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Triplet Embeddings for Demand Estimation†

By Lorenzo Magnolfi, Jonathon McClure, and Alan Sorensen*

We propose a method to augment conventional demand estima-
tion approaches with crowd-sourced data on the product space. 
Our method obtains triplets data (“product A is closer to B than 
it is to C”) from an online survey to compute an embedding—i.e., 
a low-dimensional representation of the latent product space. The 
embedding can either replace data on observed characteristics in 
mixed logit models, or provide pairwise product distances to dis-
cipline cross-elasticities in log-linear models. We illustrate both 
approaches by estimating demand for ready-to-eat cereals; the infor-
mation contained in the embedding leads to more plausible substi-
tution patterns and better fit. (JEL C45, C51, D11, D12, D21, L66)

Estimating demand systems in differentiated product markets is fundamental in 
empirical Industrial Organization (IO), and the toolkit of methods can be roughly 

divided into two approaches.1 The product space approach assumes that consumers 
have preferences over products, and product-level demand comes from the aggre-
gation of those preferences. This is perhaps the most natural way to conceptualize 
demand, and  it has the advantage of yielding demand equations that are computa-
tionally simple to estimate (e.g., Christensen, Jorgenson, and  Lau 1975; Deaton 
and Muellbauer 1980). The characteristics space approach, pioneered by Lancaster 
(1966) and McFadden (1974), instead treats products as bundles of characteristics 
and defines consumers’ preferences over these characteristics. Methods in this vein 
have their own advantages: they are based on theoretically grounded models of dis-
crete choice; they have convenient analytical properties (e.g., closed-form solutions 
for firms’ predicted market shares); and with the inclusion of random coefficients on 
some characteristics (as suggested, for example, by Berry, Levinsohn, and Pakes 1995 

1 See Berry and Haile (2021) and Gandhi and Nevo (2021) for recent surveys.
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(henceforth, BLP) and McFadden and Train 2000), they allow for rich patterns of 
substitution between products.

Both of these approaches typically require data on the product space to yield 
credible estimates. Unless information about the product space is used to restrict 
substitution patterns, product space models quickly run into a curse of dimensional-
ity: absent any restrictions, a market with ​J​ products will require estimation of sep-
arate parameters for each of the ​​J​​ 2​​ demand elasticities. And because a key rationale 
for the characteristics space approach is that it collapses preferences over ​J​ products 
down to a set of ​K  ≪  J​ characteristics, it is essential that the demand-relevant char-
acteristics are known to the researcher and observed in the data.

In this paper, we propose a pragmatic approach for obtaining complementary data 
that can be used when product characteristics are not observed, either to discipline the 
parameters in a product space model or to serve as (latent) characteristics in a charac-
teristics space model. We first solicit product comparisons via an online survey to gen-
erate data of the form “product A is closer to B than it is to C”—commonly referred to 
as “triplets data” in the machine learning literature—and then apply the t-Distributed 
Stochastic Triplet Embedding (tSTE) algorithm proposed by Van Der  Maaten 
and Weinberger (2012) to compute an embedding of the products in low-dimensional 
space. Distances between products are then easily calculated from this embedding, 
and cross-price elasticities in a product space model can be estimated as a function 
of these distances, as in Pinkse, Slade, and Brett (2002). Alternatively, the products’ 
coordinates in the embedding can be treated as the characteristics in a conventional 
mixed logit demand model like BLP. As we explain below, these embeddings are easy 
to generate, and the data required to compute them are straightforward to obtain.

We illustrate the method by estimating demand for ready-to-eat breakfast cereals, 
augmenting the usual price and quantity data with survey data obtained from col-
lege students and Mechanical Turk workers. We chose this application—a common 
laboratory for evaluating demand estimation methods—because standard data on 
product characteristics are also available, which we can compare to the embedding. 
The triplets data from the survey lead to an embedding of products that appears quite 
sensible. We use the embedding to first show how it can be used in a product space 
model similar to that of Pinkse, Slade, and Brett (2002), where the (log) quantity 
demanded for any product is a linear function of its own (log) price and of all com-
peting products’ (log) prices, allowing the cross-price elasticity parameters to be 
functions of pairwise product distances computed from the embedding. Estimates of 
this model are computationally trivial to obtain, and they yield reasonable own- and 
cross-price elasticities—broadly similar to those reported in prior studies like Nevo 
(2001) and Backus, Conlon, and Sinkinson (2021). Importantly, we show that the 
distances computed from the embedding deliver more plausible estimates of substi-
tution patterns than distances computed from observed product characteristics.

We then show how the coordinates from the embedding can be used in more 
conventional discrete choice models like BLP. If we treat the products’ coordi-
nates in the embedding as latent characteristics, essentially including them as the 
covariates in an otherwise standard BLP model, we obtain elasticity estimates 
that are comparable to those from a model that uses observable characteristics. 
This result is particularly encouraging because it suggests our method can deliver 
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credible estimates even in markets where demand-relevant characteristics are more 
elusive, such as fashion apparel, movies, or music. Using survey data to obtain an 
embedding is essentially a way of crowdsourcing data on product characteristics, 
which is a useful option when data on product characteristics are otherwise difficult 
to collect. This is a common and meaningful problem in empirical IO—for example, 
De Loecker, Eeckhout, and Unger (2020) and Syverson (2019) note that the lack of 
IO research on broad trends in markups stems largely from the difficulty of scaling 
methods that rely on market-specific product characteristics data.

Our paper contributes to an emerging literature that proposes new sources of 
data to estimate demand, and we are not the first to propose the use of embeddings. 
Bajari et al. (2021) use deep neural nets to generate numeric latent attributes (i.e., 
an embedding) from products’ images and text descriptions, and then leverage those 
attributes to estimate a hedonic price function for apparel items on Amazon.com. 
This is a nice example where the demand-relevant information about a product—
say, a woman’s dress—cannot be easily summarized by a set of characteristics, even 
though humans can easily process and synthesize the relevant information from 
the product’s image and/or text description. With similar motivation, Han et  al. 
(2021) deploy a deep neural net to compute an embedding describing the product 
space for fonts. Armona, Lewis, and Zervas (2021) learn products’ latent attributes 
from search data (consumers’ web browsing histories) using Bayesian Personalized 
Ranking and apply their method to estimate demand for hotels. Compiani, Morozov, 
and Seiler (2023) use unstructured image and text data to generate an embedding 
and estimate a nested logit model of demand with overlapping nests. Related articles 
that use data on consumers’ transactions and search to fit embeddings and estimate 
demand also include Ruiz, Athey, and Blei (2020); Kumar, Eckles, and Aral (2020); 
and Gabel and  Timoshenko (2022). The primary distinction between our analy-
sis and these prior studies is our use of survey data to compute the embedding. In 
essence we are relying on human respondents to describe the product space and then 
incorporating that information into standard methods for estimating demand.

We also view our approach as being similar in spirit to studies that employ auxiliary 
data to augment existing demand estimation methodologies. Berry, Levinsohn, and 
Pakes (2004) is a canonical study in which second-choice data from surveys are used to 
generate additional moments in the estimation of demand for automobiles. Petrin (2002) 
is an early example of combining demographic data with the usual price and quantity 
data to get richer estimates of substitution patterns. More recently, Conlon, Mortimer, 
and Sarkis (2022) show how demand estimates can be meaningfully improved by 
incorporating data on second-choice diversion ratios, in their case obtained from 
experimentally generated stockouts. They even show that the information contained in 
such data is powerful enough to enable the estimation of a semi-parametric model that 
imposes much lighter assumptions than conventional mixed logit.

I.  Demand Estimation and Linear Embeddings

Consider a market, indexed by ​t​, where firms offer a set ​​​t​​​ of differentiated prod-
ucts. Prices and quantities for each good ​j​ are denoted as ​​p​jt​​​ and ​​q​jt​​​. The demand sys-
tem that maps prices into quantities depends on two key sets of primitives: consumers’ 

http://Amazon.com
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preferences and demographics, and the product space. We assume that products 
can be represented by coordinates in the ​m​-dimensional Euclidean space; thus, the 
product space in market ​t​ is a set of vectors ​​𝐱​t​​  ≡ ​ {​x​1t​​, …, ​x​Jt​​}​  ∈ ​ ℝ​​ m×​J​t​​​​. Hence, 
demand can be written as ​​q​jt​​  = ​ σ​j​​​(​p​t​​; ​𝐱​t​​, θ)​​ for some function ​​σ​j​​​, where ​θ​ is a vector 
of preference parameters.

