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When estimating demand in markets for horizontally differentiated goods, 
industrial organization economists typically assume that consumers are 

aware of all products and know their preferences for them. But in many markets the 
number of available products is very large, with many new products entering the 
market each week. As a result, consumers are often poorly informed about many 
products—especially new products—and have to spend time and resources learning 
about them before deciding whether (or which one) to purchase.1 In such markets, 
demand depends not only upon consumer preferences, but also upon which products 
they choose to investigate.

A consumer’s decision to learn about a product can be influenced by the choices 
of other consumers—an effect that is commonly referred to in the literature as 
observational learning. For example, in the markets for music, consumers tend to 
buy albums they hear on the radio, but they hear what others buy since playing time 
is largely determined by album sales. Similarly, in markets for books and movies, 
consumers frequently use sales rankings to choose which products to investigate.2 
In online markets for consumer durables, most sellers sort search results by sales 
ranks, effectively steering consumers toward the most popular products. Consumers’ 

1 In Nelson’s (1970) classification, the products we are concerned with are “search goods”: those for which a 
consumer can learn her preferences before purchasing.

2 Sorensen (2007) examines the impact of bestseller lists on book sales.
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We develop a model of herds in which consumers observe only the 
aggregate purchase history, not the complete ordered history of 
search actions. We show that the purchasing information changes 
the conditions under which herds can occur for both low- and high-
quality products. Inferior products are certain to be ignored; high 
quality products may be ignored, but complete learning may also 
occur. We obtain closed form solutions for the probabilities of these 
events and conduct comparative statics. We test the model’s predic-
tions using data from an online music market created by Salganik, 
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tendency to check out products that others buy creates a feedback effect that can 
cause a product’s success or lack of success to reinforce itself. The key questions in 
this kind of environment are: What is the likelihood that observational learning leads 
consumers to ignore superior products or waste time and resources learning about 
inferior products? How does the likelihood of these events depend upon product 
quality, the kind of information that consumers observe about the product, and what 
they observe about the decisions of other consumers?

Our objective in this paper is to address these questions both theoretically and 
empirically. We use a variant of the herding models introduced by Banerjee (1992) 
and Bikhchandani, Hirshleifer, and Welch (1992) and subsequently generalized by 
Smith and Sorensen (2000) to capture the salient features of observational learning 
in product markets. A large number of consumers with heterogeneous preferences 
arrive sequentially and decide whether or not to buy a product. Consumers do not 
know the quality of the product, which is either high or low, or their idiosyncratic 
preferences for it. The common quality implies that preferences are correlated across 
consumers, so purchases are informative. Each consumer observes the aggregate 
purchases of previous consumers and a private informative signal about her utility 
for the product. She uses this information to decide whether or not to investigate the 
product and learn more about her utility before making a purchasing decision. We 
refer to the action of investigating the product as “search.” Consumers only purchase 
products that they search and like; but search is costly, so consumers do not search 
products that they believe they are unlikely to buy.3 We show that the model has 
clear empirical predictions about the formation of herds. We then test those predic-
tions using experimental data from an online music market created by Salganik, 
Dodds, and Watts (2006) (hereafter SDW).

The information structure of our model differs from that of the standard herding 
models in two important ways. First, consumers only observe aggregate purchases, 
and not the entire ordered history of purchases. As a result, the sequence of beliefs 
does not form a martingale, so we need to develop different proof techniques to 
establish convergence of beliefs. Second, the failure to search is not observed, 
and search is observed only if the consumer purchases. Thus, consumers cannot 
distinguish between consumers who did not search and consumers who searched 
but did not purchase because they did not like the product. As a result, each con-
sumer faces a more complicated inference problem: does low sales mean that 
relatively few people like the product or that relatively few people have searched 
the product?

Our first main result is that the purchasing information changes the conditions 
under which herding can occur. For low-quality products, the possibility of a bad 
herd is eliminated: in the long-run, the likelihood of search for these products is cer-
tain to go to zero. However, for high-quality products bad herds are not eliminated: 
the likelihood of search goes to zero with positive probability. But, in contrast to the 
standard models, complete learning can occur despite our assumption that beliefs 

3 Since purchases in our model are always preceded by a search, the best real-world examples are products 
that are one-time purchases where the price is high relative to the search cost, such as music albums and consumer 
durables.
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are bounded. When this is the case, the market share of the product converges to 
the share it would have obtained if consumers were able to observe product quality.

Our second main result is that the probability of a bad herd on high quality 
products has a closed form solution if the density of the private signal satisfies 
a certain boundedness condition. The condition ensures that the beliefs never 
“jump” into the cascade sets from outside of the set. We use the closed form 
solution to conduct comparative statics. Our most striking findings are that the 
probability of a bad herd is decreasing in product quality and independent of the 
precision of the private signal.

Hence, in product markets where observational learning is important, our model 
yields two testable implications. The first is that, in the long run, the probability 
that a consumer searches (buys) a high-quality product is a random variable with 
a two-point support. Either a bad herd will form, in which case the probability of 
search (buy) is essentially zero; or the market will converge to complete learning, 
in which case the probability of search (buy) approaches a positive constant. The 
second are the monotonicity results: the probability of a bad herd is decreasing 
in product quality and, conditional on a bad herd not forming, in the long run, 
the probability of search (buy) is increasing in product quality. We test these pre-
dictions using data from the SDW experiment. In the experiment, participants 
arrived sequentially at a music website and chose whether to listen to and down-
load songs. Participants in treatment groups were shown which songs had been 
most heavily downloaded by previous participants, whereas in the control group 
no such information was given.

Two features of the experiment make it particularly well-suited for testing our 
model’s predictions. First, in order to estimate the empirical model implied by the 
theory, an exogenous measure of product quality is needed. In the SDW experiment, 
such a measure is easily calculated from the control group, in which participants 
were given no information about the choices of other participants. The ratio of a 
song’s downloads to listens in this group (which SDW called the “batting aver-
age”) is a natural measure of song quality. Second, in order to test for bimodality 
of outcomes, it is necessary to observe long-run outcomes for multiple realizations 
of the stochastic learning process. In the SDW experiment we observe realizations 
of the learning process for 48 songs, and for each song there were 8 independent 
sequences of at least 700 participants.

The results from the SDW experiment confirm both of our model’s main predic-
tions. We show that the data strongly reject a model in which long-run outcomes are 
drawn from a single distribution in favor of a model in which outcomes are drawn 
from a mixture of two binomial distributions. And, using the batting average as a 
measure of quality, we estimate that the probability of a bad herd is indeed decreasing 
in song quality, ranging from 50 percent for the highest quality song to 96 percent for 
the lowest quality song.

The paper is organized as follows. In Section I, we briefly discuss related litera-
ture. In Section II, we describe our basic model. In Section III, we characterize the 
equilibrium dynamics and outcomes. Section IV examines the determinants of bad 
herds. Section V describes the model’s empirical implications and tests them with 
data from the SDW experiment. Section VI concludes.
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I.  Related Literature

Previous work on sequential choice with heterogeneous preferences has focused 
on the case where agents observe the private component of their preferences before 
acting. Smith and Sorensen (2000) model a finite set of preference types and show 
that with bounded signals an incorrect herd may arise. They further demonstrate the 
possibility of “confounded learning,” in which eventually all agents follow their own 
signals but no further public information about the state is generated. In our model, 
confounded learning cannot arise because every consumer’s utility from buying the 
product is increasing in product quality. Goeree, Palfrey, and Rogers (2006) and 
Acemoglu et al. (2009) show that if there is sufficient heterogeneity of preferences 
(specifically, if each action is optimal in all states for some type), then public beliefs 
converge to the truth almost surely, even if signals are bounded. Wiseman (2008) 
derives a similar result under a different condition on heterogeneity, for the case 
where preference types are publicly observed.

We focus on products where consumers learn their preferences through search, 
but there are other products where consumers learn through experimentation.4 
Orphanides and Zervos (1995) show that a potential drug user who attaches high 
probability to the state in which he is not susceptible to addiction may experiment 
and in fact become addicted. Ali (2011) shows that a consumer who is pessimistic 
about his level of self-control may always choose to commit himself in advance, and 
thus never learn whether he has high or low self-control. Those settings are very dif-
ferent from ours, but the results that incomplete information about preferences can 
have long-run consequences are similar in spirit.

A number of recent papers on social learning relax the assumption that consumers 
observe the complete, ordered history of actions. Herrera and Horner (2009) study a 
model in which individuals arrive randomly but arrival times are not observed. Thus, 
each individual observes the sequence of individuals who acted but cannot observe 
who has failed to act. They find that the inability to track failures does not alter the 
conditions under which cascades occur but does affect the probability of bad herds. 
Banerjee and Fudenberg (2004) show that with a continuum of agents and uniform 
sampling of previous actions, under weak conditions complete learning results. With 
countable agents, Smith and Sorensen (2008b) examine general sampling rules, 
although they do not focus on the case that we are interested in, where consumers 
observe complete but unordered histories. (A precursor of that work, Smith (1991), 
does examine that situation.) Further, their proofs do not seem to apply to our setting. 
Monzón and Rapp (forthcoming) study agents who are uncertain about both their 
own place in the order of decision-makers and the places of those who are sampled. 
They also focus on cases other than complete, ordered histories. Celen and Kariv 
(2004a) assume that agents observe only their immediate predecessor’s action, and 
show that beliefs and actions cycle indefinitely. Acemoglu et al. (2009) study an envi-
ronment where each agent observes the choices of a random neighborhood of other 
agents, and provide conditions under which complete learning occurs when signals 

4 Smith and Sorensen (2008a) examine the link between observational learning and a repeat consumer’s optimal 
experimentation.
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are unbounded. They also show that in some cases, complete learning occurs even 
with bounded signals, a result similar to ours that comes from a very different model.

Burguet and Vives (2000) relax the assumption that the precision of private signals 
is exogenous. They study observational learning where agents choose how much to 
invest in increasing that precision. In their setting, agents have heterogeneous pref-
erences, but their model of information acquisition can be viewed as a smoothed 
version of the discrete option in our model to learn one’s preferences exactly. Vives 
(1997) also examines a model of sequential choice where some consumers are more 
informed than others about the quality of a product, but in that paper the precision of 
the signal is exogenous. Both papers quantify the welfare effects of social learning.

