis is one-sided, the ADF test rejects H0 in favor of H1 when
ADF < c, where c is the critical value from the ADF table. If the test rejects H0, this means that
the evidence points to yt being stationary. If the test does not reject H0, a common conclusion is
that the data suggests that yt is non-stationary. This is not really a correct conclusion, however.
All we can say is that there is insuffi cient evidence to conclude whether the data are stationary or
not.

We have described the test for the setting of with an intercept. Another popular setting includes
as well a linear time trend. This model is

∆yt = µ1 + µ2t+ α0yt−1 + α1∆yt−1 + · · ·+ αk−1∆yt−(k−1) + et. (12.8)

This is natural when the alternative hypothesis is that the series is stationary about a linear time
trend. If the series has a linear trend (e.g. GDP, Stock Prices), then the series itself is non-
stationary, but it may be stationary around the linear time trend. In this context, it is a silly waste
of time to fit an AR model to the level of the series without a time trend, as the AR model cannot
conceivably describe this data. The natural solution is to include a time trend in the fitted OLS
equation. When conducting the ADF test, this means that it is computed as the t-ratio for α0 from
OLS estimation of (12.8).

If a time trend is included, the test procedure is the same, but different critical values are
required. The ADF test has a different distribution when the time trend has been included, and a
different table should be consulted.

Most texts include as well the critical values for the extreme polar case where the intercept has
been omitted from the model. These are included for completeness (from a pedagogical perspective)
but have no relevance for empirical practice where intercepts are always included.
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Chapter 13

Multivariate Time Series

A multivariate time series yt is a vector process m×1. Let Ft−1 = (yt−1,yt−2, ...) be all lagged
information at time t. The typical goal is to find the conditional expectation E (yt | Ft−1) . Note
that since yt is a vector, this conditional expectation is also a vector.

13.1 Vector Autoregressions (VARs)

A VAR model specifies that the conditional mean is a function of only a finite number of lags:

E (yt | Ft−1) = E
(
yt | yt−1, ...,yt−k

)
.

A linear VAR specifies that this conditional mean is linear in the arguments:

E
(
yt | yt−1, ...,yt−k

)
= a0 +A1yt−1 +A2yt−2 + · · ·Akyt−k.

Observe that a0 is m× 1,and each of A1 through Ak are m×m matrices.
Defining the m× 1 regression error

et = yt − E (yt | Ft−1) ,

we have the VAR model

yt = a0 +A1yt−1 +A2yt−2 + · · ·Akyt−k + et

E (et | Ft−1) = 0.

Alternatively, defining the mk + 1 vector

xt =


1
yt−1

yt−2
...

yt−k


and the m× (mk + 1) matrix

A =
(
a0 A1 A2 · · · Ak

)
,

then
yt = Axt + et.

The VAR model is a system of m equations. One way to write this is to let a′j be the jth row
of A. Then the VAR system can be written as the equations

Yjt = a′jxt + ejt.

Unrestricted VARs were introduced to econometrics by Sims (1980).
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13.2 Estimation

Consider the moment conditions
E (xtejt) = 0,

j = 1, ...,m. These are implied by the VAR model, either as a regression, or as a linear projection.
The GMM estimator corresponding to these moment conditions is equation-by-equation OLS

âj = (X ′X)−1X ′yj .

An alternative way to compute this is as follows. Note that

â′j = y′jX(X ′X)−1.

And if we stack these to create the estimate Â, we find

Â =


y′1
y′2
...

y′m+1

X(X ′X)−1

= Y ′X(X ′X)−1,

where
Y =

(
y1 y2 · · · ym

)
the T ×m matrix of the stacked y′t.

This (system) estimator is known as the SUR (Seemingly Unrelated Regressions) estimator,
and was originally derived by Zellner (1962)

13.3 Restricted VARs

The unrestricted VAR is a system of m equations, each with the same set of regressors. A
restricted VAR imposes restrictions on the system. For example, some regressors may be excluded
from some of the equations. Restrictions may be imposed on individual equations, or across equa-
tions. The GMM framework gives a convenient method to impose such restrictions on estimation.

13.4 Single Equation from a VAR

Often, we are only interested in a single equation out of a VAR system. This takes the form

yjt = a′jxt + et,

and xt consists of lagged values of yjt and the other y′lts. In this case, it is convenient to re-define
the variables. Let yt = yjt, and zt be the other variables. Let et = ejt and β = aj . Then the single
equation takes the form

yt = x′tβ + et, (13.1)

and
xt =

[(
1 yt−1 · · · yt−k z′t−1 · · · z′t−k

)′]
.

This is just a conventional regression with time series data.
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13.5 Testing for Omitted Serial Correlation

Consider the problem of testing for omitted serial correlation in equation (13.1). Suppose that
et is an AR(1). Then

yt = x′tβ + et

et = θet−1 + ut (13.2)

E (ut | Ft−1) = 0.

Then the null and alternative are

H0 : θ = 0 H1 : θ 6= 0.

Take the equation yt = x′tβ + et, and subtract off the equation once lagged multiplied by θ, to get

yt − θyt−1 =
(
x′tβ + et

)
− θ

(
x′t−1β + et−1

)
= x′tβ − θxt−1β + et − θet−1,

or
yt = θyt−1 + x′tβ + x′t−1γ + ut, (13.3)

which is a valid regression model.
So testing H0 versus H1 is equivalent to testing for the significance of adding (yt−1,xt−1) to

the regression. This can be done by a Wald test. We see that an appropriate, general, and simple
way to test for omitted serial correlation is to test the significance of extra lagged values of the
dependent variable and regressors.

You may have heard of the Durbin-Watson test for omitted serial correlation, which once was
very popular, and is still routinely reported by conventional regression packages. The DW test is
appropriate only when regression yt = x′tβ+ et is not dynamic (has no lagged values on the RHS),
and et is iid N(0, σ2). Otherwise it is invalid.

Another interesting fact is that (13.2) is a special case of (13.3), under the restriction γ = −βθ.
This restriction, which is called a common factor restriction, may be tested if desired. If valid,
the model (13.2) may be estimated by iterated GLS. (A simple version of this estimator is called
Cochrane-Orcutt.) Since the common factor restriction appears arbitrary, and is typically rejected
empirically, direct estimation of (13.2) is uncommon in recent applications.

13.6 Selection of Lag Length in an VAR

If you want a data-dependent rule to pick the lag length k in a VAR, you may either use a testing-
based approach (using, for example, the Wald statistic), or an information criterion approach. The
formula for the AIC and BIC are

AIC(k) = log det
(
Ω̂(k)

)
+ 2

p

T

BIC(k) = log det
(
Ω̂(k)

)
+
p log(T )

T

Ω̂(k) =
1

T

T∑
t=1

êt(k)êt(k)′

p = m(km+ 1)

where p is the number of parameters in the model, and êt(k) is the OLS residual vector from the
model with k lags. The log determinant is the criterion from the multivariate normal likelihood.
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13.7 Granger Causality

Partition the data vector into (yt, zt). Define the two information sets

F1t =
(
yt,yt−1,yt−2, ...

)
F2t =

(
yt, zt,yt−1, zt−1,yt−2, zt−2, , ...

)
The information set F1t is generated only by the history of yt, and the information set F2t is
generated by both yt and zt. The latter has more information.

We say that zt does not Granger-cause yt if

E (yt | F1,t−1) = E (yt | F2,t−1) .

That is, conditional on information in lagged yt, lagged zt does not help to forecast yt. If this
condition does not hold, then we say that zt Granger-causes yt.

The reason why we call this “Granger Causality”rather than “causality”is because this is not
a physical or structure definition of causality. If zt is some sort of forecast of the future, such as a
futures price, then zt may help to forecast yt even though it does not “cause”yt. This definition
of causality was developed by Granger (1969) and Sims (1972).

In a linear VAR, the equation for yt is

yt = α+ ρ1yt−1 + · · ·+ ρkyt−k + z′t−1γ1 + · · ·+ z′t−kγk + et.

In this equation, zt does not Granger-cause yt if and only if

H0 : γ1 = γ2 = · · · = γk = 0.

This may be tested using an exclusion (Wald) test.
This idea can be applied to blocks of variables. That is, yt and/or zt can be vectors. The

hypothesis can be tested by using the appropriate multivariate Wald test.
If it is found that zt does not Granger-cause yt, then we deduce that our time-series model of

E (yt | Ft−1) does not require the use of zt. Note, however, that zt may still be useful to explain
other features of yt, such as the conditional variance.

Clive W. J. Granger

Clive Granger (1934-2009) of England was one of the leading figures in time-series econo-
metrics, and co-winner in 2003 of the Nobel Memorial Prize in Economic Sciences (along
with Robert Engle). In addition to formalizing the definition of causality known as Granger
causality, he invented the concept of cointegration, introduced spectral methods into econo-
metrics, and formalized methods for the combination of forecasts.

13.8 Cointegration

The idea of cointegration is due to Granger (1981), and was articulated in detail by Engle and
Granger (1987).

Definition 13.8.1 The m × 1 series yt is cointegrated if yt is I(1) yet
there exists β, m× r, of rank r, such that zt = β′yt is I(0). The r vectors
in β are called the cointegrating vectors.
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If the series yt is not cointegrated, then r = 0. If r = m, then yt is I(0). For 0 < r < m, yt is
I(1) and cointegrated.

In some cases, it may be believed that β is known a priori. Often, β = (1 − 1)′. For example,
if yt is a pair of interest rates, then β = (1 − 1)′ specifies that the spread (the difference in
returns) is stationary. If y = (log(Consumption) log(Income))′, then β = (1 − 1)′ specifies
that log(Consumption/Income) is stationary.

In other cases, β may not be known.
If yt is cointegrated with a single cointegrating vector (r = 1), then it turns out that β can

be consistently estimated by an OLS regression of one component of yt on the others. Thus yt =

(Y1t, Y2t) and β = (β1 β2) and normalize β1 = 1. Then β̂2 = (y′2y2)−1y′2y1
p−→ β2. Furthermore

this estimation is super-consistent: T (β̂2 − β2)
d−→ Limit, as first shown by Stock (1987). This

is not, in general, a good method to estimate β, but it is useful in the construction of alternative
estimators and tests.

We are often interested in testing the hypothesis of no cointegration:

H0 : r = 0

H1 : r > 0.

Suppose that β is known, so zt = β′yt is known. Then under H0 zt is I(1), yet under H1 zt is
I(0). Thus H0 can be tested using a univariate ADF test on zt.

When β is unknown, Engle and Granger (1987) suggested using an ADF test on the estimated
residual ẑt = β̂

′
yt, from OLS of y1t on y2t. Their justification was Stock’s result that β̂ is super-

consistent under H1. Under H0, however, β̂ is not consistent, so the ADF critical values are not
appropriate. The asymptotic distribution was worked out by Phillips and Ouliaris (1990).

When the data have time trends, it may be necessary to include a time trend in the estimated
cointegrating regression. Whether or not the time trend is included, the asymptotic distribution of
the test is affected by the presence of the time trend. The asymptotic distribution was worked out
in B. Hansen (1992).

13.9 Cointegrated VARs

We can write a VAR as

A(L)yt = et

A(L) = I −A1L−A2L2 − · · · −AkL
k

or alternatively as
∆yt = Πyt−1 +D(L)∆yt−1 + et

where

Π = −A(1)

= −I +A1 +A2 + · · ·+Ak.

Theorem 13.9.1 Granger Representation Theorem
yt is cointegrated with m × r β if and only if rank(Π) = r and Π = αβ′

where α is m× r, rank (α) = r.
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Thus cointegration imposes a restriction upon the parameters of a VAR. The restricted model
can be written as

∆yt = αβ′yt−1 +D(L)∆yt−1 + et

∆yt = αzt−1 +D(L)∆yt−1 + et.

If β is known, this can be estimated by OLS of ∆yt on zt−1 and the lags of ∆yt.
If β is unknown, then estimation is done by “reduced rank regression”, which is least-squares

subject to the stated restriction. Equivalently, this is the MLE of the restricted parameters under
the assumption that et is iid N(0,Ω).

One diffi culty is that β is not identified without normalization. When r = 1, we typically just
normalize one element to equal unity. When r > 1, this does not work, and different authors have
adopted different identification schemes.

In the context of a cointegrated VAR estimated by reduced rank regression, it is simple to test
for cointegration by testing the rank ofΠ. These tests are constructed as likelihood ratio (LR) tests.
As they were discovered by Johansen (1988, 1991, 1995), they are typically called the “Johansen
Max and Trace” tests. Their asymptotic distributions are non-standard, and are similar to the
Dickey-Fuller distributions.
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Chapter 14

Limited Dependent Variables

A “limited dependent variable”y is one which takes a “limited”set of values. The most common
cases are

• Binary: y ∈ {0, 1}

• Multinomial: y ∈ {0, 1, 2, ..., k}

• Integer: y ∈ {0, 1, 2, ...}

• Censored: y ∈ R+

The traditional approach to the estimation of limited dependent variable (LDV) models is
parametric maximum likelihood. A parametric model is constructed, allowing the construction of
the likelihood function. A more modern approach is semi-parametric, eliminating the dependence
on a parametric distributional assumption. We will discuss only the first (parametric) approach,
due to time constraints. They still constitute the majority of LDV applications. If, however, you
were to write a thesis involving LDV estimation, you would be advised to consider employing a
semi-parametric estimation approach.

For the parametric approach, estimation is by MLE. A major practical issue is construction of
the likelihood function.