The product space ​​𝐱​t​​​ is a key element of the empirical demand system under any 
estimation approach. In the characteristics space approach, demand is assumed to 
arise from discrete choices of individual consumers whose preferences are defined 
over the product space coordinates. Thus, ​​x​jt​​​ enters consumers’ indirect utility for 
product ​j​ interacted, with preference parameters. In the product space approach, the 
functions ​​σ​j​​​ are estimated directly, with functional form restrictions imposed (typi-
cally based on either convenience or a representative consumer micro-foundation). 
The importance of the product space ​​𝐱​t​​​ is that it can play a role in disciplining the 
otherwise overabundant cross-elasticity parameters: as in Pinkse, Slade, and Brett 
(2002), cross elasticities of demand between products ​j​ and ​k​ can be modeled as a 
function of the distance ​​d​jk​​​(​𝐱​t​​)​​ between the two products.

Within this framework, our method can be understood as a way of recovering ​​𝐱​t​​​ 
from auxiliary data as an embedding when product characteristics are not observ-
able or are difficult to codify. The next subsections provide an overview of embed-
dings and how they can be incorporated into either of the two main approaches to 
demand estimation.

A.  Product Embeddings

In machine learning, an embedding is a low dimensional, learned continuous 
vector representation of discrete variables.2 In our case the discrete variables are 
just product indicators (“this is product ​j​”), and the objective is to assign locations 
(real-valued vectors) to these products in a way that best satisfies the distance com-
parisons from a training dataset. As training data we use triplets—i.e., comparisons 
of the form “product A is closer to B than it is to C”—obtained from a survey that 
we describe in detail below in the context of our application.

Thus, given our set of products, we want to find a set of vectors ​𝐱  ≡ ​ {​x​1​​, …, ​x​J​​}​​  
that represent the products in ​m​-dimensional space, and we assume that this corre-
sponds to the product space that enters the demand system. To learn the embedding 
from triplets data, we use the t-distributed Stochastic Triplet Embedding (tSTE) 
algorithm proposed by Van Der Maaten and Weinberger (2012). Letting ​​  be the set 
of triplet comparisons in our data, each one indicating that some product ​i​ is closer 
to ​j​ than it is to ​k​, tSTE solves

 ​​ max​ 
𝐱∈​ℝ​​ m×J​

​​ ​  ∑ 
​(i, j,k)​∈

​ 
 

 ​​  ln​(​π​ijk​​)​,  where  ​π​ijk​​  = ​ 
​​(1 + ​ 

​​‖​x​i​​ − ​x​j​​‖​ ​​ 2​
 ________ α ​ )​​​ 

−​ α+1 _ 2 ​
​
   ____________________________________    

​​(1 + ​ 
​​‖​x​i​​ − ​x​j​​‖​​​ 2​

 _______ α ​ )​​​ 
−​ α+1 _ 2 ​

​ + ​​(1 + ​ ​​‖​x​i​​ − ​x​k​​‖​​​ 2​
 _______ α ​ )​​​ 

−​ α+1 _ 2 ​
​

 ​​ ,

2 Common uses of embeddings in machine learning include image classification and natural language process-
ing. For example, Google’s Word2Vec algorithm uses a neural network to assign vector representations to words 
so that the cosine similarity between any two words’ vectors can be used as a measure of their semantic similarity. 
Embeddings are also commonly used for visualizing high-dimensional data: collapsing to two or three dimensions 
allows for simple plots in which clusters and other patterns are easy to see.
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and ​α​ is the degrees of freedom parameter for the underlying Student-​t​ kernel. To 
gain intuition about this program, note that to fit one single triplet the embedding 
would assign equal coordinates to products ​i​ and ​j​ and infinitely far coordinates to 
products ​i​ and ​k​, so that ​ln​(​π​ijk​​)​​ diverges. As we introduce further triplet compari-
sons, the solution is more intricate: the embedding has to fit more complex patterns 
because the same products are involved in multiple comparisons. The tSTE objective 
function is also similar to the log-likelihood of a binary logit model, where agents 
respond to “is ​i​ closer to ​j​ than it is to ​k​” according to utilities that depend on the 
distances in the (unknown) product space and an additive error.3 To draw another 
comparison with discrete choice, just like some models of multinomial choice can 
be estimated from data on a subset of the choices available (McFadden 1978; Fox 
2007), in tSTE triplet comparisons are sufficient to pin down the full product space ​
𝐱​. The functional form based on the heavy-tailed Student-​t​ distribution is preferred 
to GEV distributions because it performs well without overreacting to noisy triplets 
that violate the broader consensus in the data.

In our empirical application to ready-to-eat breakfast cereal, we have ​J  =  86​ 
products, so if we choose to fit a six-dimensional embedding (​m  =  6​), then the 
above program is a numerical optimization problem with 516 free variables. We 
found that ordinary gradient descent algorithms solve this optimization problem in 
a matter of minutes.4

The choice of the hyperparameters ​α​ and ​m​ deserves some discussion. Following 
the literature (Van der Maaten and Hinton 2008; Van Der Maaten and Weinberger 
2012), we set ​α  =  m − 1​ and find that our embedding is not very sensitive to 
this parameter. The choice of ​m​ is more critical, and while various rules of thumb 
have been proposed in the machine learning literature, there seems to be no widely 
accepted criterion. We propose a pragmatic approach that selects ​m​ by iteratively 
adding dimensions until additional embedding characteristics do not have a mean-
ingful impact, i.e., produce very similar distances among products. Additional 
details on this procedure, including two alternative ways of implementing it (based 
on Frobenius distances and PCA, respectively), are in Supplemental Appendix B.

B.  Using Embeddings in Demand Models

We now describe how to use embedding data when estimating demand for differ-
entiated products. First, we consider how embeddings can enhance product space 
approaches to demand estimation. Models in this class are often deemed unsuitable 
for applications to markets with differentiated products, because in even the sim-
plest specifications (e.g., linear) the number of parameters grows exponentially with 
the number of products.5

3 We thank Steve Berry for noticing this similarity.
4 We used a version of the MATLAB code provided by Laurens Van der Maaten: https://lvdmaaten.github.io/ste/

Stochastic_Triplet_Embedding.html.
5 Other reasons include the difficulties in incorporating heterogeneity across consumers and in evaluating the 

demand for new products (Gandhi and Nevo 2021).

https://lvdmaaten.github.io/ste/Stochastic_Triplet_Embedding.html
https://lvdmaaten.github.io/ste/Stochastic_Triplet_Embedding.html
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Various solutions to this problem have been devised.6 In this paper, we adopt the 
method proposed by Pinkse, Slade, and Brett (2002), who note that when competi-
tion among firms is spatial (i.e., it depends on some topology of the product space), 
the parameters that govern substitution between products can be projected on a flex-
ible function of their distances. When products have an observable location in the 
physical space, as in the application of Pinkse, Slade, and Brett (2002) or in Houde 
(2012), distances are straightforward to measure. When spatial competition is only 
figurative, as in the case of Pinkse and Slade (2004)’s study of the UK beer market, 
distance can instead be modeled as a function of observable product characteristics.

Using an embedding computed from triplets data as described above, we can 
obtain a map of the product space even when the products’ characteristics are dif-
ficult to observe or quantify, and the distances between products in the embedding 
can be used in the framework of Pinkse, Slade, and Brett (2002). In the empirical 
exercise below, we estimate, with product-level data, the log-linear demand model

(1)	​ ln​(​q​jt​​)​  = ​ α​j​​ + ​β​j​​ ln​(​p​jt​​)​ + ​∑ 
k≠j

​ 
 

 ​​  f​(​d​jk​​ ; γ)​ln​(​p​kt​​)​ + ​ϵ​jt​​,​

where ​​α​j​​, ​β​j​​​ and ​γ​ correspond to preference parameters ​θ​, and ​​ϵ​jt​​​ is a consumer 
product-specific unobservable. The function ​f​ is a real-valued transformation of the 
pairwise distances among products we compute from the embedding; we discuss 
specific parameterizations of this function below.