There is a large literature on non-Bayesian observational learning on networks, 
including Ellison and Fudenberg (1993, 1995), Bala and Goyal (2001), DeMarzo, 
Vayanos, and Zwiebel (2003), and Golub and Jackson (2010). Acemoglu et al. 
(2009) provides a thoughtful discussion of this branch of the literature.

Finally, recent field experiments have confirmed the empirical relevance of 
observational learning in which consumers draw inferences from the purchasing 
decisions of other consumers (e.g., Cai, Chen, and Fang 2009; and Tucker and 
Zhang 2007). The fact that observational learning can lead to herd behavior has 
been documented in laboratory experiments (e.g., Anderson and Holt 1997 and 
Çelen and Kariv 2004b).

II.  The Basic Model

An infinite sequence of consumers indexed by t enter in exogenous order. Each 
consumer makes an irreversible decision on whether or not to purchase the product. 
Consumer t’s utility for the product is given by

	​ V​t​  =  X  + ​ U​t​ ,

where X denotes the mean utility or quality of the product and ​U​t​ is consumer t’s 
idiosyncratic preference shock. Here ​U​t​ is identically and independently distributed 
across consumers. Let ​F​U​ denote the distribution of U. The product has two pos-
sible quality levels: X = H and X = L, where H > L. We will refer to H as the high 
quality state and L as the low quality state. We normalize L = 0. Consumer t does 
not know X or ​U​t​. There is a common prior belief that assigns a probability ​μ​0​ to 
the event that X = H. (We interpret the prior as the belief that consumers have after 
observing all public information about the product’s quality, such as media reviews 
and advertisements.) For convenience, we assume that both states are equally likely. 
The price of the product is p. Consumers’ utility is quasilinear in wealth, so con-
sumer t’s net payoff from purchasing the product is ​V​t​ − p.

Consumer t has two available actions. Buying a product involves risk since the 
ex post payoff may be negative. She can reduce the likelihood of this event by choosing 
to Search (S) before making her purchasing decision. Search involves paying a cost c to 
obtain a private, informative signal about ​V​t​, and then purchasing only if the expectation 
of ​V​t​ conditional on the signal exceeds p. For notational simplicity, it will be convenient 
to assume that the signal is perfectly informative and reveals ​V​t​ precisely. Note that 
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search remains a valuable option for consumer t even if she has learned X. The other 
action that she can choose is to Not Search (N), in which case she does not purchase the 
product.5 Let ​a​t​ ∈ {N, S  } denote the action chosen by consumer t.

Given the consumer’s purchasing rule following search, the expected value of 
search conditional on state X is

	​ ∫ 
p−X

​ 
∞

 ​ (​X − p + u)d ​F​U​(u)  =  [1 − ​F​U​( p − X )]E[X − p + u | X − p + u  ≥  0].

In what follows, it will be convenient to assume that ​F​U​ is exponential. Under this assump-
tion, the expectation of the surplus X − p + U conditional on that surplus being positive 
is independent of X ; call its value G. Hence, the payoff to a consumer from action S in 
state X is [1 − ​F​U​( p − X)]G − c. To restrict attention to the economically interesting 
cases, we impose the following restrictions on the payoffs from search in each state:

	 (i)	 [1 − ​F​U​( p − H)]G − c > 0 and

	  (ii)	 [1 − ​F​U​(p)]G − c  <  0.

Condition (i) states that, conditional on H, the expected payoff to search is posi-
tive. Condition (ii) states that the consumer’s expected payoff to search is negative 
if she knows that the state is L —i.e., search costs are high enough that consumers 
do not want to search a product if they know its quality is low.

Consumer t’s action generates a purchasing outcome ​b​t​ ∈ {0, 1  }. Here ​b​t​ = 0 is 
the outcome in which consumer t does not purchase the good, and ​b​t​ = 1 is the out-
come in which consumer t purchases the product. Outcome 0 occurs if consumer t 
chooses N or if she chooses S and obtains a realization of ​V​t​ such that her net payoff 
from purchase is negative. Outcome 1 arises if consumer t chooses S and obtains a 
realization of ​V​t​ such that her net payoff from purchase is positive.

Before taking her action, consumer t observes a private signal about her utility for 
the product. Specifically, the private signal is informative about the probability of the 
event {​V​t​ ≥ p}, that is, the probability that the consumer likes the product enough to 
buy it. In that case, Smith and Sorensen (2000) have shown that there is no loss in gen-
erality in defining the private signal, σ, that a consumer receives as her private belief 
that ​V​t​ ≥ p. That is, σ is the result of updating a half-half prior with the information 
in the private signal. Let ​ω​1t​ denote the event {​V​t​ ≥ p} and let ​ω​0t​ denote the comple-
mentary event {​V​t​ < p}. Conditional on event ω ∈ {ω0, ω1}, the signals are identically 
and independently distributed across consumers and drawn from a distribution ​F​ ω​. 
We assume that ​F​ ​ω​ 0​​ and ​F​ ​ω​1​​ are continuous, mutually absolutely continuous, and dif-
ferentiable with densities ​f​​ω​0​​ and ​f​​ω​1​​. Smith and Sorensen (2000) show that ​F​ ​ω​1​​ stochas-
tically dominates ​F​​ω​0​​. Private beliefs are bounded if the convex hull of the common 
support of ​F​​ω​0​​ and ​F​​ω​1​​ consists of an interval [ ​σ _​, ​_ σ​ ] where 1/2 > ​σ _​ > 0 and 1/2 < ​_ σ​ < 1.

5 We ignore the possibility of purchasing without search since our focus is on the search decision. The premise is that 
the heterogeneity in consumer preferences is sufficiently important relative to search costs that most consumers do not 
want to buy a product without first checking it out. Also, this assumption holds for the experiment we analyze in Section 
VI. Nevertheless, we discuss the implications of allowing consumers to purchase without search at the end of Section IV.
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In addition to the private signal, consumer t also obtains information on the deci-
sions by consumers 1 through t − 1. The space of possible t-period search histories 
is given by ​H​t​ = {0, 1​}​t−1​. A particular history is denoted by ​h​t​. The initial history is 
defined as ​h​1​ = ∅. However, consumers do not observe the entire ordered history of 
purchase decisions. Instead, they observe only the aggregate number of consumers 
who have purchased so far. Let ​n​t​ ∈ {0, 1, … , t − 1} denote the aggregate history 
observed by consumer t.

Given any history ​n​t​, consumer t updates her beliefs about X using Bayes’ rule. 
Let ​μ​t​ (​n​t​) represent her posterior belief that the state is H conditional on history ​n​t​. 
Following Acemoglu et al. (2009), we call ​μ​t​ the social belief in period t. The social 
belief ​μ​t​ generates consumer t’s social probability ​ρ​t​ that her state is ​ω​1t​ (that is, ​
V​t​ ≥ p)

(1)	​ ρ​t​  = ​ μ​t​[1 − ​F​U​( p − H)] + (1 − ​μ​t​)[1 − ​F​U​( p)].

Given social probability ​ρ​t​ and private signal ​σ​t​, consumer t’s private probability 
that her state is ​ω​1t​ is

(2)	 r(​σ​t​, ​ρ​t​)  = ​   ​σ​t​​ρ​t​  __   ​σ​t​​ρ​t​ + (1 − ​σ​t​)(1 − ​ρ​t​)
 ​.

Her expected net payoff to action S is

(3)	​ r​t​(​σ​t​, ​ρ​t​)G − c.

Recall that if a consumer chooses N, then her payoff is zero. We look for a Bayesian 
equilibrium where everyone updates beliefs using Bayes’ rule, knows the decision 
rules of all consumers, and knows the probability laws determining outcomes under 
those rules. In studying the dynamics of beliefs and actions, it is sometimes useful 
to follow Smith and Sorensen (2000) and work with the social likelihood ratio that 
the state is L versus H rather than social beliefs. Define the social likelihood ratio

	​ l​t​  = ​  1 − ​μ​t​ _ ​μ​t​ ​ ,

and let ​l​0​ denote the prior likelihood.
A cascade on action a ∈ {S, N  } has occurred if a consumer chooses a regardless of 

the realization of her private signal σ. Because of the distinction between actions and 
outcomes, we have to be careful in defining a herd. We say that a herd on action a 
occurs at time τ if each consumer t ≥ τ chooses action a. Note that while a cascade 
on N implies a herd on N, a cascade on S does not imply a herd on S. A consumer 
may ignore her private signal in choosing S, but subsequent consumers may be dis-
suaded from searching if she decides not to purchase. The outcome for a consumer 
who chooses S depends not only on X (which is common across consumers) but also 
on the realization of the idiosyncratic component U. In fact, a herd on S precludes 
the event that all future outcomes are the same (almost surely)—if the outcome does 
not vary with the realization of U, then it is not worthwhile paying c to search.
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A related concept is outcome convergence. Let ​λ​t​ ∈ [0, 1  ] be the fraction of the 
first t − 1 consumers whose outcome was 1 (purchase). Outcome convergence is 
the event that ​λ​t​ converges to some limit λ ∈ [0, 1  ]. A herd implies outcome conver-
gence. A herd on N leads to λ = 0; and a herd on S leads to λ = 1 − ​F​U​ ( p − X ) 
in state H and λ = 1 − ​F​U​ ( p) in state L.

III.  Equilibrium Dynamics and Outcomes

In this section we characterize the equilibrium dynamics and outcomes of the 
model. The main question that we are interested in exploring is long-run behavior 
and, in particular, the likelihood of “inadequate learning.” Inadequate learning (in 
the language of Aghion et al. 1991) occurs when the long-run market share of the 
product is different from what it would if the quality were known to all consumers.

We begin by defining thresholds. Let ​  r ​ represent the private probability at which 
a consumer is indifferent between S and N. From equation (3),

(4)	​   r ​  = ​  c _ 
G

 ​.

The restrictions on payoffs implies that ​  r ​ ∈ (0, 1). Using equations (2) and (4), 
we can then define the private signal at which a consumer is indifferent between S 
and N (assuming it is interior) as

(5)

​  σ​(l ) = ​  c[l​F​U​( p) + ​F​U​(  p − H  )]     _____       
c[(l​F​U​( p) + ​F​U​ (  p − H )] + (G − c)[l(1 − ​F​U​ ( p)) + 1 − ​F​U​( p − H)] ​.