14.1 Binary Choice

The dependent variable yi ∈ {0, 1}. This represents a Yes/No outcome. Given some regressors
xi, the goal is to describe P (yi = 1 | xi) , as this is the full conditional distribution.

The linear probability model specifies that

P (yi = 1 | xi) = x′iβ.

As P (yi = 1 | xi) = E (yi | xi) , this yields the regression: yi = x′iβ+ ei which can be estimated by
OLS. However, the linear probability model does not impose the restriction that 0 ≤ P (yi | xi) ≤ 1.
Even so estimation of a linear probability model is a useful starting point for subsequent analysis.

The standard alternative is to use a function of the form

P (yi = 1 | xi) = F
(
x′iβ

)
where F (·) is a known CDF, typically assumed to be symmetric about zero, so that F (u) =
1− F (−u). The two standard choices for F are

• Logistic: F (u) = (1 + e−u)
−1
.
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• Normal: F (u) = Φ(u).

If F is logistic, we call this the logit model, and if F is normal, we call this the probit model.
This model is identical to the latent variable model

y∗i = x′iβ + ei

ei ∼ F (·)

yi =

{
1 if y∗i > 0
0 otherwise

.

For then

P (yi = 1 | xi) = P (y∗i > 0 | xi)
= P

(
x′iβ + ei > 0 | xi

)
= P

(
ei > −x′iβ | xi

)
= 1− F

(
−x′iβ

)
= F

(
x′iβ

)
.

Estimation is by maximum likelihood. To construct the likelihood, we need the conditional
distribution of an individual observation. Recall that if y is Bernoulli, such that P(y = 1) = p and
P(y = 0) = 1− p, then we can write the density of y as

f(y) = py(1− p)1−y, y = 0, 1.

In the Binary choice model, yi is conditionally Bernoulli with P (yi = 1 | xi) = pi = F (x′iβ) . Thus
the conditional density is

f (yi | xi) = pyii (1− pi)1−yi

= F
(
x′iβ

)yi (1− F
(
x′iβ

)
)1−yi .

Hence the log-likelihood function is

logL(β) =

n∑
i=1

log f(yi | xi)

=

n∑
i=1

log
(
F
(
x′iβ

)yi (1− F
(
x′iβ

)
)1−yi)

=

n∑
i=1

[
yi logF

(
x′iβ

)
+ (1− yi) log(1− F

(
x′iβ

)
)
]

=
∑
yi=1

logF
(
x′iβ

)
+
∑
yi=0

log(1− F
(
x′iβ

)
).

The MLE β̂ is the value of β which maximizes logL(β). Standard errors and test statistics are
computed by asymptotic approximations. Details of such calculations are left to more advanced
courses.

14.2 Count Data

If y ∈ {0, 1, 2, ...}, a typical approach is to employ Poisson regression. This model specifies that

P (yi = k | xi) =
exp (−λi)λki

k!
, k = 0, 1, 2, ...

λi = exp(x′iβ).
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The conditional density is the Poisson with parameter λi. The functional form for λi has been
picked to ensure that λi > 0.

The log-likelihood function is

logL(β) =
n∑
i=1

log f(yi | xi) =
n∑
i=1

(
− exp(x′iβ) + yix

′
iβ − log(yi!)

)
.

The MLE is the value β̂ which maximizes logL(β).
Since

E (yi | xi) = λi = exp(x′iβ)

is the conditional mean, this motivates the label Poisson “regression.”
Also observe that the model implies that

var (yi | xi) = λi = exp(x′iβ),

so the model imposes the restriction that the conditional mean and variance of yi are the same.
This may be considered restrictive. A generalization is the negative binomial.

14.3 Censored Data

The idea of “censoring” is that some data above or below a threshold are mis-reported at the
threshold. Thus the model is that there is some latent process y∗i with unbounded support, but we
observe only

yi =

{
y∗i if y∗i ≥ 0
0 if y∗i < 0

. (14.1)

(This is written for the case of the threshold being zero, any known value can substitute.) The
observed data yi therefore come from a mixed continuous/discrete distribution.

Censored models are typically applied when the data set has a meaningful proportion (say 5%
or higher) of data at the boundary of the sample support. The censoring process may be explicit
in data collection, or it may be a by-product of economic constraints.

An example of a data collection censoring is top-coding of income. In surveys, incomes above
a threshold are typically reported at the threshold.

The first censored regression model was developed by Tobin (1958) to explain consumption of
durable goods. Tobin observed that for many households, the consumption level (purchases) in a
particular period was zero. He proposed the latent variable model

y∗i = x′iβ + ei

ei ∼ iid N(0, σ2)

with the observed variable yi generated by the censoring equation (14.1). This model (now called
the Tobit) specifies that the latent (or ideal) value of consumption may be negative (the household
would prefer to sell than buy). All that is reported is that the household purchased zero units of
the good.

The naive approach to estimate β is to regress yi on xi. This does not work because regression
estimates E (yi | xi) , not E (y∗i | xi) = x′iβ, and the latter is of interest. Thus OLS will be biased
for the parameter of interest β.

[Note: it is still possible to estimate E (yi | xi) by LS techniques. The Tobit framework postu-
lates that this is not inherently interesting, that the parameter of β is defined by an alternative
statistical structure.]
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Consistent estimation will be achieved by the MLE. To construct the likelihood, observe that
the probability of being censored is

P (yi = 0 | xi) = P (y∗i < 0 | xi)
= P

(
x′iβ + ei < 0 | xi

)
= P

(
ei
σ
< −x

′
iβ

σ
| xi
)

= Φ

(
−x
′
iβ

σ

)
.

The conditional distribution function above zero is Gaussian:

P (yi = y | xi) =

∫ y

0
σ−1φ

(
z − x′iβ

σ

)
dz, y > 0.

Therefore, the density function can be written as

f (y | xi) = Φ

(
−x
′
iβ

σ

)1(y=0) [
σ−1φ

(
z − x′iβ

σ

)]1(y>0)

,

where 1 (·) is the indicator function.
Hence the log-likelihood is a mixture of the probit and the normal:

logL(β) =
n∑
i=1

log f(yi | xi)

=
∑
yi=0

log Φ

(
−x
′
iβ

σ

)
+
∑
yi>0

log

[
σ−1φ

(
yi − x′iβ

σ

)]
.

The MLE is the value β̂ which maximizes logL(β).

14.4 Sample Selection

The problem of sample selection arises when the sample is a non-random selection of potential
observations. This occurs when the observed data is systematically different from the population
of interest. For example, if you ask for volunteers for an experiment, and they wish to extrapolate
the effects of the experiment on a general population, you should worry that the people who
volunteer may be systematically different from the general population. This has great relevance for
the evaluation of anti-poverty and job-training programs, where the goal is to assess the effect of
“training”on the general population, not just on the volunteers.

A simple sample selection model can be written as the latent model

yi = x′iβ + e1i

Ti = 1
(
z′iγ + e0i > 0

)
where 1 (·) is the indicator function. The dependent variable yi is observed if (and only if) Ti = 1.
Else it is unobserved.

For example, yi could be a wage, which can be observed only if a person is employed. The
equation for Ti is an equation specifying the probability that the person is employed.

The model is often completed by specifying that the errors are jointly normal(
e0i

e1i

)
∼ N

(
0,

(
1 ρ
ρ σ2

))
.
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It is presumed that we observe {xi, zi, Ti} for all observations.
Under the normality assumption,

e1i = ρe0i + vi,

where vi is independent of e0i ∼ N(0, 1). A useful fact about the standard normal distribution is
that

E (e0i | e0i > −x) = λ(x) =
φ(x)

Φ(x)
,

and the function λ(x) is called the inverse Mills ratio.
The naive estimator of β is OLS regression of yi on xi for those observations for which yi is

available. The problem is that this is equivalent to conditioning on the event {Ti = 1}. However,

E (e1i | Ti = 1, zi) = E
(
e1i | {e0i > −z′iγ}, zi

)
= ρE

(
e0i | {e0i > −z′iγ}, zi

)
+ E

(
vi | {e0i > −z′iγ}, zi

)
= ρλ

(
z′iγ
)
,

which is non-zero. Thus
e1i = ρλ

(
z′iγ
)

+ ui,

where
E (ui | Ti = 1, zi) = 0.

Hence
yi = x′iβ + ρλ

(
z′iγ
)

+ ui (14.2)

is a valid regression equation for the observations for which Ti = 1.
Heckman (1979) observed that we could consistently estimate β and ρ from this equation, if γ

were known. It is unknown, but also can be consistently estimated by a Probit model for selection.
The “Heckit”estimator is thus calculated as follows

• Estimate γ̂ from a Probit, using regressors zi. The binary dependent variable is Ti.

• Estimate
(
β̂, ρ̂

)
from OLS of yi on xi and λ(z′iγ̂).

• The OLS standard errors will be incorrect, as this is a two-step estimator. They can be
corrected using a more complicated formula. Or, alternatively, by viewing the Probit/OLS
estimation equations as a large joint GMM problem.

The Heckit estimator is frequently used to deal with problems of sample selection. However,
the estimator is built on the assumption of normality, and the estimator can be quite sensitive
to this assumption. Some modern econometric research is exploring how to relax the normality
assumption.

The estimator can also work quite poorly if λ (z′iγ̂) does not have much in-sample variation.
This can happen if the Probit equation does not “explain”much about the selection choice. Another
potential problem is that if zi = xi, then λ (z′iγ̂) can be highly collinear with xi, so the second
step OLS estimator will not be able to precisely estimate β. Based this observation, it is typically
recommended to find a valid exclusion restriction: a variable should be in zi which is not in xi. If
this is valid, it will ensure that λ (z′iγ̂) is not collinear with xi, and hence improve the second stage
estimator’s precision.
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Chapter 15

Panel Data

A panel is a set of observations on individuals, collected over time. An observation is the pair
{yit,xit}, where the i subscript denotes the individual, and the t subscript denotes time. A panel
may be balanced :

{yit,xit} : t = 1, ..., T ; i = 1, ..., n,

or unbalanced :
{yit,xit} : For i = 1, ..., n, t = ti, ..., ti.

15.1 Individual-Effects Model

The standard panel data specification is that there is an individual-specific effect which enters
linearly in the regression

yit = x′itβ + ui + eit.

The typical maintained assumptions are that the individuals i are mutually independent, that ui
and eit are independent, that eit is iid across individuals and time, and that eit is uncorrelated with
xit.

OLS of yit on xit is called pooled estimation. It is consistent if

E (xitui) = 0 (15.1)

If this condition fails, then OLS is inconsistent. (15.1) fails if the individual-specific unobserved
effect ui is correlated with the observed explanatory variables xit. This is often believed to be
plausible if ui is an omitted variable.

If (15.1) is true, however, OLS can be improved upon via a GLS technique. In either event,
OLS appears a poor estimation choice.

Condition (15.1) is called the random effects hypothesis. It is a strong assumption, and most
applied researchers try to avoid its use.

15.2 Fixed Effects

This is the most common technique for estimation of non-dynamic linear panel regressions.
The motivation is to allow ui to be arbitrary, and have arbitrary correlated with xi. The goal

is to eliminate ui from the estimator, and thus achieve invariance.
There are several derivations of the estimator.
First, let

dij =


1 if i = j

0 else
,
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and

di =

 di1
...
din

 ,

an n× 1 dummy vector with a “1”in the i′th place. Let

u =

 u1
...
un

 .

Then note that
ui = d′iu,

and
yit = x′itβ + d′iu+ eit. (15.2)

Observe that
E (eit | xit,di) = 0,

so (15.2) is a valid regression, with di as a regressor along with xi.

OLS on (15.2) yields estimator
(
β̂, û

)
. Conventional inference applies.

Observe that

• This is generally consistent.

• If xit contains an intercept, it will be collinear with di, so the intercept is typically omitted
from xit.

• Any regressor in xit which is constant over time for all individuals (e.g., their gender) will be
collinear with di, so will have to be omitted.

• There are n+ k regression parameters, which is quite large as typically n is very large.

Computationally, you do not want to actually implement conventional OLS estimation, as the
parameter space is too large. OLS estimation of β proceeds by the FWL theorem. Stacking the
observations together:

y = Xβ +Du+ e,

then by the FWL theorem,

β̂ =
(
X ′ (I − PD)X

)−1 (
X ′ (I − PD)y

)
=

(
X∗′X∗

)−1 (
X∗′y∗

)
,

where

y∗ = y −D(D′D)−1D′y

X∗ = X −D(D′D)−1D′X.

Since the regression of yit on di is a regression onto individual-specific dummies, the predicted value
from these regressions is the individual specific mean yi, and the residual is the demean value

y∗it = yit − yi.

The fixed effects estimator β̂ is OLS of y∗it on x
∗
it, the dependent variable and regressors in deviation-

from-mean form.
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Another derivation of the estimator is to take the equation

yit = x′itβ + ui + eit,

and then take individual-specific means by taking the average for the i′th individual:

1

Ti

ti∑
t=ti

yit =
1

Ti

ti∑
t=ti

x′itβ + ui +
1

Ti

ti∑
t=ti

eit

or
yi = x′iβ + ui + ei.

Subtracting, we find
y∗it = x∗′itβ + e∗it,

which is free of the individual-effect ui.

15.3 Dynamic Panel Regression

A dynamic panel regression has a lagged dependent variable

yit = αyit−1 + x′itβ + ui + eit. (15.3)

This is a model suitable for studying dynamic behavior of individual agents.
Unfortunately, the fixed effects estimator is inconsistent, at least if T is held finite as n → ∞.