The log-linear formulation we adopt is convenient because the coefficients on 
log prices can be interpreted directly as elasticities: ​​β​j​​​ is the own-price elasticity 
for product ​j​, and the cross elasticity between products ​j​ and ​k​ is a function of their 
distance ​​d​jk​​​. This functional form is restrictive, as it rules out that cross elasticities 
between two products depend on the availability of other close substitutes. We adopt 
it here because of its simplicity and obvious computational advantage: elasticities 
can be obtained from simple linear or nonlinear regressions once a functional form 
for ​f​ has been chosen and suitable identifying assumptions have been made.7 This is 
in contrast with state-of-the-art implementations of discrete-choice demand models, 
which instead require computationally intensive nonlinear optimization routines.

Although the log-linear specification is convenient for showcasing our method, 
other specifications of the model that incorporate distances are possible and may 
be preferable depending on the application at hand. First, from an econometric per-
spective, while the log-linear specification models demand as a regression—with 
one structural error per equation—this is a strong restriction that is relaxed in more 
flexible classes of models (Berry and Haile 2021). Embedding data could however 
be used to discipline flexible models of inverse demand. Second, as the log-linear 
model lacks economic structure, it may be preferable to use a specification cor-
responding to a micro-founded demand system—to enable welfare analysis or to 
enforce certain theoretical properties. With this in mind, we discuss in Supplemental 

6 For example, the researcher can restrict substitution across categories of goods by modeling choice as a 
multistage budgeting problem, as in Deaton and Muellbauer (1980). 

7 Identification and estimation of the model are discussed in Section IIIA.
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Appendix A.2 an alternative specification based on AIDS (Deaton and Muellbauer 
1980).

Embeddings can also be used to estimate characteristics-space demand models. 
The natural way to use an embedding in a conventional logit-style demand model 
(like BLP) is to treat the products’ coordinates in the embedding as characteristics 
(i.e., ​x​ variables in the consumer’s indirect utility function). If an ​m​-dimensional 
embedding is computed, then each of the ​m​ dimensions can be treated as a charac-
teristic. Because each dimension of the embedding enters the model separately, this 
approach is more flexible than the one described above for the product space model; 
it allows the data to determine which dimensions of the embedding are most relevant 
to substitution.8

A disadvantage of this approach is that these are latent characteristics without 
any natural interpretation. However, we expect that in many cases the latent char-
acteristics from a crowd-sourced embedding will give a better overall description 
of the products and their relationships to one another than could be obtained from 
observable characteristics. For example, the 2020 Toyota Camry and the 2020 MINI 
Clubman are very similar cars based on horsepower, fuel efficiency, passenger vol-
ume, and curb weight,9 but we suspect consumers would not identify the two cars 
as being near each other in product space. In our cereal application, our survey 
appropriately indicates that Cocoa Pebbles are closer to Cocoa Krispies than Tootie 
Frooties, even though Tootie Frooties are closer based on sugar, fiber, and calories 
from fat.

II.  Empirical Application: Embeddings and Data

We illustrate our method by estimating demand for breakfast cereals. Fairly rich 
data on cereals’ nutritional and other characteristics are available, and this product 
category has been the subject of important studies on demand estimation (e.g., Nevo 
2001). Given the nature of our method, we cannot perform a Monte Carlo exer-
cise: it is not possible to recover from survey responses a synthetic product space. 
Instead, we use the existing characteristic data in this application as a yardstick to 
measure the usefulness of embedding data. In this section, we first describe the sur-
vey we used to collect the triplets data and then summarize the embedding that we 
compute from those data.

A.  Survey

To obtain the triplet data needed to learn the embedding of cereal products, we 
conducted an online survey that asked respondents to make a series of product 
comparisons. Each page showed a reference product along with eight comparison 

8 In Section IIIA we discuss how to add similar flexibility to the log-linear model.
9 The HP, MPG, volume, and weight specifications for the Camry (Clubman) are 203 (189), 34 (29), 100 (93), 

and 3241 (3235).
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products, and the respondent was asked to indicate which two were most similar to 
the reference product.10 Figure 1 shows a sample page from the survey.

Each comparison page thus yields 12 triplets: each of the 2 checked products is 
considered closer to the reference product than the 6 unchecked products. Survey 
respondents were asked to complete up to 20 comparison pages, so each respondent 
generated as many as 240 triplet comparisons.

The survey respondents included 456 undergraduate students at the University 
of Wisconsin and 220 workers from Amazon’s Mechanical Turk platform. 
Respondents were first asked to indicate how often they eat cereal and how many 
different cereals they have tried (see Figure 5 in Supplemental Appendix E), and 
were then shown the sequence of comparison pages. We found that embeddings 
based on Turk workers’ responses versus undergraduate students’ responses were 
similar,11 so we pooled their responses when computing the embedding used in 
the rest of the paper. We discarded data from a very small percentage of respon-
dents who indicated no prior experience with breakfast cereal, but this has little 

10 This approach to obtaining triplet comparison is similar to Wilber, Kwak, and Belongie (2014)—see further 
discussion in Supplemental Appendix C.

11 If we compute embeddings separately for the two samples, the resulting product distances have a correlation 
of 0.88.

Which two cereals on the right
are most similar to

FROOT LOOPS?

SPECIAL K VANILLA
ALMOND

FRUITY CHEERIOS

KIX

FROSTED
FLAKES

Submit

CINNAMON LIFE

COOKIE-CRISP

FIBER ONE HONEY
CLUSTERS

COCOA PUFFS

Figure 1. Sample Survey Page

Note: The figure shows a sample page from our online survey.

https://pubs.aeaweb.org/action/showImage?doi=10.1257/mic.20220248&iName=master.img-008.jpg&w=91&h=91
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impact on the computed embedding. The final sample includes 175,116 triplet com-
parisons (Magnolfi, McClure, and Sorensen 2021).

B.  Computed Embedding

For the demand estimation below we use six-dimensional embeddings,12 but for 
purposes of visualization Figure 2 shows a two-dimensional embedding computed 
from the same triplets data. Even with only two dimensions, the algorithm neatly 
organizes the products into reasonable clusters—for example, sugary fruity cereals 
(clustered in the northeast region of the figure) and sugary chocolatey cereals (clus-
tered in the southeast).

We report descriptive statistics for the six embedding characteristics in Table 1, 
panel A. The characteristics are mean-zero but do not have unit variance, and dis-
play some correlation. Based on distances from the six-dimensional embedding, 
Table 2 lists the two nearest cereals to some of the highest revenue brands in our 
sample. In general, the embedding appears to be correctly identifying the most sim-
ilar products. This should not be surprising, since identifying similar cereals is not 

12 Supplemental Appendix B provides a detailed discussion of how we chose the number of dimensions.

HONEY NUT CHEERIOS

FROSTED FLAKES

CINNAMON TOAST CRUNCH

CHEERIOS

HONEY BUNCHES OF OATS

LUCKY CHARMS

FROSTED MINI-WHEATS
FROOT LOOPS

RAISIN BRAN

RICE KRISPIES
SPECIAL K RED BERRY

FRUITY PEBBLES

LIFE

APPLE JACKS

COCOA PUFFS

RAISIN BRAN CRUNCH

CINNAMON LIFE

CORN FLAKES

CAP’N CRUNCH
OATMEAL SQUARES

MULTIGRAIN CHEERIOS

COCOA PEBBLES

SPECIAL K

CORN POPSRICE CHEX

COCOA KRISPIES

GREAT GRAINS

GOLDEN GRAHAMS

FROSTED MINI-WHEATS LITTLE BITES

KRAVE

COOKIE-CRISP

CAP'N CRUNCH PEANUT BUTTER CRUNCH

GRAPE-NUTS

HONEY-COMB

HONEY SMACKS

SPECIAL K CHOCOLATEY DELIGHT

WHEAT CHEX

APPLE CINNAMON CHEERIOS

FROOT LOOPS MARSHMALLOW
HONEY GRAHAM OH!S

FRUITY DYNO-BITES

CHOCOLATE CHEX

WHEATIES

GO LEAN

CINNAMON TOASTERSCRACKLIN' OAT BRAN

GOLDEN PUFFS

COCOA DYNO-BITES

RAISIN NUT BRAN

FROSTED CHEERIOS
FRUITY CHEERIOS

TOOTIE FRUITIES

Figure 2. Plot of Two-Dimensional Embedding

Notes: The figure shows a two-dimensional embedding for ready-to-eat cereals estimated from the triplets data. 
To avoid overlapping text, not every cereal in the sample is plotted; plots showing all 86 cereals can be found in 
Supplemental Appendix E.
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difficult for a human, and our procedure is essentially synthesizing thousands of 
comparisons made by humans.