Thus, given social likelihood ratio l, the consumer’s optimal action is to choose S 
if σ ≥ ​  σ​ and to choose N if σ < ​  σ​. We will refer to ​  σ​ as the search threshold.

Next we define the cascade regions. Let ​l _​ denote the largest value of the public 
likelihood ratio such that a consumer is certain to choose S. Using equation (5), ​l _​ is 
defined as the solution to ​  σ​(​l _​)  = ​ σ _​. Solving this equation for ​l _​ yields

(6)	​ l _​  = ​ 
[(G − c)(​  ​σ _​ _ 

1 − ​σ _​ ​) + c][1 − ​F​U​(p − H)] − c
    ____    

c − [(G − c)(​  ​σ _​ _ 
1 − ​σ _​ ​) + c][1 − ​F​U​(p)]

 ​ .

Let ​
_
 l​ denote the lowest value of the public likelihood ratio such that a consumer is 

certain to choose N. Once again, using equation (5), ​
_
 l​ satisfies ​  σ​(​

_
 l​) = ​_ σ​. Solving 

this equation for ​
_
 l​ yields

(7)	​
_
 l​  = ​ 

[(G − c)(​  ​_ σ​ _ 
1 − ​_ σ​ ​) + c][1 − ​F​U​(p − H)] − c

    ____    
c − [(G − c)(​  ​_ σ​ _ 

1 − ​_ σ​ ​) + c][1 − ​F​U​(p)]
 ​ .



Vol. 4 No. 1� 9hendricks et al.: observational learning

Thus, we can partition the values of the public likelihood ratio into three intervals. 
When l < ​l _​, there is a cascade on S ; when ​l _​ ≤ l ≤ ​

_
 l​, the consumer searches with 

probability

	 [1 − ​F​U​(p − X )][1 − ​F​​ω​1​​(​  σ​(l))]  + ​ F​U​( p − X )[1 − ​F​​ω​0​​(​  σ​(l))];

and when l > ​
_
 l​, there is a cascade on N. Note that when the support of the private 

signal σ is large, either or both cascade regions may be empty. To focus on the 
empirically relevant case, we will assume throughout that ​

_
 l​ > 0. That is, when a 

consumer is pessimistic enough about the quality of the product, then even the most 
positive private signal will not convince her to search.

We now characterize the dynamics of the social likelihood ratio. Consumer t 
does not know what history consumer t − 1 observed. She knows only that either 
​n​t−1​ = ​n​t​ − 1 and consumer t − 1 searched and purchased, or ​n​t−1​ = ​n​t​ and con-
sumer t did not purchase. (The exceptions are when either all previous consum-
ers searched (​n​t​ = t − 1) or none of them did (​n​t​ = 0). A consequence is that the 
sequence of social likelihood ratios does not form a martingale, and the proof tech-
niques used in the standard herding model to establish convergence no longer apply. 
(See Acemoglu et al. 2009 and Smith and Sorensen 2008b).

Define ​π​t​(n, X ) as the equilibrium probability that ​n​t​ = n in state X and ​β​t​(n, X ) 
as the probability that consumer t purchases in state X after observing ​n​t​ = n. Recall 
that ​l​t​(n) is the social likelihood when ​n​t​ = n. We recursively define ​π​t​(n, X ) as fol-
lows. First, let

	​ π​1​(0, L)  = ​ π​1​(0, H)  =  1,  ​l​1​(0)  = ​ l​0​

	​ β​1​(0, X)  =  [1 − ​F​U​( p − X )][1 − ​F​​ω​1​​(​  σ​ (​l​1​(0)))].

That is, consumer 1 necessarily observes zero previous purchases and so her belief 
equals the prior, and her probability of purchase is the product of the probability of 
getting a high enough private signal to induce search and the probability of purchase 
after search. Next, given ​π​t−1​(​n​t−1​, X ), ​l​t−1​(​n​t−1​), and ​β​t−1​(​n​t−1​, X ), define

​π​t​(n, X ) = { ​​π​t−1​(0, X )[1 − ​β​t−1​(0, X )] if n  =  0
   

         
       ​π​t−1​(n, X )[1 − ​β​t−1​(n, X )] + ​π​t−1​(n − 1, X )​β​t−1​(n − 1, X ) if 1 ≤ n ≤ t − 1                      

 ​π​t−1​(t − 2, X )​β​t−1​(t − 2, X ) if n = t − 1
  ​

	 ​l​t​(n)  = ​  ​π​t​(n, L) _ ​π​t​(n, H) ​ ​l​0​,

	​ β​t​(n, X )  =  [1 − ​F​U​(p − X )][1 − ​F​​ω​1​​(σ(​l​t​(n)))].

Under these dynamics, if the social likelihood ratio ​l​t​ converges over time, its limit ​
l​∞​ must either equal 0 or be at least ​

_
 l​. That is, either consumers learn for sure that 

the state is H or eventually consumers stop searching. The reason, simply, is that 
whenever there is a positive probability that a consumer searches, the probability 
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of purchase varies with the state, and thus the outcome is informative. Note that, in 
contrast to the standard herding model, learning in our model continues even if a 
herd on S occurs.

We impose the following restriction on the distribution of private signals:

Assumption 1: The density of the private signal conditional on the event 
{​V​t​ ≥ p}, ​f​​w​1​​, is bounded above by 2 ​ 

​F​U​(p)​F​U​(p − H)
  _  ​F​U​(p) − ​F​U​(p − H) ​.

Assumption 1 imposes a bound on the density of the private belief conditional 
on the event that the product is worth purchasing. For example, if 40 percent of 
consumers like the high quality product enough to buy it and 10 percent like the 
low quality product enough to buy it, then the upper bound on the density is 3.6. In 
the uniform case, the bound implies that the distance between the upper and lower 
bounds of the support of ​F​​ω​1​​ has to be at least 0.28. Thus, in this case, Assumption 
1 is violated if signals are uninformative (i.e., the bounds, ​σ _​ and ​

_ σ​, are close to 1/2).
The role of Assumption 1 is to rule out the possibility of the social likelihood ratio 

“jumping” into the cascade set for N from outside.

Lemma 1: If ​l​0​ ∈ (0, ​
_
 l​ ), then ​l​t​(n) ∈ (0, ​

_
 l​ ) for all t and all n < t.

Lemma 1 establishes that the social likelihood ratios stay in the learning region 
between 0 and ​

_
 l​ as long as the prior ​l​0​ lies in that range. Suppose, contrary to 

Assumption 1, that the distribution of private signals has a mass point at ​
_ σ​. If the 

social likelihood ratio ​l​t​ is just below ​
_
 l​, then with probability bounded away from 

zero consumer t will receive a private signal ​
_ σ​ and search. If she does not purchase, 

then the social likelihood ratio jumps strictly above ​
_
 l​. A similar jump can result with 

continuous distributions that have big spikes in density, like a normal or exponential 
distribution with very low variance. In the standard herding model, Smith and 
Sorensen (2000) and Herrera and Horner (2009) show, respectively, that either log-
concavity of the density of the log of the likelihood ratio of the private belief or the 
increasing hazard and failure ratios property for the distribution of private signals 
in the two states implies the conclusion of Lemma 1. We note that Assumption 1 is 
distinct from both of these conditions.

The next two lemmas demonstrate that ​
_
 l​ is a stable fixed point of the social likeli-

hood ratio, and that ​l​t​ must converge to either 0 or ​
_
 l​.

Lemma 2: If ​l​t​  ≤ ​
_
 l​ is within ε of  ​

_
 l​ infinitely often for all ε  >  0, then ​l​t​ converges 

almost surely to ​
_
 l​.

Lemma 3: If the prior ​l​0​ ∈ (0, ​
_
 l​ ), then ​l​t​ converges almost surely to a random vari-

able ​l​∞​ with support in the set {0, ​
_
 l​}.

It is worth emphasizing that our convergence results rely upon Assumption 1. 
By contrast, if consumers can observe the entire ordered purchase history, then ​l​t​ 
converges to a random variable ​l​∞​ even when it can jump into the cascade set from 
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outside. The reason is that the sequence of likelihood ratios form a martingale and 
convergence follows from the Martingale Convergence Theorem. The likelihood 
ratios in our model do not have the martingale property. Hence, the proof of 
Lemma 3 is novel and may be of independent interest, so we include a sketch of 
the intuition in the text. The idea is to show that if ​l​t​ does not converge to 0, then 
it must approach ​

_
 l​ infinitely often. In that case, because ​

_
 l​ is a stable fixed point, ​l​t​ 

must eventually converge to ​
_
 l​. Suppose, on the other hand, that ​l​t​ eventually has 

support equal to [a, b], with 0 < a ≤ b < ​
_
 l​. Then, in either state, infinitely often 

there occur t and ​n​t​ such that ​l​t​(​n​t​) is very close to b. But, if ​n​t​ occurs with positive 
probability in state H, then α​n​t​ (or lower) must occur with the same probability in 
state L, where

	 α  = ​   1 − ​F​U​( p)  __  
1 − ​F​U​( p − H) ​  <  1,

is the relative probability of purchase after search in the two states. And then α ​n​t​ 
(or lower) must also have positive probability in state H, or else the corresponding ​
l​t​ would be larger than any finite b. Iterating, ​α​k​ ​n​t​ (or lower) must occur infinitely 
often in both states for any positive integer k. But arbitrarily low fractions of pur-
chases correspond to arbitrarily high belief in state L, contradicting the assumption 
that b is an upper bound on the social likelihood ratio in the long-run. Thus, [a, b] 
cannot be the eventual support of ​l​t​. This argument can be generalized to rule out a 
nonconnected support whose upper bound is strictly below ​

_
 l​.

Together, Lemmas 1 and 3 show that the social likelihood ratio is trapped forever 
between the stationary points 0 and ​

_
 l​, converging asymptotically to one of those 

endpoints. We can now state the main technical result of this section. Lemma 4 gives 
the probabilities, conditional on quality, that the social likelihood ratio converges to 
each of its two possible limits.