This is because the sample mean of yit−1 is correlated with that of eit.
The standard approach to estimate a dynamic panel is to combine first-differencing with IV or

GMM. Taking first-differences of (15.3) eliminates the individual-specific effect:

∆yit = α∆yit−1 + ∆x′itβ + ∆eit. (15.4)

However, if eit is iid, then it will be correlated with ∆yit−1 :

E (∆yit−1∆eit) = E ((yit−1 − yit−2) (eit − eit−1)) = −E (yit−1eit−1) = −σ2
e.

So OLS on (15.4) will be inconsistent.
But if there are valid instruments, then IV or GMM can be used to estimate the equation.

Typically, we use lags of the dependent variable, two periods back, as yt−2 is uncorrelated with
∆eit. Thus values of yit−k, k ≥ 2, are valid instruments.

Hence a valid estimator of α and β is to estimate (15.4) by IV using yt−2 as an instrument for
∆yt−1 (which is just identified). Alternatively, GMM using yt−2 and yt−3 as instruments (which is
overidentified, but loses a time-series observation).

A more sophisticated GMM estimator recognizes that for time-periods later in the sample, there
are more instruments available, so the instrument list should be different for each equation. This is
conveniently organized by the GMM principle, as this enables the moments from the different time-
periods to be stacked together to create a list of all the moment conditions. A simple application
of GMM yields the parameter estimates and standard errors.
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Chapter 16

Nonparametrics

16.1 Kernel Density Estimation

Let X be a random variable with continuous distribution F (x) and density f(x) = d
dxF (x).

The goal is to estimate f(x) from a random sample (X1, ..., Xn} While F (x) can be estimated by
the EDF F̂ (x) = n−1

∑n
i=1 1 (Xi ≤ x) , we cannot define d

dx F̂ (x) since F̂ (x) is a step function. The
standard nonparametric method to estimate f(x) is based on smoothing using a kernel.

While we are typically interested in estimating the entire function f(x), we can simply focus
on the problem where x is a specific fixed number, and then see how the method generalizes to
estimating the entire function.

Definition 16.1.1 K(u) is a second-order kernel function if it is a
symmetric zero-mean density function.

Three common choices for kernels include the Normal

K(u) =
1√
2π

exp

(
−u

2

2

)
the Epanechnikov

K(u) =

{
3
4

(
1− u2

)
, |u| ≤ 1

0 |u| > 1

and the Biweight or Quartic

K(u) =

{
15
16

(
1− u2

)2
, |u| ≤ 1

0 |u| > 1

In practice, the choice between these three rarely makes a meaningful difference in the estimates.
The kernel functions are used to smooth the data. The amount of smoothing is controlled by

the bandwidth h > 0. Let

Kh(u) =
1

h
K
(u
h

)
.

be the kernel K rescaled by the bandwidth h. The kernel density estimator of f(x) is

f̂(x) =
1

n

n∑
i=1

Kh (Xi − x) .
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This estimator is the average of a set of weights. If a large number of the observations Xi are near
x, then the weights are relatively large and f̂(x) is larger. Conversely, if only a few Xi are near x,
then the weights are small and f̂(x) is small. The bandwidth h controls the meaning of “near”.

Interestingly, f̂(x) is a valid density. That is, f̂(x) ≥ 0 for all x, and∫ ∞
−∞

f̂(x)dx =

∫ ∞
−∞

1

n

n∑
i=1

Kh (Xi − x) dx =
1

n

n∑
i=1

∫ ∞
−∞

Kh (Xi − x) dx =
1

n

n∑
i=1

∫ ∞
−∞

K (u) du = 1

where the second-to-last equality makes the change-of-variables u = (Xi − x)/h.
We can also calculate the moments of the density f̂(x). The mean is∫ ∞

−∞
xf̂(x)dx =

1

n

n∑
i=1

∫ ∞
−∞

xKh (Xi − x) dx

=
1

n

n∑
i=1

∫ ∞
−∞

(Xi + uh)K (u) du

=
1

n

n∑
i=1

Xi

∫ ∞
−∞

K (u) du+
1

n

n∑
i=1

h

∫ ∞
−∞

uK (u) du

=
1

n

n∑
i=1

Xi

the sample mean of the Xi, where the second-to-last equality used the change-of-variables u =
(Xi − x)/h which has Jacobian h.

The second moment of the estimated density is∫ ∞
−∞

x2f̂(x)dx =
1

n

n∑
i=1

∫ ∞
−∞

x2Kh (Xi − x) dx

=
1

n

n∑
i=1

∫ ∞
−∞

(Xi + uh)2K (u) du

=
1

n

n∑
i=1

X2
i +

2

n

n∑
i=1

Xih

∫ ∞
−∞

K(u)du+
1

n

n∑
i=1

h2

∫ ∞
−∞

u2K (u) du

=
1

n

n∑
i=1

X2
i + h2σ2

K

where

σ2
K =

∫ ∞
−∞

u2K (u) du

is the variance of the kernel. It follows that the variance of the density f̂(x) is

∫ ∞
−∞

x2f̂(x)dx−
(∫ ∞
−∞

xf̂(x)dx

)2

=
1

n

n∑
i=1

X2
i + h2σ2

K −
(

1

n

n∑
i=1

Xi

)2

= σ̂2 + h2σ2
K

Thus the variance of the estimated density is inflated by the factor h2σ2
K relative to the sample

moment.
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16.2 Asymptotic MSE for Kernel Estimates

For fixed x and bandwidth h observe that

EKh (X − x) =

∫ ∞
−∞

Kh (z − x) f(z)dz =

∫ ∞
−∞

Kh (uh) f(x+ hu)hdu =

∫ ∞
−∞

K (u) f(x+ hu)du

The second equality uses the change-of variables u = (z−x)/h. The last expression shows that the
expected value is an average of f(z) locally about x.

This integral (typically) is not analytically solvable, so we approximate it using a second order
Taylor expansion of f(x+ hu) in the argument hu about hu = 0, which is valid as h→ 0. Thus

f (x+ hu) ' f(x) + f ′(x)hu+
1

2
f ′′(x)h2u2

and therefore

EKh (X − x) '
∫ ∞
−∞

K (u)

(
f(x) + f ′(x)hu+

1

2
f ′′(x)h2u2

)
du

= f(x)

∫ ∞
−∞

K (u) du+ f ′(x)h

∫ ∞
−∞

K (u)udu+
1

2
f ′′(x)h2

∫ ∞
−∞

K (u)u2du

= f(x) +
1

2
f ′′(x)h2σ2

K .

The bias of f̂(x) is then

Bias(x) = Ef̂(x)− f(x) =
1

n

n∑
i=1

EKh (Xi − x)− f(x) =
1

2
f ′′(x)h2σ2

K .

We see that the bias of f̂(x) at x depends on the second derivative f ′′(x). The sharper the derivative,
the greater the bias. Intuitively, the estimator f̂(x) smooths data local to Xi = x, so is estimating
a smoothed version of f(x). The bias results from this smoothing, and is larger the greater the
curvature in f(x).

We now examine the variance of f̂(x). Since it is an average of iid random variables, using
first-order Taylor approximations and the fact that n−1 is of smaller order than (nh)−1

var (x) =
1

n
var (Kh (Xi − x))

=
1

n
EKh (Xi − x)2 − 1

n
(EKh (Xi − x))2

' 1

nh2

∫ ∞
−∞

K

(
z − x
h

)2

f(z)dz − 1

n
f(x)2

=
1

nh

∫ ∞
−∞

K (u)2 f (x+ hu) du

' f (x)

nh

∫ ∞
−∞

K (u)2 du

=
f (x)R(K)

nh
.

where R(K) =
∫∞
−∞K (u)2 du is called the roughness of K.

Together, the asymptotic mean-squared error (AMSE) for fixed x is the sum of the approximate
squared bias and approximate variance

AMSEh(x) =
1

4
f ′′(x)2h4σ4

K +
f (x)R(K)

nh
.
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A global measure of precision is the asymptotic mean integrated squared error (AMISE)

AMISEh =

∫
AMSEh(x)dx =

h4σ4
KR(f ′′)

4
+
R(K)

nh
. (16.1)

where R(f ′′) =
∫

(f ′′(x))2 dx is the roughness of f ′′. Notice that the first term (the squared bias)
is increasing in h and the second term (the variance) is decreasing in nh. Thus for the AMISE to
decline with n, we need h → 0 but nh → ∞. That is, h must tend to zero, but at a slower rate
than n−1.

Equation (16.1) is an asymptotic approximation to the MSE. We define the asymptotically
optimal bandwidth h0 as the value which minimizes this approximate MSE. That is,

h0 = argmin
h

AMISEh

It can be found by solving the first order condition

d

dh
AMISEh = h3σ4

KR(f ′′)− R(K)

nh2
= 0

yielding

h0 =

(
R(K)

σ4
KR(f ′′)

)1/5

n−1/2. (16.2)

This solution takes the form h0 = cn−1/5 where c is a function of K and f, but not of n. We
thus say that the optimal bandwidth is of order O(n−1/5). Note that this h declines to zero, but at
a very slow rate.

In practice, how should the bandwidth be selected? This is a diffi cult problem, and there is a
large and continuing literature on the subject. The asymptotically optimal choice given in (16.2)
depends on R(K), σ2

K , and R(f ′′). The first two are determined by the kernel function. Their
values for the three functions introduced in the previous section are given here.

K σ2
K =

∫∞
−∞ u

2K (u) du R(K) =
∫∞
−∞K (u)2 du

Gaussian 1 1/(2
√
π)

Epanechnikov 1/5 1/5
Biweight 1/7 5/7

An obvious diffi culty is that R(f ′′) is unknown. A classic simple solution proposed by Silverman
(1986)has come to be known as the reference bandwidth or Silverman’s Rule-of-Thumb. It
uses formula (16.2) but replaces R(f ′′) with σ̂−5R(φ′′), where φ is the N(0, 1) distribution and σ̂2 is
an estimate of σ2 = var(X). This choice for h gives an optimal rule when f(x) is normal, and gives
a nearly optimal rule when f(x) is close to normal. The downside is that if the density is very far
from normal, the rule-of-thumb h can be quite ineffi cient. We can calculate that R(φ′′) = 3/ (8

√
π) .

Together with the above table, we find the reference rules for the three kernel functions introduced
earlier.

Gaussian Kernel: hrule = 1.06σ̂n−1/5

Epanechnikov Kernel: hrule = 2.34σ̂n−1/5

Biweight (Quartic) Kernel: hrule = 2.78σ̂n−1/5

Unless you delve more deeply into kernel estimation methods the rule-of-thumb bandwidth is
a good practical bandwidth choice, perhaps adjusted by visual inspection of the resulting estimate
f̂(x). There are other approaches, but implementation can be delicate. I now discuss some of these
choices. The plug-in approach is to estimate R(f ′′) in a first step, and then plug this estimate into
the formula (16.2). This is more treacherous than may first appear, as the optimal h for estimation
of the roughness R(f ′′) is quite different than the optimal h for estimation of f(x). However, there
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are modern versions of this estimator work well, in particular the iterative method of Sheather
and Jones (1991). Another popular choice for selection of h is cross-validation. This works by
constructing an estimate of the MISE using leave-one-out estimators. There are some desirable
properties of cross-validation bandwidths, but they are also known to converge very slowly to the
optimal values. They are also quite ill-behaved when the data has some discretization (as is common
in economics), in which case the cross-validation rule can sometimes select very small bandwidths
leading to dramatically undersmoothed estimates. Fortunately there are remedies, which are known
as smoothed cross-validation which is a close cousin of the bootstrap.
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Appendix A

Matrix Algebra

A.1 Notation

A scalar a is a single number.
A vector a is a k × 1 list of numbers, typically arranged in a column. We write this as

a =


a1

a2
...
ak


Equivalently, a vector a is an element of Euclidean k space, written as a ∈ Rk. If k = 1 then a is
a scalar.

A matrix A is a k × r rectangular array of numbers, written as

A =


a11 a12 · · · a1r

a21 a22 · · · a2r
...

...
...

ak1 ak2 · · · akr


By convention aij refers to the element in the i′th row and j′th column of A. If r = 1 then A is a
column vector. If k = 1 then A is a row vector. If r = k = 1, then A is a scalar.

A standard convention (which we will follow in this text whenever possible) is to denote scalars
by lower-case italics (a), vectors by lower-case bold italics (a), and matrices by upper-case bold
italics (A). Sometimes a matrix A is denoted by the symbol (aij).

A matrix can be written as a set of column vectors or as a set of row vectors. That is,

A =
[
a1 a2 · · · ar

]
=


α1

α2
...
αk


where

ai =


a1i

a2i
...
aki


are column vectors and

αj =
[
aj1 aj2 · · · ajr

]
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are row vectors.
The transpose of a matrix, denoted A′, is obtained by flipping the matrix on its diagonal.

Thus

A′ =


a11 a21 · · · ak1

a12 a22 · · · ak2
...

...
...

a1r a2r · · · akr


Alternatively, letting B = A′, then bij = aji. Note that if A is k × r, then A′ is r × k. If a is a
k × 1 vector, then a′ is a 1× k row vector. An alternative notation for the transpose of A is A>.

A matrix is square if k = r. A square matrix is symmetric if A = A′, which requires aij = aji.
A square matrix is diagonal if the off-diagonal elements are all zero, so that aij = 0 if i 6= j. A
square matrix is upper (lower) diagonal if all elements below (above) the diagonal equal zero.