Our interpretation of the computed embedding deserves some discussion. A 
first natural question is whether embedding characteristics correspond to intuitive 
dimensions of product differentiation. We discuss this aspect further below, after 
having introduced data on observable characteristics. Another question concerns 
whether the product distances that come from the survey are the right distances 
for demand estimation. It is important to note that the distances themselves are not 
intended to be measures of substitution. Like ordinary product characteristics in 
conventional discrete-choice methods, they are inputs into the demand estimation, 
which uses price and quantity data to measure substitution patterns. Ideally, we 
want the demand estimation to use these inputs as flexibly as needed to deliver the 
true substitution patterns—much as allowing for random coefficients on product 
characteristics allows for flexible substitution in the discrete-choice framework—
so it may not be enough to simply use Euclidean distances. When estimating the 
demand model in subection A below we discuss how to incorporate the distances 
more flexibly.

Table 1—Embedding Characteristics and Characteristics Data

Variable Mean SD Minimum Maximum

Panel A. Summary statistics
​​x​1​​​ 0.000 1.589 −3.219 3.385
​​x​2​​​ 0.000 0.894 −1.372 2.849
​​x​3​​​ 0.000 1.107 −2.514 1.998
​​x​4​​​ 0.000 1.083 −1.998 2.347
​​x​5​​​ 0.000 1.171 −3.059 2.280
​​x​6​​​ 0.000 0.826 −1.700 2.123

Sugar Fiber Cal. from fat Kids All-family

Panel B. Pairwise correlations
​​x​1​​​ −0.098 0.588 0.265 −0.694 0.647
​​x​2​​​ −0.009 −0.176 −0.089 0.273 −0.272
​​x​3​​​ −0.209 0.164 −0.125 −0.332 0.314
​​x​4​​​ −0.192 0.225 0.138 −0.338 0.343
​​x​5​​​ −0.458 0.155 0.028 −0.507 0.491
​​x​6​​​ 0.495 −0.302 0.177 0.418 −0.404

Notes: Panel A reports summary statistics for embedding vectors, denoted ​​x​1​​​ through ​​x​6​​​. Panel B reports the pairwise 
correlation between observable characteristics (column variable) and embedding characteristics (row variable).

Table 2—Examples of Nearby Brands Based on Six-Dimensional Embedding

Brand Nearest brand Second-nearest brand

GM Honey Nut Cheerios GM Honey Nut Cheerios Medley Cr. Post Honey Graham Oh’s
Kellogg’s Frosted Flakes Malt-o-Meal Frosted Flakes Kellogg’s Corn Flakes
GM Cinnamon Toast Crunch GM French Toast Cr. Malt-o-Meal Cinnamon Toasters
Kellogg’s Froot Loops Malt-o-Meal Tootie Fruities Kellogg’s Apple Jacks
Kellogg’s Raisin Bran Kellogg’s Raisin Bran Cr. Post Raisin Bran
Kellogg’s Rice Krispies GM Kix Kellogg’s Corn Pops
GM Cocoa Puffs Kellogg’s Cocoa Krispies GM Reese’s Puffs

Note: The table reports, for the sample of ready-to-eat cereal brands in the first column, the nearest and second-nearest 
brands in the six-dimensional embedding.
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C. Observed Characteristics Data

For all cereals in our sample, we have data on nutritional characteristics from the 
Nutritionix database (Nutritionx 2021). These include sugar (grams per serving), 
fiber (grams per serving), and calories from fat (per serving).13 This set of charac-
teristics is similar to Nevo (2001), only omitting his “mushy” characteristic, which 
was author generated and not recoverable from nutritional data. We also construct 
a categorical variable to reflect differences in the target demographic, labeling each 
brand as targeted to “Kids,” “Adult,” and “All family.” We emphasize that these data 
are not necessary to estimate demand with our method. However, they provide a 
useful benchmark: we use them here to help interpret embedding characteristics and 
in Section III to estimate demand systems that can be compared with those that use 
embedding characteristics.14

To compare observed and embedding characteristics, we show pairwise correla-
tions in Table 1, panel B. Embedding characteristics (​​x​1​​​ through ​​x​6​​​) are partially 
picking up variation in observables: for example, ​​x​6​​​ is the embedding characteristics 
most positively correlated with sugar, and is also positively correlated with calories 
from fat and kids, while negatively correlated with fiber and all-family. ​​x​1​​​ is instead 
highly correlated with fiber, fat, and all-family, while negatively correlated with 
kids. Beyond pairwise comparisons, we analyze how the full set of embedding char-
acteristics is related to the set of observed characteristics by computing canonical 
correlations.15 The first two canonical correlations between the (six) embedding 
dimensions and (five) observed characteristics are 0.87 and 0.67,16 and the canon-
ical loadings indicate that the first canonical variate is highly correlated with the 
category indicators (kids and all family) while the second is highly correlated with 
sugar and calories from fat. Finally, we run the full set of embedding and observable 
characteristics through PCA: retaining at least 95 percent of the variation requires 
8 components versus the 9 total continuous dimensions. Taken together, these results 
indicate that while embedding vectors may be reflecting some product features that 
are observable, they are also encoding additional information.

D.  Price and Quantity Data

Our data on prices and quantities come from Nielsen’s Retail Scanner data from 
the year 2017 (Nielsen IQ 2024b). The unit of observation in our analysis is a 
UPC-retailer-DMA-week. Our sample of UPCs consists of the highest selling UPCs 
for the 86 brands that together account for 80 percent of total sales in the breakfast 
cereal category. We focus on large markets with many competing products, limiting 
the sample by keeping product-market combinations that appear in all 52 weeks of 
the data, keeping markets with at least 50 UPCs, and keeping UPCs that appear in at 

13 We rescale the sugar, fiber, and calorie measures to have mean zero and unit variance.
14 We can also combine observed characteristics with embedding data—see Section C..
15 The first canonical correlation between the matrix of embedding characteristics ​𝒙​ and observables ​𝒚​ is ​​

max​a∈​ℝ​​ 6​,b∈​ℝ​​ 4​​​ corr​(​a ′ ​𝒙, ​b ′ ​𝒚)​​. See Härdle and Simar (2019) for an overview of canonical correlation analysis.
16 The remaining canonical dimensions are not statistically significant.
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least 50 markets. This results in a sample of 684,476 UPC-retailer-DMA-week obser-
vations, containing 43 retailer chains, 111 DMAs, and 189 unique retailer-DMA 
pairs across 52 weeks. Table 3 shows some basic summary statistics for the 86 prod-
ucts in the sample, as well as for the 189 retailer-DMA pairs.

III.  Empirical Application: Demand Estimation

In this section we provide details of the demand estimation for both the product 
and the characteristics space models. In each case, we emphasize the comparison 
to demand estimates from the same model without the use of an embedding—i.e., 
either using pairwise product distances computed from observable characteristics in 
the product space model, or using observable characteristics as the ​x​ variables in the 
discrete choice model.

A.  Log-Linear Demand Estimates

We use the Nielsen price and quantity data to estimate the linear model shown 
in equation (1), including fixed effects at the week, DMA, retailer, and product 
level. We obtain the pairwise product distances ​​d​jk​​​ from the embedding data. Theory 
suggests that the function ​f​(​d​jk​​; γ)​​ should be monotonically decreasing in ​​d​jk​​​, since 
more distant products should have lower substitution. While certain functional 

forms such as ​f​(​d​jk​​; γ)​  =  γ/​(1 + ​d​jk​​)​​ can easily incorporate this, there are import-

ant reasons to estimate ​f​(​d​jk​​; γ)​​ flexibly. First, it allows estimated substitution pat-
terns to be driven more by the sales data than by the embedding. Second, if we are 
unsure whether the embedding is returning reasonable product distances, a flexible 
distance function provides a validation method. If the estimated distance function is 
non-monotonic or flat, this suggests the embedding is doing a poor job of capturing 
product attributes that are relevant to substitution.