Lemma 4: Suppose that ​l​0​ ∈ (0, ​
_
 l​ ). Then

	​ 
 
 
 

 Pr   
 
 ​ {​l​∞​  = ​

_
 l​ | L}  =  1

and

	​ 
 
 
 

 Pr   
 
 ​ {​l​∞​  = ​

_
 l​ | H }  = ​  ​l​0​ _ 

​
_
 l​
 ​  = ​ l​0​ ​ 

c − [(G − c)(​  ​_ σ​ _ 
1 − ​_ σ​ ​) + c](1 − ​F​U​( p))

    ____     

[(G − c)(​  ​_ σ​ _ 
1 − ​_ σ​ ​) + c](1 − ​F​U​( p − H )) − c

 ​ .

The first probability follows from the fact that Bayesian updating almost surely 
does not assign probability 1 to the wrong state: ​l​∞​ = 0 with probability 0 in 
state L. The Dominated Convergence Theorem, together with the the fact that 
the time-0 expectation of ​l​t​ is equal to the prior ​l​0​ for all t, yields the second 
probability. Thus, in state L, eventually no more consumers search. Intuitively, if 
a positive fraction of consumers continued to search, then the frequency of pur-
chases (i.e., 1 − ​F​U​( p) versus 1 − ​F​U​( p − H )) would reveal that the state is L. 
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But, by assumption, searching is not optimal in state L. Thus, in state L, the social 
likelihood ratio must converge to ​

_
 l​, where search stops. Learning is incomplete 

(the belief assigned to L is less than 1), but it is adequate: eventually all consum-
ers choose the optimal action for state L.

When the state is H, on the other hand, either continued search eventually 
reveals the true state, or a string of “no purchases” discourages consumers, the 
social likelihood drifts to ​

_
 l​, and a herd on N starts. In the first case, learning is 

complete, but in the second case, learning is both incomplete and inadequate. 
The second case is a “bad herd”: the product is high quality, but consumers stop 
searching or buying it. (Note that, in the first case, complete learning results when ​
σ _​ > 0: unbounded signals are not necessary for complete learning, in contrast to 
Smith and Sorensen 2000.)

Along those lines, we can use Lemma 4 to describe the long-run outcomes of 
our model. When the limiting social likelihood ratio ​l​∞​  = ​

_
 l​, a herd on N even-

tually arises, and so the long-run fraction of consumers who purchase falls to 0. 
When ​l​∞​ = 0, consumers who get an optimistic-enough private signal (above ​  σ​ (0)) 
search, and they purchase if their taste shock also is high enough. (Note that we have 
not ruled out the possibility that ​  σ​(0) < ​σ _​, in which case all consumers, regardless 
of their private signal, will search if the state is known to be H.)

Proposition 5: Suppose that ​l​0​ ∈ (0, ​
_
 l​ ). Then (i) in state L, almost surely a herd 

on N occurs and the fraction of consumers who purchase ​λ​t​ converges to 0; and (ii) in  
state H, with probability ​l​0​/ ​

_
 l​ a herd on N occurs and ​λ​t​ converges to 0; otherwise, ​

λ​t​ converges to [1 − ​F​U​( p − H )][1 − ​F​​ω​1​​(​  σ​ (0))].

In the standard herding model, individuals observe the actions of previous arriv-
als which, in our context, corresponds to whether or not they search. In a previous 
version of this paper, we considered the case where consumers observe previous 
search decisions rather than purchase decisions. Using standard herding arguments, 
we showed that the likelihood ratio converges to either ​l _​ or ​

_
 l​ in both states. If it 

converges to ​l _​, a herd on S occurs. In this case, complete learning does not occur 
in state H and inadequate learning can occur in state L, that is, consumers search 
products that are not worth searching. The probability of a herd on N is lower in both 
states. Thus, the ability of consumers to observe purchasing information changes 
the conditions under which herds occur. It eliminates the bad herd in state L (i.e., 
everyone searching an inferior product). It increases the probability of a bad herd 
in state H (i.e., everyone ignoring a superior product), but it reduces costs of search 
by eliminating the herd on S. Instead, consumers learn the state and only consumers 
with strong signals search.

We conclude this section with a discussion of the role of the assumptions of our 
model. We have made two important simplifying assumptions. First, we assume that 
the distribution of the idiosyncratic preference shock ​F​U​ is exponential, so that the 
expected surplus from purchase ​V​t​ − p, conditional on the surplus being positive, 
is the same in both states. Second, we assume that the distribution of consumers’ 
private signals ​F​ω​ depends only on whether or not ​V​t​ ≥ p and not otherwise on 
the value of ​V​t​. These assumptions give us a closed-form solution for the search 
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threshold ​  σ​, which in turn gives us closed forms for ​
_
 l​ and the probabilities of long-

run outcomes in Proposition 5. They also give us a clean condition to ensure that 
the social likelihood ratio does not jump into the cascade set (Assumption 1). In a 
previous version of this paper, we discuss how to relax the two assumptions and 
obtain the same qualitative results.

We note that under those two assumptions, our model is isomorphic (for any 
fixed parameter values) to the following variation. Each consumer’s valuation ​
V​t​ is either high (​_ v ​ > p) or low (normalized to zero). The i.i.d. probability that 
​V​t​ = ​_ v ​ depends on the quality of the good: it is ​P​h​ for a high-quality product, and ​
P​l​ < ​P​h​ for a low-quality product. Parameter values are such that ​P​h​​

_
 v ​ − p > c 

> ​P​l​  ​
_
 v ​ − p ; that is, the expected gain from search is positive in state H and nega-

tive in state L. The rest of the model is the same. In particular, consumers’ private 
signals are informative about whether or not ​V​t​ − p > 0 ; that is, about whether ​
V​t​ = ​_ v ​ or ​V​t​ = 0. It is straightforward to see the equivalence between that model 
and our baseline model: simply replace G with ​

_
 v ​ − p, ​F​U​( p − H) with 1 − ​P​h​, and ​

F​U​( p) with 1 − ​P​l​.
That equivalence, however, breaks down when we consider comparative 

statics (in the next section). For example, consider the effect of raising the price 
p on search and purchase dynamics. In our baseline model, that increase has 
two effects. First, consumers are (all else equal) less likely to search, because 
the expected surplus is lower. Second, conditional on search, consumers are less 
likely to buy: only consumers with valuations greater than p purchase. In the 
alternative, two-valuation model, only the first effect is present. Conditional on 
search, demand is a stairstep function, so quantity is (locally) invariant to price. 
Thus, our baseline model may be more appropriate than the alternative model 
for examining optimal pricing, or for examining environments where prices vary 
(such as the Amie Street online music store, where, until the site was purchased 
by Amazon.com, the price of a song increased with the number of times that it 
had been downloaded).

A third assumption is that the private signal is informative about utility and not, as 
in the standard herding model, only about product quality. When the signal is about 
X only, then the probability of search in state H is equal to one whenever ​l​t​ is less than ​l _​.  
In our model, this probability can be less than one even when the state is known to 
be H because of selection effects. Consumers who search are more likely to like 
the product because the signal is informative about U as well as X. We suspect that 
this kind of selection effect is present in any realistic model of choice with private 
signals and costly search. It is certainly present in the SDW experiment where 40 
percent of the participants choose not to search any songs. We have considered 
the polar cases in which the private signal is informative only about X or U and 
obtained similar qualitative results.

Finally, we have assumed that consumers must search before they can purchase. 
If instead consumers were allowed to purchase without search, then it would be 
possible for bad herds to arise even for low-quality products—i.e., in the limit, con-
sumers could all end up buying a low-quality product. Thus, our model intention-
ally focuses on the opposite kind of bad herd, in which consumers end up ignoring 
high-quality products.
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IV.  Determinants of the Bad Herd

In this section, we analyze the determinants of inadequate learning. This kind of 
analysis has largely been absent in the literature on herding models, mainly because 
it considers models in which the likelihood ratio may “jump” into the cascade 
sets (e.g., with discrete signals). In these cases, comparative static results are diffi-
cult, if not impossible, to obtain without making strong parametric assumptions on 
the distribution of preferences and, in particular, on the distribution of the private 
signal. The reason is simple: changes in model parameters cause changes in the 
decision rules of consumers, which in turn affect the informativeness of the deci-
sions observed by consumers. Consumers take these changes into account when 
they update their beliefs about the state. These equilibrium effects can reverse the 
direct impact of the parameter change on decision rules. For example, an increase 
in product quality makes consumers more likely to purchase and search, but it is 
not difficult to construct examples in which the likelihood of paths ending in the 
cascade set for N is higher. Pastine and Pastine (2006) obtain similar “perverse” 
results when they study the effect of changing the accuracy of signals on the prob-
ability of incorrect herds, and Burguet and Vives (2000) find that increasing the 
noise in public information can improve welfare. By restricting the likelihood ratio 
to lie within the learning region, we are able to obtain a closed form solution for 
the probability of a bad herd.

A striking implication of Lemma 4 is that this probability does not depend upon 
the specific functional form of ​F​ω​, the distribution of the private signal. The only 
property of this distribution that matters (other than the upper bound on the density) 
is ​

_ σ​, the upper bound of its support.6 This observation also applies to signals about 
the utility of consumers who have purchased the product, such as consumer reviews 
and other forms of word-of-mouth communication. A number of empirical stud-
ies (e.g., Chevalier and Mayzlin 2006) have tried to measure the impact of word-
of-mouth communication on consumer decisions. Our model suggests that, while 
word-of-mouth communication may have an impact on short-run behavior, it has 
no impact on long-run behavior and, in particular, on the probability of a bad herd. 
Similarly, the details of what consumers observe about previous purchase decisions 
may also have no long-run impact. In a previous version of this paper, we showed 
that, if consumers observed the entire ordered history of previous purchases (and the 
density of the log of the likelihood ratio of private signals is log-concave), then the 
likelihood ratio converges to either 0 or ​

_
 l​ and the probability of these events is the 

same as in the above model.
The next proposition describes how the probability of a bad herd changes with the 

parameters of the model. Differentiating the probability ​l​0​/ ​
_
 l​ in Proposition 5 yields 

the following results.

6 Note that, as ​
_ σ​ approaches 1, ​

_
 l​ goes to infinity, and the probability of a bad herd in H goes to zero. Thus, in our 

model, unbounded beliefs lead to complete learning. (See Smith and Sorensen 2000.)
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Proposition 6: Suppose the state is H and ​l​0​ ∈ (0, ​
_
 l​ ). Then the probability a herd 

on N occurs and the fraction of consumers who purchase ​λ​t​ converges to 0 is strictly 
decreasing in H, increasing in c, and increasing in p.