An important diagonal matrix is the identity matrix, which has ones on the diagonal. The
k × k identity matrix is denoted as

Ik =


1 0 · · · 0
0 1 · · · 0
...
...

...
0 0 · · · 1

 .
A partitioned matrix takes the form

A =


A11 A12 · · · A1r

A21 A22 · · · A2r
...

...
...

Ak1 Ak2 · · · Akr


where the Aij denote matrices, vectors and/or scalars.

A.2 Matrix Addition

If the matrices A = (aij) and B = (bij) are of the same order, we define the sum

A+B = (aij + bij) .

Matrix addition follows the communtative and associative laws:

A+B = B +A

A+ (B +C) = (A+B) +C.

A.3 Matrix Multiplication

If A is k × r and c is real, we define their product as

Ac = cA = (aijc) .

If a and b are both k × 1, then their inner product is

a′b = a1b1 + a2b2 + · · ·+ akbk =
k∑
j=1

ajbj .

Note that a′b = b′a. We say that two vectors a and b are orthogonal if a′b = 0.
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If A is k × r and B is r × s, so that the number of columns of A equals the number of rows
of B, we say that A and B are conformable. In this event the matrix product AB is defined.
Writing A as a set of row vectors and B as a set of column vectors (each of length r), then the
matrix product is defined as

AB =


a′1
a′2
...
a′k

 [ b1 b2 · · · bs
]

=


a′1b1 a′1b2 · · · a′1bs
a′2b1 a′2b2 · · · a′2bs
...

...
...

a′kb1 a′kb2 · · · a′kbs

 .
Matrix multiplication is not communicative: in general AB 6= BA. However, it is associative

and distributive:

A (BC) = (AB)C

A (B +C) = AB +AC

An alternative way to write the matrix product is to use matrix partitions. For example,

AB =

[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]

=

[
A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

]
.

As another example,

AB =
[
A1 A2 · · · Ar

]

B1

B2
...
Br


= A1B1 +A2B2 + · · ·+ArBr

=
r∑
j=1

AjBj

An important property of the identity matrix is that if A is k×r, then AIr = A and IkA = A.
The k × r matrix A, r ≤ k, is called orthogonal if A′A = Ir.

A.4 Trace

The trace of a k × k square matrix A is the sum of its diagonal elements

tr (A) =

k∑
i=1

aii.

Some straightforward properties for square matrices A and B and real c are

tr (cA) = c tr (A)

tr
(
A′
)

= tr (A)

tr (A+B) = tr (A) + tr (B)

tr (Ik) = k.
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Also, for k × r A and r × k B we have

tr (AB) = tr (BA) .

Indeed,

tr (AB) = tr


a′1b1 a′1b2 · · · a′1bk
a′2b1 a′2b2 · · · a′2bk
...

...
...

a′kb1 a′kb2 · · · a′kbk


=

k∑
i=1

a′ibi

=
k∑
i=1

b′iai

= tr (BA) .

A.5 Rank and Inverse

The rank of the k × r matrix (r ≤ k)

A =
[
a1 a2 · · · ar

]
is the number of linearly independent columns aj , and is written as rank (A) . We say that A has
full rank if rank (A) = r.

A square k × k matrix A is said to be nonsingular if it is has full rank, e.g. rank (A) = k.
This means that there is no k × 1 c 6= 0 such that Ac = 0.

If a square k × k matrix A is nonsingular then there exists a unique matrix k × k matrix A−1

called the inverse of A which satisfies

AA−1 = A−1A = Ik.

For non-singular A and C, some important properties include

AA−1 = A−1A = Ik(
A−1

)′
=

(
A′
)−1

(AC)−1 = C−1A−1

(A+C)−1 = A−1
(
A−1 +C−1

)−1
C−1

A−1 − (A+C)−1 = A−1
(
A−1 +C−1

)
A−1

Also, if A is an orthogonal matrix, then A−1 = A.
Another useful result for non-singular A is known as theWoodbury matrix identity

(A+BCD)−1 = A−1 −A−1BC
(
C +CDA−1BC

)−1
CDA−1. (A.1)

In particular, for C = −1, B = b and D = b′ for vector b we find what is known as the Sherman—
Morrison formula (

A− bb′
)−1

= A−1 +
(
1− b′A−1b

)−1
A−1bb′A−1. (A.2)
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The following fact about inverting partitioned matrices is quite useful. If A − BD−1C and
D −CA−1B are non-singular, then[

A B
C D

]−1

=

[ (
A−BD−1C

)−1 −
(
A−BD−1C

)−1
BD−1

−
(
D −CA−1B

)−1
CA−1

(
D −CA−1B

)−1

]
. (A.3)

Even if a matrix A does not possess an inverse, we can still define the Moore-Penrose gen-
eralized inverse A− as the matrix which satisfies

AA−A = A

A−AA− = A−

AA− is symmetric

A−A is symmetric

For any matrix A, the Moore-Penrose generalized inverse A− exists and is unique.
For example, if

A =

[
A11 0
0 0

]
then

A− =

[
A−11 0
0 0

]
.

A.6 Determinant

The determinant is a measure of the volume of a square matrix.
While the determinant is widely used, its precise definition is rarely needed. However, we present

the definition here for completeness. Let A = (aij) be a general k × k matrix . Let π = (j1, ..., jk)
denote a permutation of (1, ..., k) . There are k! such permutations. There is a unique count of the
number of inversions of the indices of such permutations (relative to the natural order (1, ..., k) ,
and let επ = +1 if this count is even and επ = −1 if the count is odd. Then the determinant of A
is defined as

detA =
∑
π

επa1j1a2j2 · · · akjk .

For example, if A is 2 × 2, then the two permutations of (1, 2) are (1, 2) and (2, 1) , for which
ε(1,2) = 1 and ε(2,1) = −1. Thus

detA = ε(1,2)a11a22 + ε(2,1)a21a12

= a11a22 − a12a21.

Some properties include

• det (A) = det (A′)

• det (cA) = ck detA

• det (AB) = (detA) (detB)

• det
(
A−1

)
= (detA)−1

• det

[
A B
C D

]
= (detD) det

(
A−BD−1C

)
if detD 6= 0

• detA 6= 0 if and only if A is nonsingular.

• If A is triangular (upper or lower), then detA =
∏k
i=1 aii

• If A is orthogonal, then detA = ±1
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A.7 Eigenvalues

The characteristic equation of a square matrix A is

det (A− λIk) = 0.

The left side is a polynomial of degree k in λ so it has exactly k roots, which are not necessarily
distinct and may be real or complex. They are called the latent roots or characteristic roots or
eigenvalues of A. If λi is an eigenvalue of A, then A− λiIk is singular so there exists a non-zero
vector hi such that

(A− λiIk)hi = 0.

The vector hi is called a latent vector or characteristic vector or eigenvector of A corre-
sponding to λi.

We now state some useful properties. Let λi and hi, i = 1, ..., k denote the k eigenvalues and
eigenvectors of a square matrix A. Let Λ be a diagonal matrix with the characteristic roots in the
diagonal, and let H = [h1 · · ·hk].

• det(A) =
∏k
i=1 λi

• tr(A) =
∑k

i=1 λi

• A is non-singular if and only if all its characteristic roots are non-zero.

• If A has distinct characteristic roots, there exists a nonsingular matrix P such that A =
P−1ΛP and PAP−1 = Λ.

• If A is symmetric, then A = HΛH ′ and H ′AH = Λ, and the characteristic roots are all
real. A = HΛH ′ is called the spectral decomposition of a matrix.

• The characteristic roots of A−1 are λ−1
1 , λ−1

2 , ..., λ−1
k .

• The matrix H has the orthonormal properties H ′H = I and HH ′ = I.

• H−1 = H ′ and (H ′)−1
= H

A.8 Positive Definiteness

We say that a k × k symmetric square matrix A is positive semi-definite if for all c 6= 0,
c′Ac ≥ 0. This is written as A ≥ 0. We say that A is positive definite if for all c 6= 0, c′Ac > 0.
This is written as A > 0.

Some properties include:

• If A = G′G for some matrix G, then A is positive semi-definite. (For any c 6= 0, c′Ac =
α′α ≥ 0 where α = Gc.) If G has full rank, then A is positive definite.

• If A is positive definite, then A is non-singular and A−1 exists. Furthermore, A−1 > 0.

• A > 0 if and only if it is symmetric and all its characteristic roots are positive.

• By the spectral decomposition, A = HΛH ′ where H ′H = I and Λ is diagonal with non-
negative diagonal elements. All diagonal elements of Λ are strictly positive if (and only if)
A > 0.

• If A > 0 then A−1 = HΛ−1H ′.
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• If A ≥ 0 and rank (A) = r < k then A− = HΛ−H ′ where A− is the Moore-Penrose
generalized inverse, and Λ− = diag

(
λ−1

1 , λ−1
2 , ..., λ−1

k , 0, ..., 0
)

• If A > 0 we can find a matrix B such that A = BB′. We call B a matrix square root
of A. The matrix B need not be unique. One way to construct B is to use the spectral
decomposition A = HΛH ′ where Λ is diagonal, and then set B = HΛ1/2.

A square matrix A is idempotent if AA = A. If A is idempotent and symmetric then all its
characteristic roots equal either zero or one and is thus positive semi-definite. To see this, note
that we can write A = HΛH ′ where H is orthogonal and Λ contains the r (real) characteristic
roots. Then

A = AA = HΛH ′HΛH ′ = HΛ2H ′.

By the uniqueness of the characteristic roots, we deduce that Λ2 = Λ and λ2
i = λi for i = 1, ..., r.

Hence they must equal either 0 or 1. It follows that the spectral decomposition of idempotent A
takes the form

A = H

[
Ik−r 0

0 0

]
H ′ (A.4)

with H ′H = Ik. Additionally, tr(A) = rank(A).

A.9 Matrix Calculus

Let x = (x1, ..., xk) be k × 1 and g(x) = g(x1, ..., xk) : Rk → R. The vector derivative is

∂

∂x
g (x) =


∂
∂x1

g (x)
...

∂
∂xk

g (x)


and

∂

∂x′
g (x) =

(
∂
∂x1

g (x) · · · ∂
∂xk

g (x)
)
.

Some properties are now summarized.

• ∂
∂x (a′x) = ∂

∂x (x′a) = a

• ∂
∂x′ (Ax) = A

• ∂
∂x (x′Ax) = (A+A′)x

• ∂2

∂x∂x′ (x′Ax) = A+A′

A.10 Kronecker Products and the Vec Operator

Let A = [a1 a2 · · · an] be m× n. The vec of A, denoted by vec (A) , is the mn× 1 vector

vec (A) =


a1

a2
...
an

 .
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Let A = (aij) be an m × n matrix and let B be any matrix. The Kronecker product of A
and B, denoted A⊗B, is the matrix

A⊗B =


a11B a12B a1nB
a21B a22B · · · a2nB
...

...
...

am1B am2B · · · amnB

 .
Some important properties are now summarized. These results hold for matrices for which all
matrix multiplications are conformable.

• (A+B)⊗C = A⊗C +B ⊗C

• (A⊗B) (C ⊗D) = AC ⊗BD

• A⊗ (B ⊗C) = (A⊗B)⊗ C

• (A⊗B)′ = A′ ⊗B′

• tr (A⊗B) = tr (A) tr (B)

• If A is m×m and B is n× n, det(A⊗B) = (det (A))n (det (B))m

• (A⊗B)−1 = A−1 ⊗B−1

• If A > 0 and B > 0 then A⊗B > 0

• vec (ABC) = (C ′ ⊗A) vec (B)

• tr (ABCD) = vec (D′)′ (C ′ ⊗A) vec (B)

A.11 Vector and Matrix Norms

The Euclidean norm of an m× 1 vector a is

‖a‖ =
(
a′a
)1/2

=

(
m∑
i=1

a2
i

)1/2

.

The Euclidean norm of an m× n matrix A is

‖A‖ = ‖vec (A)‖
= tr

(
A′A

)1/2
=

 m∑
i=1

n∑
j=1

a2
ij

1/2

.

A useful calculation is for any m× 1 vectors a and b,∥∥ab′∥∥ = ‖a‖ ‖b‖

and in particular ∥∥aa′∥∥ = ‖a‖2 (A.5)
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Some useful inequalities are now given:
Schwarz Inequality: For any m× 1 vectors a and b,∣∣a′b∣∣ ≤ ‖a‖ ‖b‖ . (A.6)

Schwarz Matrix Inequality: For any m× n matrices A and B,∥∥A′B∥∥ ≤ ‖A‖ ‖B‖ . (A.7)

Triangle Inequality: For any m× n matrices A and B,

‖A+B‖ ≤ ‖A‖+ ‖B‖ . (A.8)

Proof of Schwarz Inequality: First, suppose that ‖b‖ = 0. Then b = 0 and both |a′b| = 0 and
‖a‖ ‖b‖ = 0 so the inequality is true. Second, suppose that ‖b‖ > 0 and define c = a−b

(
b′b
)−1

b′a.
Since c is a vector, c′c ≥ 0. Thus

0 ≤ c′c = a′a−
(
a′b
)2
/
(
b′b
)
.

Rearranging, this implies that (
a′b
)2 ≤ (a′a) (b′b) .