We experimented with flexible approaches, including sieves and b-splines, but 
found that a simple cubic polynomial in scaled distances worked well:

(2)	​ f​(​d​jk​​; γ)​  = ​ γ​0​​ + ​γ​1​​ ​d​jk​​ + ​γ​2​​ ​d​ jk​ 
2 ​ + ​γ​3​​ ​d​ jk​ 

3 ​.​

Table 3—Price and Quantity Summary Statistics

Percentiles

Mean SD 10th 50th 90th

Cereal products (N  =  86)
Average price 3.58 0.83 2.50 3.51 4.77
Average weekly sales 216.16 649.63 9 55 480
Number of retailers 153.06 33.27 105 165 189

Retailer-DMA pairs (N  =  189)
# of cereal products carried 69.65 8.20 57 72 79
Avg. weekly cereal revenues (000) 45.30 77.48 3.71 17.15 117.46

Note: The table reports summary statistics for the 86 cereal UPCs and 189 retailer-DMA pairs we use for demand 
estimation.
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If the distances ​​d​jk​​​ are Euclidean, the log-linear model described by equations (1) 
and (2) can be estimated by OLS. However, a more flexible approach is to compute 
distances in a way that allows different dimensions of the embedding to have differ-
ent weights. For instance, the substitutability of two products may depend weakly 
on how close they are in the first dimension of the embedding while depending 
strongly on how close they are in the second dimension. Since the dimensions of 
the embedding do not have natural interpretations, we may want to let the data 
determine which dimensions matter most for substitution. With this consideration 
in mind, we estimate the log-linear model with the same cubic polynomial distance 
function as in equation (2), but defining pairwise product distances as

(3)	​​​ d ̃ ​​jk​​  = ​​ [​∑ 
m

​ 
 

 ​​ ​ ω​m​​ ​​(​x​jm​​ − ​x​km​​)​​​ 2​]​​​ 
​ 1 _ 2 ​
​,​

with ​​ω​1​​​ (the weight on the first dimension) normalized to one, and the remaining ​​ω​m​​​ 
coefficients left as parameters to be estimated for all other embedding dimensions ​
m​ . A disadvantage of this modification is that the regression is no longer linear in 
the parameters, so it must be estimated by nonlinear least squares. This increases 
the computational burden, but can still be done with a single line of code (e.g., using 
Stata’s nls command). Estimating the ​ω​ weights does seem to matter: the distances 
in two dimensions of the embedding are estimated to be more important than the 
others (​​ω​4​​​ and ​​ω​5​​​ are above 1.5), and one dimension seems to hardly matter at all  
(​​ω​3​​​ is near zero).17

As noted in Berry and Haile (2021), the identification of demand for differenti-
ated products is complicated by two fundamental challenges: price endogeneity, and 
codependence of the demand for each product on the latent demand shocks for all 
other products in the market. For the purpose of showcasing the embedding data and 
identifying substitutes in the simplest possible context, we impose strong assump-
tions to set aside these challenges. In particular, we assume that prices and product 
distances are uncorrelated with the unobservable ​​ϵ​jt​​​. Coupled with the restrictions 
implied by the specification of equation (1), the assumption of exogenous prices 
allows us to estimate the model straightforwardly with either OLS or NLS, depend-
ing on whether we estimate weights in the distance function as in equation (3).

Alternatively, a researcher can use instruments to identify the log-linear model. 
In our specification, we need instruments not only for own price, but also for the 
prices of all other products. In principle, Hausman or BLP instruments can be used 
in this context.18 To simplify estimation, we proceed with the assumption that 
prices are exogenous, leaving the discussion of an IV specification to Supplemental 
Appendix A.1. If the researcher wants to estimate a log-linear (or similar) speci-
fication using instruments, having distances from embeddings limits the number 
of parameters to be estimated and thus makes it easier for the exogenous variation 
provided by the instruments to pin down the parameters of the model.

17 Appendix Table 2 of Supplemental Appendix E reports the full set of estimated parameters, along with a 
comparison to the estimates from a model that uses Euclidean distances. Using Euclidean distances yields similar 
elasticity estimates but a worse overall fit.

18 However, in a setting like ours with high-frequency data, these instruments may not generate estimators with 
good sampling properties, as argued by Rossi (2014).
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In evaluating our results, the main comparison we want to make is to an alterna-
tive specification that relies only on observable characteristics to compute pairwise 
product distances. That is, we estimate the same log-linear model (1) and compute 
non-Euclidean product distances ​​d​jk​​​ as in equation (3), but using the nutritional 
characteristics introduced in Section C. We use the same cubic polynomial distance 
function as in (2) but also add a term to reflect different categories of cereals: let-
ting ​​G​j​​  ∈​ ​​{Kids, Adult, All Family}​​ denote the category of cereal ​j​, the modified 
distance function is

	 ​f​(​d​jk​​; γ)​  = ​ γ​0​​ + ​γ​1​​ ​d​jk​​ + ​γ​2​​ ​d​ jk​ 
2 ​ + ​γ​3​​ ​d​ jk​ 

3 ​ + ​γ​4​​ 1​{​G​j​​  ≠ ​ G​k​​}​​.

We expect ​​γ ​4​​​ to be negative, as two products in different categories should be less 
substitutable than two in the same category. As with the benchmark model based on 
the embedding, we estimate weights on different characteristics when computing 
the pairwise product distances ​​d​jk​​​.

In the absence of product characteristics, we could have compared our method 
with a standard log-log product space demand specification, which requires in 
this application estimating ​​J​​ 2​  =  7,896​ elasticity parameters. Even with our large 
weekly dataset, this specification produces imprecise and implausible results, with 
only a small share of cross-elasticity parameters being positive and statistically 
significant.19

Comparison between Embeddings and Characteristics.—Figure 3 summarizes 
the distributions of estimated own- and cross-price elasticities from the two specifi-
cations. The left panel shows kernel density estimates of the own-price elasticities. 
These estimates fall in a reasonable range (all negative, mostly between −1 and 
−4) and are similar between the two specifications. The similarity is not surprising, 
as own-price elasticity estimates are driven largely by the price and quantity data. 
Where the two models differ is in the estimated substitution patterns, which depend 
on the estimated distance functions.

We show the estimated distance functions in the right panel of Figure 3. When 
product distances are computed from the embedding, this function has the expected 
monotonically decreasing shape: nearby products are estimated to have larger 
cross-price elasticities. When distances are computed from observable charac-
teristics, the estimated distance function is non-monotonic and overall relatively 
flat, implying that cross-price elasticities for the nearest products are hardly dif-
ferent from those for the most distant products. This feature results in systemati-
cally higher diversion to closer products when using embedding data, as illustrated 
in Appendix Figure 6. In Supplemental Appendix D we assign cereals to intuitive 
groupings (e.g., chocolate-flavored, high-sugar cereals; low-sugar cereals; etc.) and 
show that embedding-based estimates predict diversion to be higher within group 
than across groups, which is what we would intuitively expect. Estimates based on 
observed characteristics do not generate this pattern.

19 Additionally, this specification has heavy computational requirements, as it uses 142.6GB of RAM and takes 
approximately 12 hours to run on a Linux server.
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The two specifications differ not only in the amount of diversion to close prod-
ucts but also in how they identify close substitutes. To illustrate this point, Table 4 
shows estimated cross-price elasticities for two pairs of very similar cereals. The 
model that uses the embedding delivers relatively high cross elasticities between 
Honey Nut Cheerios and Honey Graham Oh!s (0.090) and between Cocoa Pebbles 
and Cocoa Krispies (0.107), and relatively low cross elasticities between dissimilar 
pairs (e.g., 0.054 between Honey Nut Cheerios and Cocoa Pebbles). By contrast, 
the model that uses observed characteristics produces cross elasticities in a narrow 
range (0.041 to 0.068 for the example products in the table).