Proposition 6 yields several intuitively plausible results. An increase in search 
costs increases the likelihood that long-run sales of a high quality product are zero 
and hence reduces its expected long-run sales. An increase in price also increases the 
probability of zero long-run sales, while an increase in the quality level decreases 
the probability. Intuitively, the first two effects reduce the expected net value of 
search for any pair of social likelihood ratio and private signal, while the third raises 
the value of search.

Rosen (1981) argued that the reward function to quality is convex because, in 
equilibrium, more talented artists can sell more units at higher unit prices. Our results 
suggest another source of convexity: in the long run, consumers are more likely to 
learn about higher quality products and are more likely to buy them. Thus, small 
differences in product quality can lead to large differences in expected sales even 
when prices do not vary with quality. This effect may also help explain why prices 
of products like albums, books, and videos do not vary with quality. In our model, a 
small increase in price can have a disproportionate effect on expected sales since it 
decreases market share and increases the probability of a bad herd. It explains why 
a seller of high quality products may want to keep prices low, at least initially, to 
encourage a positive herd on its product.

A number of papers (e.g., Brynjolfsson, Hu, and Simester 2006) have argued 
that the decline in search costs due to the Internet has disproportionately increased 
sales of niche products and reduced the concentration of sales. The next proposition 
provides support for this claim.

Proposition 7: Suppose the state is H and ​l​0​ ∈ (0, ​
_
 l​ ). Then the impact of an 

increase in c on the probability that a herd on N occurs and the fraction of consum-
ers ​λ​t​ converges to 0 is smaller (in absolute value) for higher quality products.

The result follows from differentiating the probability ​l​0​/ ​
_
 l​ with respect to c and 

then H. Proposition 7 implies that a decrease in search costs (due for example to 
Internet technologies) has a larger impact on long-run sales of niche products (i.e., 
medium quality products) than on high quality products.

V.  Empirical Model

As described in the previous section, the central empirical predictions of our model 
relate to the likelihood of bad herds. In particular, our model predicts that long-run 
search probabilities have a two-point support: ultimately the market will either learn 
the product’s true quality, in which case it will be searched with probability 1 −  
​F​​ω​1​​(​  σ​ (0)), or the product will be ignored. Proposition 6 states that the likelihood of 
the latter outcome (the bad herd) should be declining in product quality.

A clever online experiment conducted by Salganik, Dodds, and Watts (2006) 
provides a nice opportunity to test these predictions. In the experiment, thousands 
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of subjects were recruited to participate in artificial online music markets. 
Participants arrived sequentially and were presented with a list of 48 songs, which 
they could listen to, rate, and then download (for free) if they so chose. In real time, 
each participant was randomly assigned to one of nine “worlds.” In the treatment 
worlds, of which there were eight, participants were shown information about the 
downloads of previous participants in their world: song listings included the total 
number of previous downloads, and the song list was sorted by download rank. In 
the control world, the songs were shown in a random order, with no information 
about previous participants’ listens or downloads. A song’s download rate or “bat-
ting average” in this world provided a natural measure of its quality since it simply 
reflects the probability that participants choose to download a song conditional on 
listening to it. The eight treatment worlds operated independently of one another, 
so that the researchers could observe eight separate realizations of the stochastic 
learning process for each song.7

The design of the SDW experiment matches the assumptions of our model 
remarkably well. As in our model, the products in these experiments were search 
goods. The songs were carefully screened to ensure that they would be unknown to 
the participants.8 Choosing whether to sample a song is analogous to the decision 
of whether to search in our model, and downloading a song (after listening to it) 
is analogous to the purchase decision. As in our model, downloading (purchasing) 
was only possible if the participant had first listened to (searched) the song. The 
signal that a participant observes is the title of the song and name of the artist, which 
may signal whether the song’s style or genre is one that the participant likes. Since 
this is mostly about the participant’s idiosyncratic taste, U, the signal is private. 
The participants assigned to treatment worlds were shown the aggregate number of 
downloads by previous participants, so the information they received is essentially 
the same as in our model with consumers observing aggregate purchases. The cost 
of search in the experiment (i.e., the opportunity cost of the time spent listening to a 
song) and the cost of downloading (i.e., the opportunity cost of time and disk space) 
were apparently large enough to matter, because on average participants listened to 
fewer than four songs and downloaded fewer than two.

To test for bimodality of long-run outcomes, it is obviously important that we 
observe multiple learning processes. For each song in the SDW experiment, we 
observe eight separate sequences of participants (since there were eight independent 
treatment worlds). By itself, this would not be enough to perform any meaningful 
statistical analysis. But the experiment generated data for 48 different songs, and 
since the songs’ qualities can be estimated cleanly from the control world, we can 
control for quality differences and pool data across songs. Hence, we effectively 
observe 48 × 8 realizations of the learning process, and the heterogeneity in quality 
across songs allows us to test our model’s monotonicity predictions.

7 See Salganik (2007) for a much more thorough description of the methods and results of the experiment.
8 They were obtained from the music website purevolume.com, a website where aspiring bands can create 

homepages and post music for download. Bands that had played too many concerts or received too many hits on 
their homepages were excluded.
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In pooling the data across songs, we are treating the sequences of listens and 
downloads for different songs in the same treatment world as realizations of inde-
pendent stochastic processes. For independence to hold, we must assume that par-
ticipants’ preferences are additive. This is a strong assumption since it ignores 
substitution effects that may arise when participants make choices from a menu of 
songs. The fact that many participants downloaded several different songs suggests 
that additivity is at least plausibly correct. We do not test this assumption, however, 
so it should be viewed as a caveat to the discussion below.

Since our model’s predictions are based on the assumption that the social likeli-
hood ratio has converged, we analyze the songs’ listening rates among participants 
who arrived late (i.e., toward the end of the sequence) in the treatment worlds. The 
sample consists of the last 200 participants of the roughly 700 participants in each 
treatment world.9 Let ​L​jwt​ be an indicator variable equal to 1 if participant t listened 
to song j in world w and let ​Y​jw​ denote the number of listens for song j among the 
last N participants in world w. If the social likelihood ratio has converged to zero 
(that is, the song is known to be high quality), then X is known, and the ​L​jwt​ are inde-
pendently and identically distributed. If instead the social likelihood has converged 
to ​

_
 l​, then in theory the probability of search should be zero and we should observe ​

L​jwt​ to be a sequence of zeroes. In the data, few songs get exactly zero listens, so in 
estimating the model below we allow the search probability (which we denote ​p​0​ ) 
to be a small positive number.

Taken together, the two possible outcomes for the social likelihood ratio imply 
that, in the long-run, ​Y​jw​ is a weighted average of two binomial random variables:

(8)

​ 
 
 
 

 Pr   
 
 ​ {​Y​jw​ = n} = q(​x​j​)​( N   

n
 )​ ​p​ 0​ n​(1 − ​p​0​​)​N−n​ + (1 − q(​x​j​))​( N   

n
 )​p(​x​j​​)​n​(1 − p(​x​j​)​)​N−n​,

where ​x​j​ is a measure of song j’s quality, q(​x​j​) is the probability that the market has 
converged to a bad herd, and p(​x​j​) is the probability that a participant would choose 
to listen to song j if its quality ​x​j​ is known (i.e., the market has learned the quality 
of the song).

For purposes of estimation, we parameterize the probability functions as

	 q(​x​j​)  = ​ 
exp{​α​0​ + ​α​1​​x​j​}  __  

1 + exp{​α​0​ + ​α​1​​x​j​}
 ​    and    p(​x​j​)  = ​ 

exp{​β​0​ + ​β​1​​x​j​}  __  
1 + exp{​β​0​ + ​β​1​​x​j​}

 ​.

9 We found that after the 500th participant, the listening probabilities had mostly “converged,” in the sense that 
they changed very little from one cohort of 100 participants to the next. The results we report below are largely 
unchanged if we look only at the last 100 participants (instead of 200).



18	 American Economic Journal: Microeconomics� february 2012

We measure ​x​j​, song quality, as the ratio of downloads to listens for song j in the 
control world. We set the minimum listening rate, ​p​0​, to 0.043, which is the average 
listening rate for songs falling in the bottom quarter of the list.

While the SDW experiment generated data on both the listen (search) and 
download (purchase) decisions, in real-world markets it is much more common to 
observe purchases only. The test we described above can be applied to purchase 
outcomes in the same way as to search outcomes. Under the assumption that con-
sumers have learned song quality, the long-run sequence of listen decisions is 
i.i.d.—and the same argument applies to download decisions. So the number of 
downloads is also a weighted average of two binomial random variables, and an 
equation analogous to equation (8) can be derived for it. Hence, our model’s main 
prediction can be tested by looking for bimodality in either search outcomes or 
purchase outcomes.

The first column of Table 1 reports maximum likelihood estimates of the model 
in equation (8). The second column reports estimates of the same model with q, 
the probability of a bad herd, constrained to be zero—so the number of listens is 
a binomial random variable based on a single success probability, p(x). The third 
and fourth columns report analogous estimates based on download decisions—i.e., 
with the number of downloads used as the dependent variable instead of number of 
listens.10 The number of observations is 384, since we observe listen counts (​Y​jw​) for 
48 songs, and 8 treatment worlds for each song.

10 For the estimates based on downloads, we set ​p​0​ to 0.014, the average download rate for songs falling in the 
bottom quartile of the list. We also set N = 300, because the relative infrequency of downloads makes the download 
counts noisier than the listen counts.

Table 1—Estimation Results: Test of Bimodality of Outcomes

Listens Downloads

Parameter (1) (2) (3) (4)

​α​0​ 3.796 — 3.492 —
(1.151) (2.160)

​α​1​ −6.386 — −6.729 —
(2.684) (4.383)

​β​0​ −3.891 −4.462 −5.506 −6.109
(0.718) (0.435) (1.279) (0.455)

​β​1​ 5.341 4.723 6.446 6.478
(1.732) (1.159) (2.636) (1.242)

Observations 384 384 384 384

Avg. log-likelihood −4.403 −7.608 −3.699 −5.139

Notes: Estimates in columns 1 and 2 are based on the number of listens among the last 200 
participants in the treatment worlds. Estimates in columns 3 and 4 are based on the number of 
downloads among the last 300 participants. An observation is a song/world pair. Standard errors 
(corrected for clustering on songs) are reported in parentheses.	
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The results clearly confirm the predictions of the model. First, whether we base 
the test on listens or on downloads, the data easily reject the constrained model.11 
The reason is that the constrained model cannot fit the bimodal outcomes of high-
quality songs. Even though songs with batting averages in the top quartile had lis-
tening rates above 20 percent in many worlds, in a third of cases the listening rates 
for these songs were below 4 percent. For example, the song with the highest con-
trol-world batting average had listening rates between 18–30 percent in 5 of the 8 
treatment worlds, but in two other worlds this same song’s listening rates were only 
2.5 percent and 3.5 percent.