Taking the square root of each side yields the result.
Proof of Schwarz Matrix Inequality: Partition A = [a1, ...,an] and B = [b1, ..., bn]. Then
by partitioned matrix multiplication, the definition of the matrix Euclidean norm and the Schwarz
inequality

∥∥A′B∥∥ =

∥∥∥∥∥∥∥
a′1b1 a′1b2 · · ·
a′2b1 a′2b2 · · ·
...

...
. . .

∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥∥
‖a1‖ ‖b1‖ ‖a1‖ ‖b2‖ · · ·
‖a2‖ ‖b1‖ ‖a2‖ ‖b2‖ · · ·

...
...

. . .

∥∥∥∥∥∥∥
=

 n∑
i=1

n∑
j=1

‖ai‖2 ‖bj‖2
1/2

=

(
n∑
i=1

‖ai‖2
)1/2( n∑

i=1

‖bi‖2
)1/2

=

 n∑
i=1

m∑
j=1

a2
ji

1/2 n∑
i=1

m∑
j=1

‖bji‖2
1/2

= ‖A‖ ‖B‖

Proof of Triangle Inequality: Let a = vec (A) and b = vec (B) . Then by the definition of the
matrix norm and the Schwarz Inequality

‖A+B‖2 = ‖a+ b‖2

= a′a+ 2a′b+ b′b

≤ a′a+ 2
∣∣a′b∣∣+ b′b

≤ ‖a‖2 + 2 ‖a‖ ‖b‖+ ‖b‖2

= (‖a‖+ ‖b‖)2

= (‖A‖+ ‖B‖)2
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Appendix B

Probability

B.1 Foundations

The set S of all possible outcomes of an experiment is called the sample space for the exper-
iment. Take the simple example of tossing a coin. There are two outcomes, heads and tails, so
we can write S = {H,T}. If two coins are tossed in sequence, we can write the four outcomes as
S = {HH,HT, TH, TT}.

An event A is any collection of possible outcomes of an experiment. An event is a subset of S,
including S itself and the null set ∅. Continuing the two coin example, one event is A = {HH,HT},
the event that the first coin is heads. We say that A and B are disjoint or mutually exclusive
if A ∩ B = ∅. For example, the sets {HH,HT} and {TH} are disjoint. Furthermore, if the sets
A1, A2, ... are pairwise disjoint and ∪∞i=1Ai = S, then the collection A1, A2, ... is called a partition
of S.

The following are elementary set operations:
Union: A ∪B = {x : x ∈ A or x ∈ B}.
Intersection: A ∩B = {x : x ∈ A and x ∈ B}.
Complement: Ac = {x : x /∈ A}.
The following are useful properties of set operations.
Communtatitivity: A ∪B = B ∪A; A ∩B = B ∩A.
Associativity: A ∪ (B ∪ C) = (A ∪B) ∪ C; A ∩ (B ∩ C) = (A ∩B) ∩ C.
Distributive Laws: A∩ (B ∪ C) = (A ∩B)∪ (A ∩ C) ; A∪ (B ∩ C) = (A ∪B)∩ (A ∪ C) .
DeMorgan’s Laws: (A ∪B)c = Ac ∩Bc; (A ∩B)c = Ac ∪Bc.
A probability function assigns probabilities (numbers between 0 and 1) to events A in S.

This is straightforward when S is countable; when S is uncountable we must be somewhat more
careful. A set B is called a sigma algebra (or Borel field) if ∅ ∈ B , A ∈ B implies Ac ∈ B, and
A1, A2, ... ∈ B implies ∪∞i=1Ai ∈ B. A simple example is {∅, S} which is known as the trivial sigma
algebra. For any sample space S, let B be the smallest sigma algebra which contains all of the open
sets in S. When S is countable, B is simply the collection of all subsets of S, including ∅ and S.
When S is the real line, then B is the collection of all open and closed intervals. We call B the
sigma algebra associated with S. We only define probabilities for events contained in B.

We now can give the axiomatic definition of probability. Given S and B, a probability function
P satisfies P(S) = 1, P(A) ≥ 0 for all A ∈ B, and if A1, A2, ... ∈ B are pairwise disjoint, then
P (∪∞i=1Ai) =

∑∞
i=1 P(Ai).

Some important properties of the probability function include the following

• P (∅) = 0

• P(A) ≤ 1

• P (Ac) = 1− P(A)
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• P (B ∩Ac) = P(B)− P(A ∩B)

• P (A ∪B) = P(A) + P(B)− P(A ∩B)

• If A ⊂ B then P(A) ≤ P(B)

• Bonferroni’s Inequality: P(A ∩B) ≥ P(A) + P(B)− 1

• Boole’s Inequality: P (A ∪B) ≤ P(A) + P(B)

For some elementary probability models, it is useful to have simple rules to count the number
of objects in a set. These counting rules are facilitated by using the binomial coeffi cients which are
defined for nonnegative integers n and r, n ≥ r, as(

n

r

)
=

n!

r! (n− r)! .

When counting the number of objects in a set, there are two important distinctions. Counting
may be with replacement or without replacement. Counting may be ordered or unordered.
For example, consider a lottery where you pick six numbers from the set 1, 2, ..., 49. This selection is
without replacement if you are not allowed to select the same number twice, and is with replacement
if this is allowed. Counting is ordered or not depending on whether the sequential order of the
numbers is relevant to winning the lottery. Depending on these two distinctions, we have four
expressions for the number of objects (possible arrangements) of size r from n objects.

Without With
Replacement Replacement

Ordered n!
(n−r)! nr

Unordered
(
n
r

) (
n+r−1

r

)
In the lottery example, if counting is unordered and without replacement, the number of po-

tential combinations is
(

49
6

)
= 13, 983, 816.

If P(B) > 0 the conditional probability of the event A given the event B is

P (A | B) =
P (A ∩B)

P(B)
.

For any B, the conditional probability function is a valid probability function where S has been
replaced by B. Rearranging the definition, we can write

P(A ∩B) = P (A | B)P(B)

which is often quite useful. We can say that the occurrence of B has no information about the
likelihood of event A when P (A | B) = P(A), in which case we find

P(A ∩B) = P (A)P(B) (B.1)

We say that the events A and B are statistically independent when (B.1) holds. Furthermore,
we say that the collection of events A1, ..., Ak are mutually independent when for any subset
{Ai : i ∈ I},

P

(⋂
i∈I

Ai

)
=
∏
i∈I
P (Ai) .

Theorem 1 (Bayes’Rule). For any set B and any partition A1, A2, ... of the sample space, then
for each i = 1, 2, ...

P (Ai | B) =
P (B | Ai)P(Ai)∑∞
j=1 P (B | Aj)P(Aj)
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B.2 Random Variables

A random variable X is a function from a sample space S into the real line. This induces a
new sample space —the real line —and a new probability function on the real line. Typically, we
denote random variables by uppercase letters such as X, and use lower case letters such as x for
potential values and realized values. (This is in contrast to the notation adopted for most of the
textbook.) For a random variable X we define its cumulative distribution function (CDF) as

F (x) = P (X ≤ x) . (B.2)

Sometimes we write this as FX(x) to denote that it is the CDF of X. A function F (x) is a CDF if
and only if the following three properties hold:

1. limx→−∞ F (x) = 0 and limx→∞ F (x) = 1

2. F (x) is nondecreasing in x

3. F (x) is right-continuous

We say that the random variable X is discrete if F (x) is a step function. In the latter case,
the range of X consists of a countable set of real numbers τ1, ..., τ r. The probability function for
X takes the form

P (X = τ j) = πj , j = 1, ..., r (B.3)

where 0 ≤ πj ≤ 1 and
∑r

j=1 πj = 1.
We say that the random variable X is continuous if F (x) is continuous in x. In this case P(X =

τ) = 0 for all τ ∈ R so the representation (B.3) is unavailable. Instead, we represent the relative
probabilities by the probability density function (PDF)

f(x) =
d

dx
F (x)

so that

F (x) =

∫ x

−∞
f(u)du

and

P (a ≤ X ≤ b) =

∫ b

a
f(u)du.

These expressions only make sense if F (x) is differentiable. While there are examples of continuous
random variables which do not possess a PDF, these cases are unusual and are typically ignored.

A function f(x) is a PDF if and only if f(x) ≥ 0 for all x ∈ R and
∫∞
−∞ f(x)dx.

B.3 Expectation

For any measurable real function g, we define the mean or expectation Eg(X) as follows. If
X is discrete,

Eg(X) =
r∑
j=1

g(τ j)πj ,

and if X is continuous

Eg(X) =

∫ ∞
−∞

g(x)f(x)dx.

The latter is well defined and finite if∫ ∞
−∞
|g(x)| f(x)dx <∞. (B.4)
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If (B.4) does not hold, evaluate

I1 =

∫
g(x)>0

g(x)f(x)dx

I2 = −
∫
g(x)<0

g(x)f(x)dx

If I1 = ∞ and I2 < ∞ then we define Eg(X) = ∞. If I1 < ∞ and I2 = ∞ then we define
Eg(X) = −∞. If both I1 =∞ and I2 =∞ then Eg(X) is undefined.

Since E (a+ bX) = a+ bEX, we say that expectation is a linear operator.
For m > 0, we define the m′th moment of X as EXm and the m′th central moment as

E (X − EX)m .
Two special moments are the mean µ = EX and variance σ2 = E (X − µ)2 = EX2 − µ2. We

call σ =
√
σ2 the standard deviation of X. We can also write σ2 = var(X). For example, this

allows the convenient expression var(a+ bX) = b2 var(X).
The moment generating function (MGF) of X is

M(λ) = E exp (λX) .

The MGF does not necessarily exist. However, when it does and E |X|m <∞ then

dm

dλm
M(λ)

∣∣∣∣
λ=0

= E (Xm)

which is why it is called the moment generating function.
More generally, the characteristic function (CF) of X is

C(λ) = E exp (iλX)

where i =
√
−1 is the imaginary unit. The CF always exists, and when E |X|m <∞

dm

dλm
C(λ)

∣∣∣∣
λ=0

= imE (Xm) .

The Lp norm, p ≥ 1, of the random variable X is

‖X‖p = (E |X|p)1/p .

B.4 Gamma Function

The gamma function is defined for α > 0 as

Γ(α) =

∫ ∞
0

xα−1 exp (−x) .

It satisfies the property
Γ(1 + α) = Γ(α)α

so for positive integers n,
Γ(n) = (n− 1)!

Special values include
Γ (1) = 1

and

Γ

(
1

2

)
= π1/2.

Sterling’s formula is an expansion for the its logarithm

log Γ(α) =
1

2
log(2π) +

(
α− 1

2

)
logα− z +

1

12α
− 1

360α3
+

1

1260α5
+ · · ·
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B.5 Common Distributions

For reference, we now list some important discrete distribution function.
Bernoulli

P (X = x) = px(1− p)1−x, x = 0, 1; 0 ≤ p ≤ 1

EX = p

var(X) = p(1− p)

Binomial

P (X = x) =

(
n

x

)
px (1− p)n−x , x = 0, 1, ..., n; 0 ≤ p ≤ 1

EX = np

var(X) = np(1− p)

Geometric

P (X = x) = p(1− p)x−1, x = 1, 2, ...; 0 ≤ p ≤ 1

EX =
1

p

var(X) =
1− p
p2

Multinomial

P (X1 = x1, X2 = x2, ..., Xm = xm) =
n!

x1!x2! · · ·xm!
px11 p

x2
2 · · · pxmm ,

x1 + · · ·+ xm = n;

p1 + · · ·+ pm = 1

EXi = pi

var(Xi) = npi(1− pi)
cov (Xi, Xj) = −npipj

Negative Binomial

P (X = x) =
Γ (r + x)

x!Γ (r)
pr(1− p)x−1, x = 0, 1, 2, ...; 0 ≤ p ≤ 1

EX =
r (1− p)

p

var(X) =
r (1− p)

p2

Poisson

P (X = x) =
exp (−λ)λx

x!
, x = 0, 1, 2, ..., λ > 0

EX = λ

var(X) = λ

We now list some important continuous distributions.
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Beta

f(x) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1, 0 ≤ x ≤ 1; α > 0, β > 0

µ =
α

α+ β

var(X) =
αβ

(α+ β + 1) (α+ β)2

Cauchy

f(x) =
1

π (1 + x2)
, −∞ < x <∞

EX = ∞
var(X) = ∞

Exponential

f(x) =
1

θ
exp

(x
θ

)
, 0 ≤ x <∞; θ > 0

EX = θ

var(X) = θ2

Logistic

f(x) =
exp (−x)

(1 + exp (−x))2 , −∞ < x <∞;

EX = 0

var(X) =
π2

3

Lognormal

f(x) =
1√

2πσx
exp

(
−(log x− µ)2

2σ2

)
, 0 ≤ x <∞; σ > 0

EX = exp
(
µ+ σ2/2

)
var(X) = exp

(
2µ+ 2σ2

)
− exp

(
2µ+ σ2

)
Pareto

f(x) =
βαβ

xβ+1
, α ≤ x <∞, α > 0, β > 0

EX =
βα

β − 1
, β > 1

var(X) =
βα2

(β − 1)2 (β − 2)
, β > 2

Uniform

f(x) =
1

b− a, a ≤ x ≤ b

EX =
a+ b

2

var(X) =
(b− a)2

12
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Weibull

f(x) =
γ

β
xγ−1 exp

(
−x

γ

β

)
, 0 ≤ x <∞; γ > 0, β > 0

EX = β1/γΓ

(
1 +

1

γ

)
var(X) = β2/γ

(
Γ

(
1 +

2

γ

)
− Γ2

(
1 +

1

γ

))
Gamma

f(x) =
1

Γ(α)θα
xα−1 exp

(
−x
θ

)
, 0 ≤ x <∞; α > 0, θ > 0

EX = αθ

var(X) = αθ2

Chi-Square

f(x) =
1

Γ(r/2)2r/2
xr/2−1 exp

(
−x

2

)
, 0 ≤ x <∞; r > 0

EX = r

var(X) = 2r

Normal

f(x) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
, −∞ < x <∞; −∞ < µ <∞, σ2 > 0

EX = µ

var(X) = σ2

Student t

f(x) =
Γ
(
r+1

2

)
√
rπΓ

(
r
2

) (1 +
x2

r

)−( r+12 )
, −∞ < x <∞; r > 0

EX = 0 if r > 1

var(X) =
r

r − 2
if r > 2

B.6 Multivariate Random Variables

A pair of bivariate random variables (X,Y ) is a function from the sample space into R2. The
joint CDF of (X,Y ) is

F (x, y) = P (X ≤ x, Y ≤ y) .