In addition to generating more plausible elasticity estimates, the specification 
based on the embedding also delivers superior fit out-of-sample. We use the coef-
ficients estimated using the 2017 Nielsen data sample to predict sales for the same 
markets in 2018.20 When compared to the characteristics specification, the embed-
ding specification produces log sales predictions that are closer to the data: the 
RMSEs corresponding to the two models are 1.227 versus 1.058, respectively. For 
reference, the RMSE of a constant prediction is 1.487.

B.  BLP Demand Estimates

To show how the embedding can be used in a characteristics space model, we esti-
mate a standard BLP demand system similar to Nevo (2001) and Backus, Conlon, 
and Sinkinson (2021). We refer the reader to those articles for a full description of 
the micro-foundations of the model. In this section, we briefly describe the details 
of our implementation. Our specification includes retailer-DMA-week (market) 

20 We also apply the retailer-DMA-week fixed effect from 2017 to the same week in 2018 (i.e., the FE for 
2017w3 in a given retailer-DMA is applied to 2018w3 in the same retailer-DMA); this aims to capture seasonality. 

Panel A. Density of own-price elasticities Panel B. Estimated distance function
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Figure 3. Elasticity Estimates for the Log-Linear Model

Notes: Panel A shows the density of own-price elasticities ​​β​j​​​ for the log-linear model (equation (2)). Panel B shows ​
f​(d)​​ of equation (3) implied by the estimated ​γ​ parameters. The two parallel distance functions for the model based 
on observed characteristics represent estimated distances for products in the same versus different categories (Kids, 
Adult, All Family).
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and product fixed effects as variables that enter consumers’ indirect utility linearly. 
These fixed effects capture some unobserved determinants of utility, as in Nevo 
(2001). Variables that have a nonlinear impact on demand are price, the constant, 
and product characteristics: either the nutritional variables (in the case of observ-
able characteristics), or the coordinates from a six-dimensional embedding calcu-
lated from the survey triplets. For convenience, we will refer to the former model 
as Characteristics BLP and the latter as Embedding BLP. Aside from the different 
characteristics (​x​ variables), everything in the two specifications is identical.

The effect of nonlinear variables on demand is modeled via random coefficients 
in the indirect utility of a household ​i​. These coefficients are ​​β​i​​  ∼  N​(β + Π​ D​i​​ , Σ)​​ , 
where ​β​ and ​Π​ are vectors of parameters, and ​​D​i​​​ are demographic characteristics of 
household ​i​. We estimate the diagonal elements in ​Σ​ corresponding to each nonlinear 
variable.21 The model includes demographic interactions ​Π​ D​i​​​ for prices and the 
nutritional variables (or embedding coordinates), with log household income and 
an indicator for the presence of children in the household as the included demo-
graphics.22 We estimate a log-normal income distribution with/without kids and 
a binomial distribution for the presence of kids from the households in the Nielsen 
Consumer Panel data (Nielsen IQ 2024a). Values of ​​D​i​​​ correspond to 200 Halton 
draws per market from these distributions.

Instruments are needed to identify and estimate this model. To this aim, we create 
the quadratic differentiation IVs of Gandhi and Houde (2019). For ​​δ​jk​​​(l)​  = ​ x​jl​​ − ​x​kl​​​,  
given characteristic ​l​ and products ​j, k​, define

(6)	​​ z​ jt​ 
quad​  = ​ {​∑ 

k
​ 

 

 ​​ ​ δ​ jk​ 
2 ​​(l)​, ​∑ 

k
​ 

 

 ​​ ​ δ​jk​​​(l)​ × ​δ​jk​​​(ℓ)​}​    ∀ ​(l, ℓ)​,​

where ​l, ℓ​ are the nonlinear characteristics (price and observable characteristics or 
embedding coordinates). We then follow Backus, Conlon and Sinkinson (2021) in 
interacting these variables with moments of the demographics in each market, taking 

21 In the Characteristics BLP some values of ​Σ​ were consistently estimated to be near zero, so in the final spec-
ification we set them to zero to aid convergence.

22 We exclude the interaction of demographics and the constant as this largely drives outside shares, and we have 
already calibrated market size at the market level.

Table 4—Comparison of Elasticities between Similar Products—Log-Linear Model

Cereal 1 2 3 4

Honey Nut Cheerios 1 −2.950 0.090 0.054 0.055
−2.899 0.039 0.063 0.058

Honey Graham Oh!s 2 0.090 −1.807 0.052 0.053
0.039 −1.637 0.041 0.045

Cocoa Pebbles 3 0.054 0.052 −3.322 0.107
0.063 0.041 −3.283 0.065

Cocoa Krispies 4 0.055 0.053 0.107 −2.527
0.058 0.045 0.065 −2.432

Notes: In each cell the table reports elasticities ​​e​jk​​​ corresponding to the row model ​j​ and the column model ​k​. Cells 
contain elasticities for the log-linear model of equation (1), with distances based on the embedding (on top) or on 
observed characteristics (on bottom).
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the tenth, fiftieth, and ninetieth percentile incomes for households with and without 
children as well as the percentage of households with children, obtaining thus a total 
of 168 instruments. After using these to estimate the model using 2-step GMM, we 
then adopt the approximation to the optimal instruments of Reynaert and Verboven 
(2014). To estimate a discrete-choice demand model we also need to specify market 
size. We follow Backus, Conlon, and Sinkinson (2021) in estimating the market size 
as the number of individuals entering the retailer, using variation in purchases of 
staple products (milk and eggs) as predictors.

To keep computation manageable, we estimate this model on a subsample of our 
data. We limit the sample successively to (i) the top 15 DMAs by market sales, (ii) 
the top 15 retailers within that set of DMAs, and (iii) a random set of 20 weeks. Our 
final subsample for BLP estimation contains 32,385 observations, with 540 unique 
retailer-DMA-week markets.

Comparison between Embeddings and Characteristics.—We compute parameter 
estimates and standard errors (conditional on the embedding)23 with pyBLP (Conlon 
and Gortmaker 2020) and report them in Table 5. The two specifications deliver 
similar results in most respects: price coefficients are negative and significant, the 
interactions of price and income are positive and significant, and the random coeffi-
cients on the constant and on price are statistically significant. More importantly, the 
implied elasticities are similar in magnitude and positively correlated: the median 
own-price elasticity in the Characteristics BLP is −2.453, versus −2.477 in the 
Embedding BLP;24 and the correlation between own-price elasticities is 0.972. For 
cross-price elasticities, the medians are 0.014 and 0.010 (respectively), and the cor-
relation is 0.762.

Table 6 shows own- and cross-price elasticity estimates for the same examples 
as in Table 4 above. As with the log-linear product space model, the embedding 
specification delivers more plausible substitution patterns. For similar cereals, 
cross-elasticities from the Embedding BLP are higher than from the Characteristics 
BLP (e.g., 0.275 versus 0.132 for the cross-elasticity between Honey Graham Oh!s 
and Honey Nut Cheerios) and for dissimilar cereals, they are lower (e.g., 0.030 ver-
sus 0.037 for the cross-elasticity between Honey Graham Oh!s and Cocoa Krispies). 
Both specifications show evidence of logit-style substitution patterns, with generally 
higher diversion to products with high market shares (e.g., Honey Nut Cheerios), 
but less so for the Embedding BLP.

Supplemental Appendix Figure  7 shows that using embedding data gener-
ates slightly higher diversion to close substitute products. Also, the exercise in 
Supplemental Appendix  D shows that when cereals are assigned to intuitively 
defined groups (e.g., chocolate-flavored high-sugar), the Embedding BLP predicts 
higher diversion within group than across groups, whereas the Characteristics BLP 
does not.

23 It is, in theory, possible to bootstrap both the embedding and BLP estimation. However, this procedure is 
expensive computationally and requires costly human oversight to check the convergence of pyBLP in each boot-
strap sample. Moreover, the loss of precision in the BLP coefficients due to sampling of the survey triplets is likely 
to be small: embeddings are very similar when we bootstrap the triplets data–see Appendix C for more details.