Second, the estimates confirm the comparative static prediction of Proposition 
6: the estimate of ​α​1​ is negative and statistically significant, indicating that the 
probability of a bad herd (q) is a decreasing function of quality. For the esti-
mates based on listening decisions, the predicted values of q lie between 49.7 
percent (for the best song) and 95.6 percent (for the worst song). The estimates 
for p are also consistent with the prediction of our model: the estimate of ​β​1​ is 
positive and statistically significant, indicating that the probability of listening 
is an increasing function of quality. It lies between 3.6 percent and 33.1 percent. 
The estimates based on download decisions (in columns 3 and 4 of the table) are 
quantitatively very similar to the estimates based on listens, although with larger 
standard errors. This imprecision reflects the fact that downloads are more infre-
quent, so that download counts among the late-arriving participants are noisier 
than listen counts.

The estimates imply that if bad herds were eliminated so that song qualities were 
always learned in the long run—i.e., if q were zero for all songs—then expected 
listening rates would increase by an average of 4.2 percentage points. The difference 
would be negligible for low-quality songs, and as high as 16 percentage points for 
the high-quality songs.12

	 Alternative Models.—In our model, consumers are influenced by others’ 
purchases only because those purchases affect the perceived benefits of search. 
One plausible alternative is a model with “social preferences,” in which herds 
form because individuals prefer to consume the same products as others. Our 
model implies that download information should influence participants’ listening 
decisions, but not their decisions about whether to download a song conditional 
on listening to it (i.e., the song’s batting average). In contrast, a social pref-
erences model would predict that batting averages are influenced by download 
information.

Let ​D​jwt​ be an indicator equal to 1 if participant t of world w downloaded song 
j. We can ask whether ​L​jwt​ and ​D​jwt​ are influenced by song j’s download share 
among participants 1, …, t − 1 in world w. Table 2 reports the results from pro-
bit regressions in which ​L​jwt​ and ​D​jwt​ are assumed to depend on song j’s current 

11 The p-value of the likelihood ratio test is essentially zero in both cases.
12 This mirrors the analysis of Hendricks and Sorensen (2009), who estimate the counterfactual distribution of 

music album sales in a world where consumers knew their preferences for every album (instead of being unaware 
of most albums).
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download share (i.e., the fraction of prior participants who chose to download the 
song j  ). In the latter regression, we are interested in whether download informa-
tion affects the probability of download conditional on listening, so we use only 
the observations of ​D​jwt​ for which ​L​jwt​ = 1. Because some song titles and/or artist 
names might be more appealing than others on average, we include the song’s listen-
ing share from the independent world as a control in the listening regression. The 
coefficient on download share in this regression is positive and highly significant, 
indicating that participants’ decisions to listen to a song were influenced by infor-
mation about previous participants’ downloads.

By contrast, conditional download probabilities did not appear to be higher for 
top-ranked songs. This is a trickier issue, however, because a probit regression of ​
D​jwt​ on download share involves an obvious reflection problem: songs with the most 
downloads will naturally have higher average download probabilities. Fortunately, 
the conditional download probability from the control world is a natural control 
variable. As explained above, this conditional probability provides an independent 
measure of the song’s relative quality.13 When included, it forces the coefficient on 
download share to be identified from time variation in the download share relative 
to what it “ought” to be (as indicated by its download probability in the treatment 
world). Estimates of this model are reported in the second column of Table 2. The 
coefficient on download share is actually negative, suggesting that participants were 
slightly less likely to download top-ranked songs (conditional on listening to them). 
Taken together, the estimates imply that the information provided in the treatment 
worlds primarily affected participants’ listening decisions, not their preferences (or 
at least not positively).

The negative impact of downloads on the download probability is an intrigu-
ing result. It is likely due to a selection effect. In the control world, participants 

13 Unconditional download probabilities do not accurately reflect song quality because they conflate the proba-
bility of listening (which was highly variable across songs, and across worlds for a given song) with the conditional 
probability of downloading. On the other hand, conditional on listening to a song, the probability of downloading 
is clearly higher for songs with greater appeal. Measured this way, song quality varied substantially across songs: 
the conditional download probability was nearly 60 percent for the highest-quality song, and only 11 percent for 
the lowest-quality song.

Table 2—Probit Regressions

Listen Download
(1) (2)

Download share 1.074 −0.222
(0.011) (0.061)

Control world 0.414
  Listening share (0.036)
Control world 0.783
  Cond. prob. download (0.040)

Observations 264,288 20,194

Note: Probit regressions; marginal effects reported; standard errors in parentheses.
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who chose to listen to a particular song may have done so because something in 
the song’s title appealed to them. In other words, the title is an informative signal 
about the idiosyncratic component of their preferences, and as a result they are 
more likely to download the song than a randomly selected participant would be. 
When download information is shown, this selection effect is not as strong. Top-
ranked songs are listened to by a wider selection of participants, not just those 
who liked the titles. Since the selection of listeners for top-ranked songs is less 
favorably inclined, the fraction who choose to download these songs after listen-
ing to them is lower. Conversely, lower-ranked songs are listened to by a narrower 
selection of participants, those who really liked the title. Since the selection of 
listeners for these songs are more favorably inclined, the fraction who choose to 
download is higher.

Another model that could plausibly explain the patterns in the SDW data is one 
in which listening decisions are determined by songs’ list positions. Participants 
in the experiment may have been generally inclined to listen to songs shown at 
the top of the list, irrespective of any information that was posted about previous 
downloads. Since songs in the treatment worlds were ordered by download rank, 
the data would then conflate a list-position effect with the effect of download 
information.

SDW ran a separate experiment in which songs in the treatment worlds were 
randomly ordered (with download information still displayed). According to our 
model, if social beliefs have converged, the listening decisions of late partici-
pants should depend only upon their private signals and download information. 
However, we find that list position was also influential in this alternate experi-
ment. As a result, low-quality songs got more listens than they otherwise would 
have because they were sometimes listed at the top, and high-quality songs got 
fewer listens because they were sometimes listed at the bottom. Consequently, 
the top songs (in terms of downloads) had long-run listening probabilities in the 
15–25 percent range, as opposed to 25–45 percent in the experiment where songs 
were ranked by downloads. This “flattening” of the data makes it more difficult 
to detect the bimodality of outcomes. If we estimate the binomial-mixture model 
described above using data from the experiment with random ordering, we get 
coefficients of the same signs—  q(x) and p(x) are estimated to be decreasing and 
increasing functions of x, respectively—but the estimates of the coefficients in 
q(x) are statistically imprecise.

To some extent, this result calls into question whether our results are driven 
purely by herd effects resulting from observational learning. However, one plau-
sible interpretation is that social beliefs in this alternate experiment had not yet 
converged, so that the underlying assumption of the test is not satisfied. Indeed, 
listen rates in the alternate experiment did not settle down like they did in the 
main experiment. For example, in the main experiment, the listen rates among 
participants 501+ hardly changed relative to the listen rates among participants 
301–500. The simple correlation between the songs’ listen rates for those two 
cohorts is 0.949. By contrast, the listen rates in the alternate experiment appeared 
to still be in flux. The correlation between listen rates for cohorts 301–500 and 
500+ is only 0.640.
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To investigate this explanation further, we ran probit regressions analogous to 
those shown in Table 2, but including list position (1–  48) as an additional explana-
tory variable. Table 3 reports results from these regressions. A song’s position on 
the screen has a significant influence on whether the participant listens to it, but as 
more download information accumulates, the relative importance of list position 
diminishes. Columns 1 and 2 compare results for the first 200 participants to arrive 
versus the last 200 participants. The coefficient on download share more than doubles 
for the late-arriving participants, and the magnitude of the list position coefficient 
shrinks.14 The third column shows that neither download information nor list posi-
tion has a significant influence on the probability of download conditional on listen-
ing (i.e., the batting average).

The first two columns suggest that, in the long run, the download information 
would swamp the list position effects. The third column rules out any feedback 
effect of list position on listening decisions through download information (i.e., 
list position is a pure framing effect). Together, they imply that list position may 
have little impact on long-run outcomes. In other words, had there been 7,000 
participants in each treatment world instead of 700, say, we would have obtained 
results very close to those reported in Table 1. Under this interpretation, the pri-
mary consequence of sorting songs by download rank was to amplify the effects 
of the download information and make the learning processes converge more 
quickly.

VI.  Conclusion

We have studied a simple choice problem in which consumers have to decide 
whether or not to consider a product of unknown utility. Consumers only purchase 
products that they have checked out, and doing so is costly. Consumers would prefer 

14 The difference between the download share coefficients is highly statistically significant. Equality of the list 
position coefficients can be rejected at a 10 percent significance level (the p-value is 0.06).

Table 3—Probit Regressions: Experiment with Songs Ordered Randomly

Listen (first 200) Listen (last 200) Download
(1) (2) (3)

Download share 0.457 0.959 0.147
(0.033) (0.050) (0.134)

List position −0.00151 −0.00098 0.00041
(0.000076) (0.000064) (0.000215)

Control world 0.642 0.509
  Listening share (0.060) (0.054)
Control world 0.849
  Cond. prob. download (0.034)

Observations 76,800 76,800 21,940

Note: Probit regressions from experiment in which songs were randomly ordered (instead of 
sorted by download rank); marginal effects reported; standard errors in parentheses.
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not to pay this cost if they believe they are unlikely to buy the product. The deci-
sions of other consumers influence their beliefs about the gains from search. A poor 
purchasing record can feed on itself and lead consumers to wrongfully omit high 
quality products from their consideration sets. On the other hand, a good purchas-
ing record can also feed on itself and lead consumers to search the product. We 
have shown that beliefs converge to one of two possible limits and characterized the 
probabilities of these events. The probabilities have closed form solutions that can 
be used to study the determinants of inadequate learning.