If F is continuous, the joint probability density function is

f(x, y) =
∂2

∂x∂y
F (x, y).

For a Borel measurable set A ∈ R2,

P ((X < Y ) ∈ A) =

∫ ∫
A
f(x, y)dxdy
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For any measurable function g(x, y),

Eg(X,Y ) =

∫ ∞
−∞

∫ ∞
−∞

g(x, y)f(x, y)dxdy.

The marginal distribution of X is

FX(x) = P(X ≤ x)

= lim
y→∞

F (x, y)

=

∫ x

−∞

∫ ∞
−∞

f(x, y)dydx

so the marginal density of X is

fX(x) =
d

dx
FX(x) =

∫ ∞
−∞

f(x, y)dy.

Similarly, the marginal density of Y is

fY (y) =

∫ ∞
−∞

f(x, y)dx.

The random variables X and Y are defined to be independent if f(x, y) = fX(x)fY (y).
Furthermore, X and Y are independent if and only if there exist functions g(x) and h(y) such that
f(x, y) = g(x)h(y).

If X and Y are independent, then

E (g(X)h(Y )) =

∫ ∫
g(x)h(y)f(y, x)dydx

=

∫ ∫
g(x)h(y)fY (y)fX(x)dydx

=

∫
g(x)fX(x)dx

∫
h(y)fY (y)dy

= Eg (X)Eh (Y ) . (B.5)

if the expectations exist. For example, if X and Y are independent then

E(XY ) = EXEY.

Another implication of (B.5) is that if X and Y are independent and Z = X + Y, then

MZ(λ) = E exp (λ (X + Y ))

= E (exp (λX) exp (λY ))

= E exp
(
λ′X

)
E exp

(
λ′Y

)
= MX(λ)MY (λ). (B.6)

The covariance between X and Y is

cov(X,Y ) = σXY = E ((X − EX) (Y − EY )) = EXY − EXEY.

The correlation between X and Y is

corr (X,Y ) = ρXY =
σXY
σxσY

.
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The Cauchy-Schwarz Inequality implies that

|ρXY | ≤ 1. (B.7)

The correlation is a measure of linear dependence, free of units of measurement.
If X and Y are independent, then σXY = 0 and ρXY = 0. The reverse, however, is not true.

For example, if EX = 0 and EX3 = 0, then cov(X,X2) = 0.
A useful fact is that

var (X + Y ) = var(X) + var(Y ) + 2 cov(X,Y ).

An implication is that if X and Y are independent, then

var (X + Y ) = var(X) + var(Y ),

the variance of the sum is the sum of the variances.
A k×1 random vectorX = (X1, ..., Xk)

′ is a function from S to Rk. Let x = (x1, ..., xk)
′ denote

a vector in Rk. (In this Appendix, we use bold to denote vectors. Bold capitals X are random
vectors and bold lower case x are nonrandom vectors. Again, this is in distinction to the notation
used in the bulk of the text) The vector X has the distribution and density functions

F (x) = P(X ≤ x)

f(x) =
∂k

∂x1 · · · ∂xk
F (x).

For a measurable function g : Rk → Rs, we define the expectation

Eg(X) =

∫
Rk
g(x)f(x)dx

where the symbol dx denotes dx1 · · · dxk. In particular, we have the k × 1 multivariate mean

µ = EX

and k × k covariance matrix

Σ = E
(
(X − µ) (X − µ)′

)
= EXX ′ − µµ′

If the elements of X are mutually independent, then Σ is a diagonal matrix and

var

(
k∑
i=1

Xi

)
=

k∑
i=1

var (Xi)

B.7 Conditional Distributions and Expectation

The conditional density of Y given X = x is defined as

fY |X (y | x) =
f(x, y)

fX(x)

209



if fX(x) > 0. One way to derive this expression from the definition of conditional probability is

fY |X (y | x) =
∂

∂y
lim
ε→0

P (Y ≤ y | x ≤X ≤ x+ ε)

=
∂

∂y
lim
ε→0

P ({Y ≤ y} ∩ {x ≤X ≤ x+ ε})
P(x ≤ X ≤ x+ ε)

=
∂

∂y
lim
ε→0

F (x+ ε, y)− F (x, y)

FX(x+ ε)− FX(x)

=
∂

∂y
lim
ε→0

∂
∂xF (x+ ε, y)

fX(x+ ε)

=

∂2

∂x∂yF (x, y)

fX(x)

=
f(x, y)

fX(x)
.

The conditional mean or conditional expectation is the function

m(x) = E (Y |X = x) =

∫ ∞
−∞

yfY |X (y | x) dy.

The conditional mean m(x) is a function, meaning that when X equals x, then the expected value
of Y is m(x).

Similarly, we define the conditional variance of Y given X = x as

σ2(x) = var (Y |X = x)

= E
(

(Y −m(x))2 |X = x
)

= E
(
Y 2 | X = x

)
−m(x)2.

Evaluated at x = X, the conditional mean m(X) and conditional variance σ2(X) are random
variables, functions of X. We write this as E(Y | X) = m(X) and var (Y |X) = σ2(X). For
example, if E (Y |X = x) = α+ β′x, then E (Y |X) = α+ β′X, a transformation of X.

The following are important facts about conditional expectations.
Simple Law of Iterated Expectations:

E (E (Y |X)) = E (Y ) (B.8)

Proof :

E (E (Y |X)) = E (m(X))

=

∫ ∞
−∞

m(x)fX(x)dx

=

∫ ∞
−∞

∫ ∞
−∞

yfY |X (y | x) fX(x)dydx

=

∫ ∞
−∞

∫ ∞
−∞

yf (y,x) dydx

= E(Y ).

Law of Iterated Expectations:

E (E (Y |X,Z) |X) = E (Y |X) (B.9)
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Conditioning Theorem. For any function g(x),

E (g(X)Y |X) = g (X)E (Y |X) (B.10)

Proof : Let

h(x) = E (g(X)Y |X = x)

=

∫ ∞
−∞

g(x)yfY |X (y | x) dy

= g(x)

∫ ∞
−∞

yfY |X (y | x) dy

= g(x)m(x)

where m(x) = E (Y |X = x) . Thus h(X) = g(X)m(X), which is the same as E (g(X)Y |X) =
g (X)E (Y |X) .

B.8 Transformations

Suppose that X ∈ Rk with continuous distribution function FX(x) and density fX(x). Let
Y = g(X) where g(x) : Rk → Rk is one-to-one, differentiable, and invertible. Let h(y) denote the
inverse of g(x). The Jacobian is

J(y) = det

(
∂

∂y′
h(y)

)
.

Consider the univariate case k = 1. If g(x) is an increasing function, then g(X) ≤ Y if and only
if X ≤ h(Y ), so the distribution function of Y is

FY (y) = P (g(X) ≤ y)

= P (X ≤ h(Y ))

= FX (h(Y )) .

Taking the derivative, the density of Y is

fY (y) =
d

dy
FY (y) = fX (h(Y ))

d

dy
h(y).

If g(x) is a decreasing function, then g(X) ≤ Y if and only if X ≥ h(Y ), so

FY (y) = P (g(X) ≤ y)

= 1− P (X ≥ h(Y ))

= 1− FX (h(Y ))

and the density of Y is

fY (y) = −fX (h(Y ))
d

dy
h(y).

We can write these two cases jointly as

fY (y) = fX (h(Y )) |J(y)| . (B.11)

This is known as the change-of-variables formula. This same formula (B.11) holds for k > 1, but
its justification requires deeper results from analysis.

As one example, take the case X ∼ U [0, 1] and Y = − log(X). Here, g(x) = − log(x) and
h(y) = exp(−y) so the Jacobian is J(y) = − exp(y). As the range of X is [0, 1], that for Y is [0,∞).
Since fX (x) = 1 for 0 ≤ x ≤ 1 (B.11) shows that

fY (y) = exp(−y), 0 ≤ y ≤ ∞,

an exponential density.
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B.9 Normal and Related Distributions

The standard normal density is

φ(x) =
1√
2π

exp

(
−x

2

2

)
, −∞ < x <∞.

It is conventional to write X ∼ N (0, 1) , and to denote the standard normal density function by
φ(x) and its distribution function by Φ(x). The latter has no closed-form solution. The normal
density has all moments finite. Since it is symmetric about zero all odd moments are zero. By
iterated integration by parts, we can also show that EX2 = 1 and EX4 = 3. In fact, for any positive
integer m, EX2m = (2m− 1)!! = (2m− 1) · (2m− 3) · · · 1. Thus EX4 = 3, EX6 = 15, EX8 = 105,
and EX10 = 945.

If Z is standard normal and X = µ + σZ, then using the change-of-variables formula, X has
density

f(x) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
, −∞ < x <∞.

which is the univariate normal density. The mean and variance of the distribution are µ and
σ2, and it is conventional to write X ∼ N

(
µ, σ2

)
.

For x ∈ Rk, the multivariate normal density is

f(x) =
1

(2π)k/2 det (Σ)1/2
exp

(
−(x− µ)′Σ−1 (x− µ)

2

)
, x ∈ Rk.

The mean and covariance matrix of the distribution are µ and Σ, and it is conventional to write
X ∼ N (µ,Σ).

The MGF and CF of the multivariate normal are exp
(
λ′µ+ λ′Σλ/2

)
and exp

(
iλ′µ− λ′Σλ/2

)
,

respectively.
If X ∈ Rk is multivariate normal and the elements of X are mutually uncorrelated, then

Σ = diag{σ2
j} is a diagonal matrix. In this case the density function can be written as

f(x) =
1

(2π)k/2 σ1 · · ·σk
exp

(
−
(

(x1 − µ1)2 /σ2
1 + · · ·+ (xk − µk)2 /σ2

k

2

))

=

k∏
j=1

1

(2π)1/2 σj
exp

(
−
(
xj − µj

)2
2σ2

j

)

which is the product of marginal univariate normal densities. This shows that if X is multivariate
normal with uncorrelated elements, then they are mutually independent.

Theorem B.9.1 If X ∼ N (µ,Σ) and Y = a + BX with B an invertible matrix, then Y ∼
N (a+Bµ,BΣB′) .

Theorem B.9.2 Let X ∼ N (0, Ir) . Then Q = X ′X is distributed chi-square with r degrees of
freedom, written χ2

r.

Theorem B.9.3 If Z ∼ N (0,A) with A > 0, q × q, then Z ′A−1Z ∼ χ2
q .

Theorem B.9.4 Let Z ∼ N (0, 1) and Q ∼ χ2
r be independent. Then Tr = Z/

√
Q/r is distributed

as student’s t with r degrees of freedom.
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Proof of Theorem B.9.1. By the change-of-variables formula, the density of Y = a+BX is

f(y) =
1

(2π)k/2 det (ΣY )1/2
exp

(
−

(y − µY )′Σ−1
Y (y − µY )

2

)
, y ∈ Rk.

where µY = a+Bµ andΣY = BΣB′, where we used the fact that det (BΣB′)1/2
= det (Σ)1/2 det (B) .

�

Proof of Theorem B.9.2. First, suppose a random variable Q is distributed chi-square with r
degrees of freedom. It has the MGF

E exp (tQ) =

∫ ∞
0

1

Γ
(
r
2

)
2r/2

xr/2−1 exp (tx) exp (−x/2) dy = (1− 2t)−r/2

where the second equality uses the fact that
∫∞

0 ya−1 exp (−by) dy = b−aΓ(a), which can be found
by applying change-of-variables to the gamma function. Our goal is to calculate the MGF of
Q = X ′X and show that it equals (1− 2t)−r/2 , which will establish that Q ∼ χ2

r .
Note that we can write Q = X ′X =

∑r
j=1 Z

2
j where the Zj are independent N (0, 1) . The

distribution of each of the Z2
j is

P
(
Z2
j ≤ y

)
= 2P (0 ≤ Zj ≤

√
y)

= 2

∫ √y
0

1√
2π

exp

(
−x

2

2

)
dx

=

∫ y

0

1

Γ
(

1
2

)
21/2

s−1/2 exp
(
−s

2

)
ds

using the change—of-variables s = x2 and the fact Γ
(

1
2

)
=
√
π. Thus the density of Z2

j is

f1(x) =
1

Γ
(

1
2

)
21/2

x−1/2 exp
(
−x

2

)
which is the χ2

1 and by our above calculation has the MGF of E exp
(
tZ2

j

)
= (1− 2t)−1/2 .