24 For comparison, Backus, Conlon, and Sinkinson (2021) get a median own-price elasticity of ​−2.665​.
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The Embedding BLP thus delivers elasticity estimates that are arguably more 
plausible—and at the very least similar—to what we obtain from observed charac-
teristics. Additionally, the Embedding BLP specification has lower out-of-sample 
RMSE as compared to the Characteristics BLP; when predicting 2018 market shares, 
the fit is better for both inside products (0.0290 versus 0.0294) and outside share 
(0.0527 versus 0.0750). We take this as an encouraging result because it means we 
can obtain credible estimates of demand even when observable characteristics are 
unavailable—a challenge we believe is inherent to many markets of interest.

Table 5—Estimated Coefficients of BLP Model

Parameter Variable Characteristics Embeddings

β Price −2.667 −3.099
(0.363) (0.300)

Σ Constant 3.765 4.199
(1.271) (0.454)

Price 0.820 0.947
(0.036) (0.037)

​​x​1​​​ – 0.015
(0.192)

​​x​2​​​ 0.016 0.000
(0.026) (0.402)

​​x​3​​​ – 0.000
(0.095)

​​x​4​​​ 0.090 0.842
(0.099) (0.195)

​​x​5​​​ – 0.000
(0.193)

​​x​6​​​ – 1.573
(0.186)

Π Income Kids Income Kids

Price 0.121 −20.950 0.142 −0.097
(0.035) (0.000) (0.027) (0.064)

​​x​1​​​ −0.169 −0.948 0.139 −0.081
(0.018) (0.000) (0.015) (0.021)

​​x​2​​​ 0.135 – 0.058 −0.087
(0.019) (0.027) (0.034)

​​x​3​​​ 0.003 – −0.139 0.072
(0.019) (0.023) (0.033)

​​x​4​​​ 0.060 – 0.029 −0.151
(0.140) (0.021) (0.039)

​​x​5​​​ 0.104 – 0.057 −0.107
(0.137) (0.018) (0.025)

​​x​6​​​ – – −0.153 0.226
(0.033) (0.044)

Nonlinear variables Observables 6D embedding
Median own-price elasticity −2.453 −2.477
Median outside diversion 0.285 0.310

Notes: The table reports estimates (on top) and standard errors (below) for the parameters of 
the BLP model. Observable characteristics ​​x​1​​​ through ​​x​5​​​ refer to sugar, fiber, calories from fat, 
and indicators for whether the cereal is for kids or an all-family cereal. ​n  =  32,385​.
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IV.  Discussion and Extensions

A.  Log-Linear Demand versus BLP

For various reasons we noted above, mixed logit models like BLP have become 
the standard for estimating rich demand systems in differentiated product markets. 
However, in some contexts—most notably, in analyses of antitrust cases conducted 
by the DOJ or FTC—researchers need to obtain demand estimates more simply and 
more quickly than is feasible within the BLP framework. The results of our empir-
ical exercise are encouraging in this regard. The log-linear (product space) model 
that uses distances from the embedding delivers estimates of substitution patterns 
that, for some pairs of products, are arguably even more plausible than those from 
BLP in our application. To illustrate this point, we report in Table 7 the two closest 
substitute brands for each of the ten most popular cereals in our sample, according 
to the log-log model and according to the BLP model, both estimated with embed-
ding data. The simple log-linear model, augmented with crowd-sourced data on 
products’ locations, does a good job of recovering sensible patterns of price substi-
tution,25 even though it is substantially easier to estimate than state-of-the-art BLP 
demand systems.26

B.  An Embedding Based on Purchase Correlations

The ideal scenario for a researcher aiming to estimate substitution patterns is 
to have price and quantity data paired with actual data on consumers’ second (and 
third and fourth … ) choices (see, e.g., Berry, Levinsohn, and Pakes 2004). Such 

25 The log-linear specification is instead ill-suited to predict substitution in characteristics.
26 Estimates of the log-linear demand models took less than 20 seconds to compute on a Windows desktop. 

Estimates of the BLP models took over 100 times longer, even when using the limited sample and running on a 
powerful Linux server. But differences in computation time understate the overall difference in time and complexity 
between the two approaches, since arriving at reliable BLP estimates requires considerable back-and-forth on things 
like start values, scaling, etc., even with the aid of helpful software packages like pyBLP.

Table 6—Comparison of Elasticities between Similar Products—BLP

Cereal 1 2 3 4

Honey Nut Cheerios 1 −2.483 0.042 0.014 0.023
−2.541 0.020 0.018 0.030

Honey Graham Oh!s 2 0.275 −2.879 0.029 0.030
0.132 −2.802 0.038 0.037

Cocoa Pebbles 3 0.076 0.024 −2.589 0.063
0.099 0.031 −2.586 0.027

Cocoa Krispies 4 0.081 0.016 0.040 −2.303
0.108 0.020 0.017 −2.449

Notes: In each cell the table reports elasticities ​​e​jk​​​ corresponding to the row model ​j​ and 
the column model ​k​. Cells contain elasticities from the Embedding BLP model on top, and 
Characteristics BLP on the bottom.
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second-choice data can be used to generate additional moments that, when com-
bined with the BLP moment conditions, discipline the estimates to better predict 
actual patterns of substitution. While we do not have second-choice data for our 
empirical application to cereal, we can borrow an idea from Atalay et al. (2022) that 
uses Nielsen’s Consumer Panel data to learn which products households consider to 
be substitutes.

Atalay et al. (2022) use the Consumer Panel data to determine sets of products 
that are ever purchased by the same household across a large number of shopping 
trips, and then gauge the substitutability of a given pair of products by how com-
monly the two products are purchased by the same household. The underlying 
premise is that if individuals within each household have preferences over products’ 
characteristics and these preferences are stable over time, then temporary changes 
in relative prices (e.g., due to periodic sales or stockouts) will induce consumers to 
occasionally purchase substitutes for their preferred product. In our case, if a house-
hold sometimes purchases Frosted Flakes and sometimes purchases Froot Loops, 
but never purchases Raisin Bran, the implication is that Froot Loops is a closer 
substitute to Frosted Flakes than Raisin Bran for that household.

This idea is formalized by constructing a dissimilarity matrix ​D​ with ​1 − ​ρ​jk​​​ as 
its ​​(j, k)​​-th element, where ​​ρ​jk​​​ is the pairwise purchase correlation between products ​
j​ and ​k​—i.e., a measure of how likely a household is to have ever purchased prod-
uct ​k​ conditional on having ever purchased product ​j​. An embedding can then be 
computed based on this dissimilarity matrix; we do this using the tSNE algorithm 

Table 7—Examples of Nearby Brands (New)

Brand Model Closest brand Second-closest brand

Honey Nut Cheerios (HNC) Log-log 
BLP

HNC Medley Crunch 
Cheerios

Honey Graham Oh!s 
Lucky Charms

Kellogg’s Frosted Flakes Log-log 
BLP

MoM Frosted Flakes 
Honey Nut Cheerios

Honey Bunches Of Oats 
Kellogg’s Raisin Bran

Cinnamon Toast Cr. Log-log 
BLP

French Toast Cr. 
Reese’s Puffs

Cinnamon Toasters 
Honey Nut Cheerios

Cheerios Log-log 
BLP

Multigrain Cheerios 
Honey Nut Cheerios

HNC Medley Crunch 
Rice Krispies

Honey Bunches Of Oats Log-log 
BLP

Special K Oat and Honey 
Honey Nut Cheerios

Kellogg’s Frosted Flakes 
Cinnamon Toast Cr.

Lucky Charms Log-log 
BLP

Apple Jacks 
Honey Nut Cheerios

Froot Loops 
Cheerios

Frosted Mini-Wheats (FMW) Log-log 
BLP

Oatmeal Squares 
Raisin Bran

Cinnamon Life 
FMW Little Bites

Froot Loops Log-log 
BLP

Apple Jacks 
Honey Nut Cheerios

Tootie Fruities 
Frosted Flakes

Kellogg’s Raisin Bran Log-log 
BLP

Raisin Bran Cr. 
Frosted Mini-Wheats

Post Raisin Bran 
Frosted Flakes

Rice Krispies Log-log 
BLP

Golden Puffs 
Cheerios

Golden Crisp 
Honey Nut Cheerios

Note: The table reports, for the ten ready-to-eat cereal brands with the highest market share (in the first column), 
the nearest and second-nearest brand substitutes according to the log-log demand system and to the BLP demand 
system estimated with embedding data.
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Van der Maaten and Hinton (2008).27 A two-dimensional embedding is shown in 
Figure 4. As with the embedding based on the survey triplets, it mostly clusters sim-
ilar products together, such as sugary cereals in the northwest quadrant.