The experimental data of Salganik, Dodds, and Watts (2006) confirm our model’s 
central empirical prediction, which is that long-run search probabilities should be 
bimodal. The test we employ is to estimate a model in which the number of searches 
(listens) is a weighted sum of two binomial random variables with different success 
probabilities. Although some features of this test are specific to the SDW exper-
iment, the basic principle could be applied in other real-world markets. What is 
critical is the availability of an independent measure of quality. A key advantage 
of the SDW experiment is that the control world yields such a measure. In real-
world markets, quality could be measured based on user ratings (e.g., user reviews 
of books on Amazon or of movies on Netflix). The point is that if quality can be 
measured independently of the product’s observed market success, then with data 
on many products it is possible to estimate the frequency with which high-quality 
products end up with near-zero market shares (i.e., bad herds). One could also then 
test whether this frequency depends on quality, search costs, or prices in the ways 
that our model predicts.

We have provided an equilibrium analysis of consumer learning in product mar-
kets when prices are fixed and sellers report aggregates sales. In practice, the seller 
can take other actions to increase the likelihood that consumers will investigate its 
product. One interesting open question is how a monopoly seller, assuming it does 
not know the quality of its product, can use dynamic pricing to manipulate learn-
ing. Another issue is the competition among sellers for the attention of consumers. 
For example, Eliaz and Spiegler (2008) develop a static model in which compet-
ing firms use advertising to influence the decision of consumers to check out their 
products. Display advertising clearly plays a role in directing consumer search, and 
incorporating advertising into a dynamic model like ours—with Bayesian learning 
and meaningful search costs—with multiple sellers should be a promising direction 
for future research.

Appendix

Proof of Lemma 1:
Using the definition of ​π​t​(n, X ), we can rewrite the social likelihood ration ​l​t​(n) 

for non-extreme values of n (greater than 0 and less than t − 1 ) after some manipu-
lation as

	​ l​t​(n)  =  q ​ψ​0​(​l​t−1​(n)) ​l​t−1​(n) + (1 − q)​ψ​1​(​l​t​(n − 1)) ​l​t−1​(n − 1),
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where

(A1)      q  = ​   ​π​t−1​(n, H)[1 − ​β​t−1​(n, H)]    _____      ​π​t−1​(n, H)[1 − ​β​t−1​(n, H)] + ​π​t−1​(n − 1, H)​β​t−1​(n − 1, H) ​

	​ ψ​0​(l)l  =  [​  1 − [1 − ​F​U​( p)][1 − ​F​​ω​1​​(​  σ​(l))]
    ___    

1 − [1 − ​F​U​( p − H)][1 − ​F​​ω​1​​(​  σ​(l))] ​] l
	​ ψ​1​(l)l  = ​   [1 − ​F​U​( p)]  __  [1 − ​F​U​( p − H)] ​  l.

That is, the social likelihood is a weighted average of the ratios that consumer t 
would have if she knew that ​n​t−1​ = ​n​t​ and consumer t − 1 did not purchase, and if 
she knew that ​n​t​ = ​n​t​ − 1 and consumer t − 1 did purchase. The weights are the 
relative probabilities of these events in state H. When ​n​t​ = 0 or ​n​t​ = t − 1, then 
q = 1 or q = 0, respectively. It is easily checked that the fixed points of the dynam-
ics under ​ψ​0​(l  )l and ​ψ​1​(l  )l are l = 0 and l ≥ ​

_
 l​. Therefore, to prove the lemma, it is 

sufficient to show that ​ψ​0​(l  )l and ​ψ​1​(l  )l are increasing in l. If ​l​t​ is between 0 and ​
_
 l​, 

then so will be ​ψ​0​(​l​t​)​l​t​ and ​ψ​1​(​l​t​)​l​t​ and any weighted average of ​ψ​0​(​l​t​)​l​t​ and ​ψ​1​(​l​t​)​l​t​.
It is clear from the definition that ​ψ​1​(l  )l is strictly increasing in l. For ​ψ​0​(l  )l, dif-

ferentiating equation (A1) yields

[​ψ​0​(l)l]′  =   ​ψ​0​(l) + ​ψ​ 0​ ′ ​(l)l

    =  ​ψ​0​(l) − ​ 
[​F​U​( p) − ​F​U​( p − H)] ​f​​ω​1​​(​  σ​(l  ))​  σ​  ′(l)

    ___    
[1 − (1 − ​F​U​( p − H ))(1 − ​F​​ω​1​​(​ ̂    σ​(l)))​]​2​

 ​ l

	
    = ​ 

[1 − (1 − ​F​U​( p − H ))(1 − ​F​​ω​1​​(​ ̂    σ​(l)))][1 − (1 − ​F​U​( p))][1 − ​F​​ω​1​​(​  σ​(l))]       ______      
[1 − (1 − ​F​U​( p − H ))(1 − ​F​​ω​1​​(​  σ​(l)))​]​2​

 ​

	 − ​ 
[​F​U​( p) − ​F​U​( p − H )] ​f​​ω​1​​(​  σ​(l))​  σ​  ′(l)

    ___    
[1 − (1 − ​F​U​( p − H ))(1 − ​F​​ω​1​​(​  σ​(l)))​]​2​

 ​ l

    = ​ 
[​F​U​( p − H  ) + ​F​​ω​1​​(​  σ​(l))(1 − ​F​U​( p))][​F​U​( p) + ​F​​ω​1​​(​  σ​(l))(1 − ​F​U​( p))]       _____     

[1 − (1 − ​F​U​( p − H ))(1 − ​F​​ω​1​​(​ ̂    σ​(l)))​]​2​
 ​

	 − ​ 
[​F​U​( p) − ​F​U​(p − H)] ​f​​ω​1​​(​  σ​(l))​  σ​′(l)

    ___    
[1 − (1 − ​F​U​( p − H ))(1 − ​F​​ω​1​​(​ ̂    σ​(l)))​]​2​

 ​ l

    ≥ ​ 
​F​U​( p − H )​F​U​( p) − [​F​U​( p) − ​F​U​( p − H )] ​f​​ω​1​​(​  σ​(l))​  σ​′(l)l

     _____     
[1 − (1 − ​F​U​( p − H ))(1 − ​F​​ω​1​​(​ ̂    σ​(l)))​]​2​

 ​  .
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Thus, ​ψ​0​(l)l is increasing in l if, for all l,

(A2)	​ f​​ω​1​​(​  σ​(l)) ​ ̂    σ​′(l)l[​F​U​( p − H ) − ​F​U​( p)] + ​F​U​( p)​F​U​( p − H )  ≥  0.

Next, we bound the magnitude of the term ​  σ​′(l)l. To simplify the algebra, define 
Γ ≡ ​ 1 − ρ

 _ ρ  ​ as the inverse likelihood ratio of the social probability. Expressing the 
indifference threshold ​  σ​ in terms of Γ, we obtain

	​   σ​(Γ)  = ​   Γ _ 
Γ + ​  Γ​

 ​,

where ​  Γ​  ≡ ​  G − c _ c ​ . Then

	​ 
d ​  σ​(Γ) _ 

d Γ ​   = ​   ​  Γ​ _ 
[Γ + ​  Γ​​]​2​

 ​.

Thus,

​  σ​′(l)l  =   ​ d ​  σ​(Γ) _ 
d Γ ​ ​  d Γ _ 

dρ ​ ​ dρ _ 
dμ ​ ​ dμ _ 

dl
 ​ l

	 =   ​  ​  Γ​ _ 
[Γ + ​  Γ​​]​2​

 ​ (​ − 1 _ 
​ρ​2​

 ​ )[​F​U​( p) − ​F​U​( p − H )](− ​μ​2​)l

	 ≤   ​  1 _ 
2Γ​ρ​2​

 ​ [​F​U​( p) − ​F​U​( p − H)]​μ​2​ l

	 =   ​  1 _ 
2(1 − ρ)ρ ​ [​F​U​( p) − ​F​U​( p − H )]μ(1 − μ)

	 =  ​ 1 _ 
2
 ​ (​  [​F​U​(p) − ​F​U​(p − H)]μ   ___    (1 − ​F​U​(p)) + (​F​U​(p) − ​F​U​(p − H))μ ​)

	 ×  (​  (1 − μ)
  ___    ​F​U​( p) − (​F​U​( p) − ​F​U​( p − H ))μ ​)

	 ≤   ​ 1 _ 
2
 ​ (​  ​F​U​( p) − ​F​U​( p − H )

    ____     ​F​U​( p) − ​F​U​( p − H ) + ​F​U​( p − H )(1 − ​F​U​( p)) ​)
	 ≤   ​ 1 _ 

2
 ​.
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The second inequality follows from the fact that the second term is increasing in μ 
and the third is decreasing in μ. Substituting the bound into expression (A2) implies 
that ​ψ​0​(l)l is increasing in l if

	 0  ≤   ​ 1 _ 
2
 ​ ​f​​ω​1​​(​  σ​(l))[​F​U​( p − H) − ​F​U​( p)] + ​F​U​( p)​F​U​( p − H)

	 ⇔ ​  f​​ω​1​​(​  σ​(l))  ≤  2 ​ 
​F​U​( p)​F​U​( p − H )  __  ​F​U​( p) − ​F​U​( p − H ) ​,

the condition ensured by Assumption 1.

Proof of Lemma 2:
In state X, the probability of the transition from n to n + 1, ​β​t​(n, X ), shrinks 

continously to 0 as ​l​t​(n) approaches ​
_
 l​. Also, as ​l​t​(n) approaches ​

_
 l​, the slope of ​l​t+1​(n) 

with respect to ​l​t​(n),

	​ 
​l​t+1​(n) − ​l​t+1​(n′)  __  ​l​t​(n) − ​l​t​(n′) ​   <  1,

because (i) ​l​t+1​(n) > ​l​t​(n) for ​l​t​(n) < ​
_
 l​ (no purchase is bad news) and (ii) ​l​t+1​(n) 

= ​l​t​(n) if ​l​t​(n) = ​
_
 l​ ( ​

_
 l​ is a fixed point). Therefore, although ​l​t​ is not a martingale, 

the argument of Smith and Sorensen’s (2000) “Rest of Proof of Theorem 4” (page 
397) applies directly: ​

_
 l​ is a stable fixed point.