Since the Z2
j are mutually independent, (B.6) implies that the MGF of Q =

∑r
j=1 Z

2
j is[

(1− 2t)−1/2
]r

= (1− 2t)−r/2 , which is the MGF of the χ2
r density as desired. �

Proof of Theorem B.9.3. The fact that A > 0 means that we can write A = CC ′ where C is
non-singular. Then A−1 = C−1′C−1 and

C−1Z ∼ N
(
0,C−1AC−1′) = N

(
0,C−1CC ′C−1′) = N (0, Iq) .

Thus
Z ′A−1Z = Z ′C−1′C−1Z =

(
C−1Z

)′ (
C−1Z

)
∼ χ2

q .

�

Proof of Theorem B.9.4. Using the simple law of iterated expectations, Tr has distribution
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function

F (x) = P

(
Z√
Q/r

≤ x
)

= E

{
Z ≤ x

√
Q

r

}

= E

[
P

(
Z ≤ x

√
Q

r
| Q
)]

= EΦ

(
x

√
Q

r

)

Thus its density is

f (x) = E
d

dx
Φ

(
x

√
Q

r

)

= E

(
φ

(
x

√
Q

r

)√
Q

r

)

=

∫ ∞
0

(
1√
2π

exp

(
−qx

2

2r

))√
q

r

(
1

Γ
(
r
2

)
2r/2

qr/2−1 exp (−q/2)

)
dq

=
Γ
(
r+1

2

)
√
rπΓ

(
r
2

) (1 +
x2

r

)−( r+12 )

which is that of the student t with r degrees of freedom. �
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Appendix C

Asymptotic Theory

C.1 Inequalities

The following inequalities are frequently used in asymptotic distribution theory.

Jensen’s Inequality. If g(·) : R → R is convex, then for any random variable x for which
E |x| <∞ and E |g (x)| <∞,

g(E(x)) ≤ E (g (x)) . (C.1)

Expectation Inequality. For any random variable x for which E |x| <∞,

|E(x)| ≤ E |x| . (C.2)

Cauchy-Schwarz Inequality. For any random m× n matrices X and Y,

E
∥∥X ′Y ∥∥ ≤ (E ‖X‖2)1/2 (

E ‖Y ‖2
)1/2

. (C.3)

Holder’s Inequality. If p > 1 and q > 1 and 1
p + 1

q = 1, then for any random m× n matrices X
and Y,

E
∥∥X ′Y ∥∥ ≤ (E ‖X‖p)1/p (E ‖Y ‖q)1/q . (C.4)

Minkowski’s Inequality. For any random m× n matrices X and Y,

(E ‖X + Y ‖p)1/p ≤ (E ‖X‖p)1/p + (E ‖Y ‖p)1/p (C.5)

Markov’s Inequality. For any random vector x and non-negative function g(x) ≥ 0,

P(g(x) > α) ≤ α−1Eg(x). (C.6)

Proof of Jensen’s Inequality. Let a + bu be the tangent line to g(u) at u = Ex. Since g(u) is
convex, tangent lines lie below it. So for all u, g(u) ≥ a+ bu yet g(Ex) = a+ bEx since the curve
is tangent at Ex. Applying expectations, Eg(x) ≥ a+ bEx = g(Ex), as stated. �

Proof of Expecation Inequality. Follows from an application of Jensen’s Inequality, noting that
the function g(u) = |u| is convex. �

Proof of Holder’s Inequality. Since 1
p + 1

q = 1 an application of Jensen’s Inequality shows that
for any real a and b

exp

[
1

p
a+

1

q
b

]
≤ 1

p
exp (a) +

1

q
exp (b) .
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Setting u = exp (a) and v = exp (b) this implies

u1/pv1/q ≤ u

p
+
v

q

and this inequality holds for any u > 0 and v > 0.
Set u = ‖X‖p /E ‖X‖p and v = ‖Y ‖q /E ‖Y ‖q . Note that Eu = Ev = 1. By the matrix Schwarz

Inequality (A.7), ‖X ′Y ‖ ≤ ‖X‖ ‖Y ‖. Thus

E ‖X ′Y ‖
(E ‖X‖p)1/p (E ‖Y ‖q)1/q

≤ E (‖X‖ ‖Y ‖)
(E ‖X‖p)1/p (E ‖Y ‖q)1/q

= E
(
u1/pv1/q

)
≤ E

(
u

p
+
v

q

)
=

1

p
+

1

q
= 1,

which is (C.4). �

Proof of Minkowski’s Inequality. Note that by rewriting, using the triangle inequality (A.8),
and then Holder’s Inequality to the two expectations

E ‖X + Y ‖p = E
(
‖X + Y ‖ ‖X + Y ‖p−1

)
≤ E

(
‖X‖ ‖X + Y ‖p−1

)
+ E

(
‖Y ‖ ‖X + Y ‖p−1

)
≤ (E ‖X‖p)1/p E

(
‖X + Y ‖q(p−1)

)1/q
+ (E ‖Y ‖p)1/p E

(
‖X + Y ‖q(p−1)

)1/q

=
(

(E ‖X‖p)1/p + (E ‖Y ‖p)1/p
)
E (‖X + Y ‖p)(p−1)/p

where the second equality picks q to satisfy 1/p+1/q = 1, and the final equality uses this fact to make
the substitution q = p/(p−1) and then collects terms. Dividing both sides by E (‖X + Y ‖p)(p−1)/p ,
we obtain (C.5). �

Proof of Markov’s Inequality. Let f denote the density function of x. Then

P (g(x) ≥ α) =

∫
{ug(u)≥α}

f(u)du

≤
∫
{ug(u)≥α}

g(u)

α
f(u)du

≤ α−1

∫ ∞
−∞

g(u)f(u)du

= α−1E (g(x))

the first inequality using the region of integration {g(u) > α}. �

C.2 Convergence in Distribution

Let zn be a random vector with distribution Fn(u) = P (zn ≤ u) . We say that zn converges

in distribution to z as n→∞, denoted zn
d−→ z, where z has distribution F (u) = P (z ≤ u) , if

for all u at which F (u) is continuous, Fn(u)→ F (u) as n→∞.
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Theorem C.2.1 Central Limit Theorem (CLT). If xi ∈ Rk is iid and Ex2
ji < ∞ for j =

1, ..., k, then as n→∞
√
n (xn − µ) =

1√
n

n∑
i=1

(xi − µ)
d−→ N (0,Ω) .

where µ = Exi and Ω = E (xi − µ) (xi − µ)′ .

Proof: The moment bound Ex2
ji <∞ is suffi cient to guarantee that the elements of µ and V are

well defined and finite. Without loss of generality, it is suffi cient to consider the case µ = 0 and
Ω = Ik.

For λ ∈ Rk, let C (λ) = E exp
(
iλ′xi

)
denote the characteristic function of xi and set c (λ) =

logC(λ). Then observe

∂

∂λ
C(λ) = iE

(
xi exp

(
iλ′xi

))
∂2

∂λ∂λ′
C(λ) = i2E

(
xix

′
i exp

(
iλ′xi

))
so when evaluated at λ = 0

C(0) = 1

∂

∂λ
C(0) = iE (xi) = 0

∂2

∂λ∂λ′
C(0) = −E

(
xix

′
i

)
= −Ik.

Furthermore,

cλ(λ) =
∂

∂λ
c(λ) = C(λ)−1 ∂

∂λ
C(λ)

cλλ(λ) =
∂2

∂λ∂λ′
c(λ) = C(λ)−1 ∂2

∂λ∂λ′
C(λ)− C(λ)−2 ∂

∂λ
C (λ)

∂

∂λ′
C(λ)

so when evaluated at λ = 0

c(0) = 0

cλ(0) = 0

cλλ(0) = −Ik.
By a second-order Taylor series expansion of c(λ) about λ = 0,

c(λ) = c(0) + cλ(0)′λ+
1

2
λ′cλλ(λ∗)λ =

1

2
λ′cλλ(λ∗)λ (C.7)

where λ∗ lies on the line segment joining 0 and λ.
We now compute Cn(λ) = E exp

(
iλ′
√
nxn

)
the characteristic function of

√
nxn. By the prop-

erties of the exponential function, the independence of the xi, the definition of c(λ) and (C.7)

logCn(λ) = logE exp

(
i

1√
n

n∑
i=1

λ′xi

)

= logE
n∏
i=1

exp

(
i

1√
n
λ′xi

)

= log
n∏
i=1

E exp

(
i

1√
n
λ′xi

)
= nc

(
λ√
n

)
=

1

2
λ′cλλ(λn)λ
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where λn → 0 lies on the line segment joining 0 and λ/
√
n. Since cλλ(λn) → cλλ(0) = −Ik, we

see that as n→∞,
Cn(λ)→ exp

(
−1

2
λ′λ

)
the characteristic function of the N (0, Ik) distribution. This is suffi cient to establish the theorem.
�

C.3 Asymptotic Transformations

Theorem C.3.1 Continuous Mapping Theorem 1 (CMT). If zn
p−→ c as n → ∞ and g (·)

is continuous at c, then g(zn)
p−→ g(c) as n→∞.

Proof: Since g is continuous at c, for all ε > 0 we can find a δ > 0 such that if ‖zn − c‖ < δ
then |g (zn)− g (c)| ≤ ε. Recall that A ⊂ B implies P(A) ≤ P(B). Thus P (|g (zn)− g (c)| ≤ ε) ≥
P (‖zn − c‖ < δ)→ 1 as n→∞ by the assumption that zn

p−→ c. Hence g(zn)
p−→ g(c) as n→∞.

Theorem C.3.2 Continuous Mapping Theorem 2. If zn
d−→ z as n → ∞ and g (·) is

continuous, then g(zn)
d−→ g(z) as n→∞.

Theorem C.3.3 Delta Method: If
√
n (θn − θ0)

d−→ N (0,Σ) , where θ is m×1 and Σ is m×m,
and g(θ) : Rm → Rk, k ≤ m, then

√
n (g (θn)− g(θ0))

d−→ N
(
0, gθΣg

′
θ

)
where gθ(θ) = ∂

∂θ′
g(θ) and gθ = gθ(θ0).

Proof : By a vector Taylor series expansion, for each element of g,

gj(θn) = gj(θ0) + gjθ(θ∗jn) (θn − θ0)

where θ∗nj lies on the line segment between θn and θ0 and therefore converges in probability to θ0.

It follows that ajn = gjθ(θ∗jn)− gjθ
p−→ 0. Stacking across elements of g, we find

√
n (g (θn)− g(θ0)) = (gθ + an)

√
n (θn − θ0)

d−→ gθ N (0,Σ) = N
(
0, gθΣg

′
θ

)
.
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Appendix D

Maximum Likelihood

If the distribution of yi is F (y,θ) where F is a known distribution function and θ ∈ Θ is an
unknown m× 1 vector, we say that the distribution is parametric and that θ is the parameter
of the distribution F. The space Θ is the set of permissible value for θ. In this setting the method
of maximum likelihood is the appropriate technique for estimation and inference on θ.

If the distribution F is continuous then the density of yi can be written as f(y,θ) and the joint
density of a random sample (y1, ...,yn) is

fn (y1, ...,yn,θ) =
n∏
i=1

f (yi,θ) .

The likelihood of the sample is this joint density evaluated at the observed sample values, viewed
as a function of θ. The log-likelihood function is its natural log

logL(θ) =
n∑
i=1

log f (yi,θ) .

If the distribution F is discrete, the likelihood and log-likelihood are constructed by setting f (y,θ) =
P (yi = y,θ) .

Define the Hessian

H = −E ∂2

∂θ∂θ′
log f (yi,θ0) (D.1)

and the outer product matrix

Ω = E
(
∂

∂θ
log f (yi,θ0)

∂

∂θ
log f (yi,θ0)′

)
. (D.2)

Two important features of the likelihood are

Theorem D.0.4
∂

∂θ
E log f (yi,θ)

∣∣∣∣
θ=θ0

= 0 (D.3)

H = Ω ≡ I0 (D.4)

The matrix I0 is called the information, and the equality (D.4) is often called the information
matrix equality.

Theorem D.0.5 Cramer-Rao Lower Bound. If θ̃ is an unbiased estimator of θ ∈ R, then
var(θ̃) ≥ (nI0)−1 .
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The Cramer-Rao Theorem gives a lower bound for estimation. However, the restriction to
unbiased estimators means that the theorem has little direct relevance for finite sample effi ciency.

Themaximum likelihood estimator orMLE θ̂ is the parameter value which maximizes the
likelihood (equivalently, which maximizes the log-likelihood). We can write this as

θ̂ = argmax
θ∈Θ

logL(θ).

In some simple cases, we can find an explicit expression for θ̂ as a function of the data, but these
cases are rare. More typically, the MLE θ̂ must be found by numerical methods.

Why do we believe that the MLE θ̂ is estimating the parameter θ? Observe that when stan-
dardized, the log-likelihood is a sample average

1

n
logL(θ) =

1

n

n∑
i=1

log f (yi,θ)
p−→ E log f (yi,θ) .

As the MLE θ̂ maximizes the left-hand-side, we can see that it is an estimator of the maximizer of
the right-hand-side. The first-order condition for the latter problem is

0 =
∂

∂θ
E log f (yi,θ)

which holds at θ = θ0 by (D.3). In fact, under conventional regularity conditions, θ̂ is consistent
for this value, θ̂

p−→ θ0 as n→∞.

Theorem D.0.6 Under regularity conditions,
√
n
(
θ̂ − θ0

)
d−→ N

(
0, I−1

0

)
.