If we estimate our product-space demand model using distances from this alter-
native embedding, we get reasonably similar estimates of products’ own- and 
cross-price elasticities. The magnitudes are similar,28 and more importantly, they 
are positively correlated with the elasticities we estimate using the embedding 
based on survey triplets: the correlation of the own-price elasticities is 0.979, and of 
cross-price elasticities is 0.491.

Thus, the distances from the survey-based embedding deliver results simi-
lar to those that would result from an embedding computed from micro-data on 
consumers’ actual choices. We interpret this as further validation of our approach. 
When data that directly reflect consumers’ substitution choices are available (e.g., 
second-choice survey data as in Grieco, Murry, and Yurukoglu 2021 or household 
panel data as in Atalay et al. 2022), it certainly makes sense to use those data. But in 
the absence of such data, our method is a viable alternative.

27 tSNE (t-distributed stochastic neighbor embedding) is analogous to tSTE, except that instead of triplets it 
uses feature data or (in our case) data on products’ distances or dissimilarities to compute the embedding.

28 The mean own-price elasticity is −2.42 and the mean cross-price elasticity is 0.053, identical to when we use 
the embedding based on survey triplets.
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Figure 4. Two-Dimensional Embedding Based on Consumer Panel

Notes: The figure shows a two-dimensional embedding for ready-to-eat cereals estimated from the Consumer Panel 
micro-data. To avoid overlapping text, not every cereal is included in the plot.



VOL. 17 NO. 1� 303MAGNOLFI ET AL.: TRIPLET EMBEDDINGS FOR DEMAND ESTIMATION

C.  Using an Embedding in Combination with Observed Characteristics

For the purposes of this study, we have emphasized comparisons between esti-
mates based on product embeddings and estimates based on observed characteristics 
alone. In practice, however, when data on observed characteristics are available we 
might want to use them in combination with an embedding. Survey triplets could be 
used in such cases to learn additional latent characteristics beyond the characteris-
tics that are already observed.

The most straightforward way to combine the two approaches is to compute what we 
call a mixed embedding. If we have data on ​K​ product characteristics, we can compute 
a ​​(K + m)​​-dimensional embedding with our triplets data by solving the optimization 
program (1) with the first ​K​ columns of the embedding matrix fixed at the known data 
values. This forces the algorithm to find the remaining ​m​ columns to rationalize the 
triplets data after accounting for the ​K​ observed characteristics. We implemented this 
approach for our empirical example and found that it works well, mostly delivering 
elasticity estimates close to those that come from using the embedding alone. Detailed 
results are shown in Appendix Table 3 in Supplemental Appendix E.

D.  Relation to Existing Approaches

Three combined elements distinguish our approach: the use of survey data; con-
sidering the product space ​​x​t​​​ as unobserved or latent; and a sequential procedure 
whereby we first recover ​​x​t​​​ in a model selection step, and then estimate preferences ​
θ​. We discuss these aspects in turn, noting how they relate to existing approaches.

Our use of surveys is reminiscent of two other common uses of survey data in 
demand analysis. First, conjoint surveys (see Allenby, Hardt, and Rossi 2019, for an 
overview) ask respondents to rate the desirability of each product in a set of hypo-
thetical offerings, and response data are then used to estimate preferences for the 
products’ observed attributes. Second, a well-known literature has shown the value 
of using second-choice data from surveys to generate additional moments for esti-
mating conventional discrete-choice models like BLP (Berry, Levinsohn, and Pakes 
2004; Conlon, Mortimer, and Sarkis 2022; Grieco, Murry, and Yurukoglu 2021). 
In both of these cases, surveys are used together with information and/or data the 
researcher already has about product characteristics. By contrast, our survey aims 
to learn about the product space in situations where the demand-relevant product 
characteristics are difficult to identify and/or quantify.

Thus, our approach is not a substitute for demand estimation with second-choice 
data. In situations where the researcher already has the data necessary to esti-
mate a discrete choice model based on observed characteristics, getting additional 
second-choice data from a survey designed to ask about preferences is an excel-
lent idea, and recent studies have shown that in some contexts it can be easy and 
inexpensive to do so (Conlon and Gortmaker 2023). If instead data on products’ 
characteristics are not available, our method can recover a representation of the 
latent product space, which can then be used to estimate preferences. In principle, 
a researcher may use survey data on stated preferences (e.g., product rankings) or 
choice-based surveys even when product characteristics are unobserved, to either 
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recover preferences directly or additionally estimate the product space. There is an 
intuitive trade-off: asking about products may elicit low-quality responses when 
individuals are asked about products they almost never choose, but on the other 
hand it may be hard to learn about the less popular products when asking consumers 
about their personal rankings of top (or frequently purchased) products. In general, 
the relative performance of these approaches is an open question that we leave for 
future research.

Finally, our study is related to earlier work by Goettler and  Shachar (2001), 
who also aim to recover both product attributes and preferences. To do so, they 
rely on panel data on consumers’ television viewing choices in combination with a 
bliss-point model of demand and simultaneously estimate television shows’ latent 
attributes along with consumers’ preferences for those attributes. Though similar 
in spirit to our exercise, we highlight a few key differences with our study. First, 
our method requires aggregate data on prices and quantities in addition to aux-
iliary survey data on the product space, as opposed to micro data on individual 
choices. Second, we implement a sequential procedure in which we keep the two 
data sources separate, instead of a joint estimation procedure.29 While intuitively 
this may suggest some loss of econometric efficiency, we believe it comes with 
significant advantages. Our method is computationally simple and highly porta-
ble, as we rely on proven ML algorithms to recover the high-dimensional product 
space and then leverage the researcher’s method of choice for demand estimation. 
Moreover, the method does not require significant econometric advances (such as 
characterizing sampling properties of tSTE or related algorithms) because we can 
estimate demand conditional on the product space (in the spirit of, e.g., Bonhomme, 
Lamadon, and Manresa 2022).

V.  Conclusion

The demand estimation toolkit available to empirical researchers in industrial 
economics has seen many advances in the last few decades. In particular, we have 
learned how to specify, identify, and estimate more and more flexible models. In this 
paper we propose complementing these modeling innovations with a new source 
of data: triplet comparisons obtained from an online survey, which can be used to 
compute an embedding of the latent product space. To showcase the usefulness of 
the data, we use the embedding in conjunction with data on prices and quantities 
to estimate two specifications: a simple log-linear model of demand, and a BLP 
model. In an application to the ready-to-eat cereals market, our method produces 
estimates that compare favorably with those obtained using standard data on product 
characteristics.

Beyond our illustrative application, embeddings will be particularly valuable in 
empirical settings where characteristics are hard to observe or measure, thus making 
standard demand models hard to estimate. For example, our method could be used 
to estimate demand in the market for mobile apps. Recovering credible substitution 

29 This is in line with the approach in Armona, Lewis, and Zervas (2021), who use search data to estimate latent 
characteristics in a first step, and then estimate demand with price and quantity data.
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patterns in this market is essential to answer policy-relevant questions about market 
power and the effects of consolidation, but conventional discrete-choice methods are 
hard to apply because demand-relevant characteristics of mobile apps are difficult to 
define and measure. Our method promises to be a useful alternative in this setting.

A common finding in machine learning is that small amounts of human input 
can yield large improvements in model performance (see, e.g., Ouyang et  al. 
2022). This has led to many “human-in-the-loop” approaches to ML modeling, of 
which crowdsourced labeling is but one example (see Mosqueira-Rey et al. 2023 
for a survey.). Our paper makes a similar point in the context of estimating struc-
tural demand models: a little human input from a small-scale survey can go a long 
way in disciplining the model and improving its predictions. Since online tools 
have made it quite easy to design and implement surveys, we believe approaches 
like ours could become a standard component of the structural empirical research-
er’s toolkit.
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