Thus in large samples, the approximate variance of the MLE is (nI0)−1 which is the Cramer-
Rao lower bound. Thus in large samples the MLE has approximately the best possible variance.
Therefore the MLE is called asymptotically effi cient.

Typically, to estimate the asymptotic variance of the MLE we use an estimate based on the
Hessian formula (D.1)

Ĥ = − 1

n

n∑
i=1

∂2

∂θ∂θ′
log f

(
yi, θ̂

)
(D.5)

We then set Î−1
0 = Ĥ−1

. Asymptotic standard errors for θ̂ are then the square roots of the diagonal
elements of n−1Î−1

0 .
Sometimes a parametric density function f(y,θ) is used to approximate the true unknown

density f(y), but it is not literally believed that the model f(y,θ) is necessarily the true density.
In this case, we refer to logL(θ) as a quasi-likelihood and the its maximizer θ̂ as a quasi-mle
or QMLE.

In this case there is not a “true”value of the parameter θ. Instead we define the pseudo-true
value θ0 as the maximizer of

E log f (yi,θ) =

∫
f (y) log f (y,θ) dy

which is the same as the minimizer of

KLIC =

∫
f (y) log

(
f(y)

f (y,θ)

)
dy

the Kullback-Leibler information distance between the true density f(y) and the parametric density
f(y,θ). Thus the QMLE θ0 is the value which makes the parametric density “closest”to the true
value according to this measure of distance. The QMLE is consistent for the pseudo-true value, but
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has a different covariance matrix than in the pure MLE case, since the information matrix equality
(D.4) does not hold. A minor adjustment to Theorem (D.0.6) yields the asymptotic distribution of
the QMLE: √

n
(
θ̂ − θ0

)
d−→ N (0,V ) , V =H−1ΩH−1

The moment estimator for V is
V̂ = Ĥ−1

Ω̂Ĥ−1

where Ĥ is given in (D.5) and

Ω̂ =
1

n

n∑
i=1

∂

∂θ
log f

(
yi, θ̂

) ∂

∂θ
log f

(
yi, θ̂

)′
.

Asymptotic standard errors (sometimes called qmle standard errors) are then the square roots of
the diagonal elements of n−1V̂ .

Proof of Theorem D.0.4. To see (D.3),

∂

∂θ
E log f (yi,θ)

∣∣∣∣
θ=θ0

=
∂

∂θ

∫
log f (y,θ) f (y,θ0) dy

∣∣∣∣
θ=θ0

=

∫
∂

∂θ
f (y,θ)

f (y,θ0)

f (y,θ)
dy

∣∣∣∣
θ=θ0

=
∂

∂θ

∫
f (y,θ) dy

∣∣∣∣
θ=θ0

=
∂

∂θ
1

∣∣∣∣
θ=θ0

= 0.

Similarly, we can show that

E

(
∂2

∂θ∂θ′
f (yi,θ0)

f (yi,θ0)

)
= 0.

By direction computation,

∂2

∂θ∂θ′
log f (yi,θ0) =

∂2

∂θ∂θ′
f (yi,θ0)

f (yi,θ0)
−

∂
∂θf (yi,θ0) ∂

∂θf (yi,θ0)′

f (yi,θ0)2

=
∂2

∂θ∂θ′
f (yi,θ0)

f (yi,θ0)
− ∂

∂θ
log f (yi,θ0)

∂

∂θ
log f (yi,θ0)′ .

Taking expectations yields (D.4). �

Proof of Theorem D.0.5. Let Y = (y1, ...,yn) be the sample, and set

S =
∂

∂θ
log fn (Y , θ0) =

n∑
i=1

∂

∂θ
log f (yi, θ0)

which by Theorem (D.0.4) has mean zero and variance nH. Write the estimator θ̃ = θ̃ (Y ) as a
function of the data. Since θ̃ is unbiased for any θ,

θ = Eθ̃ =

∫
θ̃ (Y ) f (Y , θ) dY .

Differentiating with respect to θ and evaluating at θ0 yields

1 =

∫
θ̃ (Y )

∂

∂θ
f (Y , θ) dY =

∫
θ̃ (Y )

∂

∂θ
log f (Y , θ) f (Y , θ0) dY = E

(
θ̃S
)
.
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By the Cauchy-Schwarz inequality

1 =
∣∣∣E(θ̃S)∣∣∣2 ≤ var (S) var

(
θ̃
)

so
var
(
θ̃
)
≥ 1

var (S)
=

1

nH .

�

Proof of Theorem D.0.6 Taking the first-order condition for maximization of logL(θ), and
making a first-order Taylor series expansion,

0 =
∂

∂θ
logL(θ)

∣∣∣∣
θ=θ̂

=
n∑
i=1

∂

∂θ
log f

(
yi, θ̂

)
'

n∑
i=1

∂

∂θ
log f (yi,θ0) +

n∑
i=1

∂2

∂θ∂θ′
log f (yi,θn)

(
θ̂ − θ0

)
,

where θn lies on a line segment joining θ̂ and θ0. (Technically, the specific value of θn varies by
row in this expansion.) Rewriting this equation, we find

(
θ̂ − θ0

)
=

(
−

n∑
i=1

∂2

∂θ∂θ′
log f (yi,θn)

)−1( n∑
i=1

∂

∂θ
log f (yi,θ0)

)
.

Since ∂
∂θ log f (yi,θ0) is mean-zero with covariance matrix Ω, an application of the CLT yields

1√
n

n∑
i=1

∂

∂θ
log f (yi,θ0)

d−→ N (0,Ω) .

The analysis of the sample Hessian is somewhat more complicated due to the presence of θn. Let
H(θ) = − ∂2

∂θ∂θ′
log f (yi,θ) . If it is continuous in θ, then since θn

p−→ θ0 we find H(θn)
p−→ H

and so

− 1

n

n∑
i=1

∂2

∂θ∂θ′
log f (yi,θn) =

1

n

n∑
i=1

(
− ∂2

∂θ∂θ′
log f (yi,θn)−H(θn)

)
+H(θn)

p−→H

by an application of a uniform WLLN. Together,

√
n
(
θ̂ − θ0

)
d−→H−1N (0,Ω) = N

(
0,H−1ΩH−1

)
= N

(
0,H−1

)
,

the final equality using Theorem D.0.4 . �
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Appendix E

Numerical Optimization

Many econometric estimators are defined by an optimization problem of the form

θ̂ = argmin
θ∈Θ

Q(θ) (E.1)

where the parameter is θ ∈ Θ ⊂ Rm and the criterion function is Q(θ) : Θ → R. For example
NLLS, GLS, MLE and GMM estimators take this form. In most cases, Q(θ) can be computed
for given θ, but θ̂ is not available in closed form. In this case, numerical methods are required to
obtain θ̂.

E.1 Grid Search

Many optimization problems are either one dimensional (m = 1) or involve one-dimensional
optimization as a sub-problem (for example, a line search). In this context grid search may be
employed.

Grid Search. Let Θ = [a, b] be an interval. Pick some ε > 0 and set G = (b − a)/ε to be
the number of gridpoints. Construct an equally spaced grid on the region [a, b] with G gridpoints,
which is {θ(j) = a + j(b − a)/G : j = 0, ..., G}. At each point evaluate the criterion function
and find the gridpoint which yields the smallest value of the criterion, which is θ(̂) where ̂ =
argmin0≤j≤GQ(θ(j)). This value θ (̂) is the gridpoint estimate of θ̂. If the grid is suffi ciently fine to

capture small oscillations in Q(θ), the approximation error is bounded by ε, that is,
∣∣∣θ(̂)− θ̂

∣∣∣ ≤ ε.
Plots of Q(θ(j)) against θ(j) can help diagnose errors in grid selection. This method is quite robust
but potentially costly.

Two-Step Grid Search. The gridsearch method can be refined by a two-step execution. For
an error bound of ε pick G so that G2 = (b − a)/ε For the first step define an equally spaced
grid on the region [a, b] with G gridpoints, which is {θ(j) = a + j(b − a)/G : j = 0, ..., G}.
At each point evaluate the criterion function and let ̂ = argmin0≤j≤GQ(θ(j)). For the second
step define an equally spaced grid on [θ(̂− 1),θ(̂+ 1)] with G gridpoints, which is {θ′(k) =
θ(̂ − 1) + 2k(b − a)/G2 : k = 0, ..., G}. Let k̂ = argmin0≤k≤GQ(θ′(k)). The estimate of θ̂ is

θ
(
k̂
)
. The advantage of the two-step method over a one-step grid search is that the number of

function evaluations has been reduced from (b−a)/ε to 2
√

(b− a)/ε which can be substantial. The
disadvantage is that if the function Q(θ) is irregular, the first-step grid may not bracket θ̂ which
thus would be missed.

E.2 Gradient Methods

Gradient Methods are iterative methods which produce a sequence θi : i = 1, 2, ... which
are designed to converge to θ̂. All require the choice of a starting value θ1, and all require the
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computation of the gradient of Q(θ)

g(θ) =
∂

∂θ
Q(θ)

and some require the Hessian

H(θ) =
∂2

∂θ∂θ′
Q(θ).

If the functions g(θ) andH(θ) are not analytically available, they can be calculated numerically.
Take the j′th element of g(θ). Let δj be the j′th unit vector (zeros everywhere except for a one in
the j′th row). Then for ε small

gj(θ) ' Q(θ + δjε)−Q(θ)

ε
.

Similarly,

gjk(θ) ' Q(θ + δjε+ δkε)−Q(θ + δkε)−Q(θ + δjε) +Q(θ)

ε2

In many cases, numerical derivatives can work well but can be computationally costly relative to
analytic derivatives. In some cases, however, numerical derivatives can be quite unstable.

Most gradient methods are a variant of Newton’s method which is based on a quadratic
approximation. By a Taylor’s expansion for θ close to θ̂

0 = g(θ̂) ' g(θ) +H(θ)
(
θ̂ − θ

)
which implies

θ̂ = θ −H(θ)−1g(θ).

This suggests the iteration rule
θ̂i+1 = θi −H(θi)

−1g(θi).

where
One problem with Newton’s method is that it will send the iterations in the wrong direction if

H(θi) is not positive definite. One modification to prevent this possibility is quadratic hill-climbing
which sets

θ̂i+1 = θi − (H(θi) + αiIm)−1 g(θi).

where αi is set just above the smallest eigenvalue of H(θi) if H(θ) is not positive definite.
Another productive modification is to add a scalar steplength λi. In this case the iteration

rule takes the form
θi+1 = θi −Digiλi (E.2)

where gi = g(θi) and Di = H(θi)
−1 for Newton’s method and Di = (H(θi) + αiIm)−1 for

quadratic hill-climbing.
Allowing the steplength to be a free parameter allows for a line search, a one-dimensional

optimization. To pick λi write the criterion function as a function of λ

Q(λ) = Q(θi +Digiλ)

a one-dimensional optimization problem. There are two common methods to perform a line search.
A quadratic approximation evaluates the first and second derivatives of Q(λ) with respect to
λ, and picks λi as the value minimizing this approximation. The half-step method considers the
sequence λ = 1, 1/2, 1/4, 1/8, ... . Each value in the sequence is considered and the criterion
Q(θi +Digiλ) evaluated. If the criterion has improved over Q(θi), use this value, otherwise move
to the next element in the sequence.
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Newton’s method does not perform well if Q(θ) is irregular, and it can be quite computationally
costly if H(θ) is not analytically available. These problems have motivated alternative choices for
the weight matrix Di. These methods are called Quasi-Newton methods. Two popular methods
are do to Davidson-Fletcher-Powell (DFP) and Broyden-Fletcher-Goldfarb-Shanno (BFGS).

Let

∆gi = gi − gi−1

∆θi = θi − θi−1

and . The DFP method sets

Di = Di−1 +
∆θi∆θ

′
i

∆θ′i∆gi
+
Di−1∆gi∆g

′
iDi−1

∆g′iDi−1∆gi
.

The BFGS methods sets

Di = Di−1 +
∆θi∆θ

′
i

∆θ′i∆gi
− ∆θi∆θ

′
i(

∆θ′i∆gi
)2 ∆g′iDi−1∆gi +

∆θi∆g
′
iDi−1

∆θ′i∆gi
+
Di−1∆gi∆θ

′
i

∆θ′i∆gi
.

For any of the gradient methods, the iterations continue until the sequence has converged in
some sense. This can be defined by examining whether |θi − θi−1| , |Q (θi)−Q (θi−1)| or |g(θi)|
has become small.

E.3 Derivative-Free Methods

All gradient methods can be quite poor in locating the global minimum when Q(θ) has several
local minima. Furthermore, the methods are not well defined when Q(θ) is non-differentiable. In
these cases, alternative optimization methods are required. One example is the simplex method
of Nelder-Mead (1965).

A more recent innovation is the method of simulated annealing (SA). For a review see Goffe,
Ferrier, and Rodgers (1994). The SA method is a sophisticated random search. Like the gradient
methods, it relies on an iterative sequence. At each iteration, a random variable is drawn and
added to the current value of the parameter. If the resulting criterion is decreased, this new value
is accepted. If the criterion is increased, it may still be accepted depending on the extent of the
increase and another randomization. The latter property is needed to keep the algorithm from
selecting a local minimum. As the iterations continue, the variance of the random innovations is
shrunk. The SA algorithm stops when a large number of iterations is unable to improve the criterion.
The SA method has been found to be successful at locating global minima. The downside is that
it can take considerable computer time to execute.
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