Proof of Lemma 3:
Lemma 1 establishes that ​l​t​ stays in the set (0, ​

_
 l​). Define the random variable ​y​T​ as

	​ y​T​  ≡  sup {​l​t​ :t  ≥  T },

and the random variable y as

	 y  ≡ ​ 
 
 
 

 lim    
 
  ​ ​  sup   

T→∞
​ ​y​T​.

(That is, for any ε > 0, ​l​t​ exceeds y + ε only a finite number of times, but it exceeds 
y − ε infinitely often. If ​l​t​ converges to z, then y = z. If ​l​t​ does not converge, then y 
is the upper bound of its eventual support.) If y = ​

_
 l​, then ​l​t​ approaches ​

_
 l​ arbitrarily 

closely infinitely often, and Lemma 2 implies that ​l​t​ converges to ​
_
 l​. If y = 0, then ​

l​t​ converges to 0, since ​l​t​ is non-negative. Thus, if y equals 0 or ​
_
 l​, then we have the 

desired result.
To finish the proof, we suppose that y ∈ (0, ​

_
 l​ ) and derive a contradiction. Choose 

ε > 0, and let τ  (ε) denote the last time at which ​l​t​ > y + ε. Let ​A​t​(ε) denote the 
event that t > τ  (ε) and ​l​t​(​n​t​) > y − ε. By definition of y, this event must occur infi-
nitely often. Further, it must occur infinitely often in both states (since the likelihood 
ratio y assigns positive probability to both states). Thus,

	​ 
 
 
 

 lim    
s→∞

​ ​ 
 
 
 

 inf    
 
 ​​∑ 

t=s
 ​ 

∞

 ​ P​r [​A​t​(ε) | X ]  >  0 for X ∈ {L, H }.
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But, for any aggregate number of purchases ​n​t​ = n that occurs with probability π 
through t periods in state H, we claim that the event

	​ n​t​  ≤ ​ ⌊ ​  1 − ​F​U​( p)  __  
1 − ​F​U​( p − H ) ​  n ⌋​ + 1  ≡  ν (n),

has probability at least π in state L. The proof is by induction. Fix any infinite 
sequence of independent draws from ​F​​ω​1​​. In period 1, the ratio of the probabilities 
of purchase in state H versus state L is

	​ 
[1 − ​F​U​( p)][1 − ​F​​ω​1​​(​  σ​(​l​0​))]   ___   

[1 − ​F​U​( p − H )][1 − ​F​​ω​1​​(​  σ​(​l​0​))]
 ​  = ​   1 − ​F​U​( p)  __  

1 − ​F​U​( p − H ) ​ .

Further, since u − p ≥ 0 implies H + u − p ≥ 0, for any realization of u, pur-
chase in state L implies purchase in state H. Now choose any period t > 1 and any ​
n​H​, ​n​L​ ∈ {0, … , t − 1} such that ​n​H​ ≥ ​n​L​. The ratio of the probability of purchase in 
state H given ​n​t​ = ​n​H​ to the probability of purchase in state L given ​n​t​ = ​n​L​ is

	​ 
[1 − ​F​U​( p)][1 − ​F​​ω​1​​(​  σ​(​l​t​(​n​L​)))]    ___    

[1 − ​F​U​( p − H )][1 − ​F​​ω​1​​(​  σ​(​l​t​(​n​H​)))]
 ​  ≤ ​   1 − ​F​U​( p)  __  

1 − ​F​U​( p − H ) ​.

The inequality follows because (i) [1 − ​F​​ω​1​​(​  σ​(​l​t​(​n​L​)))] is decreasing in ​l​t​ and 
(ii) ​l​t​(n) is decreasing in n.

Property (ii) is intuitive, but not quite trivial.15 For t = 2, the result is immedi-
ate. So pick any t > 2, and assume that ​l​k​(n) is decreasing in n for all k < t and any 
prior between 0 and ​

_
 l​. Consider any two ordered histories through period t − 1, h 

and h′, with the property that the number of purchases n in history h is greater than 
the number n − 1 in h′. Let s ∈ {0, … , t − 2} be the largest number such that the 
first s periods of both histories contain the same number of purchases; denote that 
number as n(s). Let ​l​t​(n, s, n(s)) and ​l​t​(n − 1, s, n(s)) be the social likelihood ratios 
that consumer t would have if (contrary to fact) she observed s and n(s) in addition 
to n and n − 1, respectively. We will show that ​l​t​(n) < ​l​t​(n − 1) by showing that 
​l​t​(n, s, n(s)) < ​l​t+1​(n − 1, s, n(s)) for any s and n(s). If s > 0, then ​l​t​(n, s, n(s)) and 
​l​t​(n − 1, s, n(s)) are the likelihood ratios that result from observing a ((t − 1) − s)-
period history containing n − n(s) purchases and n − 1 − n(s) purchases respec-
tively, starting from an initial likelihood ratio ​l​s+1​(n(s)). By hypothesis, then,  
​l​t​(n, s, n(s)) < ​l​t​(n − 1, s, n(s)), since s + 1 < t. If s = 0 (so that histories h and h′ 
are identical except that the first consumer purchased in h and not in h′ ), the argu-
ment is similar. In that case, ​l​t​(n, s, n(s)) and ​l​t​(n − 1, s, n(s)) are the likelihood 
ratios that result from observing a (t − 2)-period history containing n − 1 pur-
chases, starting from the initial likelihood rations ​l​2​(1) and ​l​2​(0) respectively. Since ​
l​2​(1) < ​l​2​(0) by the induction hypothesis, and the social likelihood ratio is increas-
ing in the prior likelihood ratio (by a proof analogous to the argument that ​ψ​0​(l)l 
and ​ψ​1​(l)l are increasing in the proof of Lemma 1), the result follows.

15 Callander and Horner (2009), in fact, show that property (ii) can fail if Assumption 1 does not hold.
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Thus, since ​n​t​ ∈ ​A​t​ occurs infinitely often in state H, ​n​ t​ ′​ ≤ ν(​n​t​) occurs infinitely 
often in state L. But then ​n​ t​ ′​ ≤ ν(​n​t​) must also occur infinitely often in state H, since 
otherwise ​l​t​(​n​ t​ ′​) would be larger than any finite y. Iterating, ​n​ t​ ′​ ≤ ν(v(​n​t​)) must also 
occur infinitely often in both states, as must ​n​ r​ ′ ​ ≤ v(v(v(​n​t​))), and so on. For large 
n (above [1 − ​F​U​( p − H )]/[​F​U​( p − H ) − ​F​U​( p)]), v(n) is strictly less than n. 
Thus, histories in which an aribitrarily low fraction of consumers have purchased 
must occur infinitely often in both states. But, at such histories, the social likelihood 
ratio assigns weight close to 1 to state L, contradicting the definition of y. Thus, y 
cannot lie in (0, ​

_
 l​).

Proof of Lemma 4:
Lemma 3 establishes that ​l​t​ converges almost surely to a ​l​∞​ ∈ {0, ​

_
 l​ }. In state L, 

consumer’s beliefs cannot converge to something completely wrong with positive 
probability, and so ​l​t​ must converge almost surely to ​

_
 l​. Next, suppose that the state 

is H. Lemma 1 ensures that ​l​t​ stays between 0 and ​
_
 l​, so the Dominated Convergence 

Theorem implies that

	​ 
 
 
 

 lim    
t→∞

​E[​l​t​]  =  E[​l​∞​].

For any t > 0, the expectation (at time 0) of ​l​t​ is equal to the prior ​l​0​, since

	 E[​l​t​(n)]  =   ​∑ 
n=0

​ 
t−1

 ​ ​l​t​​(n)​π​t​(n, H )

	 =   ​∑ 
n=0

​ 
t−1

 ​ [​​ ​π​t​(n, L) _ ​π​t​(n, H) ​ ​l​0​] ​π​t​(n, H )

	 =   ​∑ 
n=0

​ 
t−1

 ​ ​π​t​​(n, L)​l​0​  = ​ l​0​ .

Thus, E[​l​∞​] = ​l​0​. Since ​l​∞​ is almost surely either 0 or ​
_
 l​, convergence to ​

_
 l​ must have 

probability ​l​0​/ ​
_
 l​.

Proof of Proposition 5:
The consumers’ decision rule in equation (5) is continuous in the social likeli-

hood ratio ​l​t​, so convergence of ​l​t​ implies convergence in actions. The proposition 
then follows immediately from Lemma 4.

Proof of Proposition 6:
From Proposition 5, the probability a herd on N occurs and the fraction of con-

sumers who purchase ​λ​t​ converges to 0 is

(A3)	​ 
 
 
 

 Pr   
 
 ​ {​l​∞​  = ​

_
 l​}  = ​  ​l​0​ _ 

​
_
 l​
 ​  = ​ l​0​ ​ 

c − φ(c)[1 − ​F​U​( p)]   __   φ(c)[1 − ​F​U​( p − H )] − c ​ ,
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where φ(c) ≡ (G − c)​  ​_ σ​ _ 1 − ​_ σ​ ​ + c > 0. Note that ​
_
 l​ > 0 implies that both the numera-

tor and the denominator in equation (A3) are positive, facts that will be used repeat-
edly below.

Differentiating equation (A3) with respect to H yields

(A4)	​  ∂ Pr{​l​∞​  = ​
_
 l​}  _ ∂H

 ​   =  ​l​0​ ​ 
(c − φ(c)[1 − ​F​U​( p)])φ(c) ​f​U​( p − H )    ___   

​(φ(c)[1 − ​F​U​( p − H )] − c)​2​
 ​

	   =   ​l​0​ ​ 
 
 
 

 Pr   
 
 ​ {​l​∞​  = ​

_
 l​} ​  φ(c) ​f​U​( p − H )  __   φ(c)[1 − ​F​U​( p − H )] − c ​  >  0.

Differentiating equation (A3) with respect to c yields

​ ∂ Pr{​l​∞​ = ​
_
 l​}  _ ∂c

 ​   =  (​  ​l​0​  ___   ​(φ(c)[1 − ​F​U​( p − H )] − c)​2​ ​)
	 ×  {(φ(c)[1 − ​F​U​( p − H )] − c)[1 − φ′(c)[1 − ​F​U​( p)]

 	 + [c − φ(c)(1 − ​F​U​( p))][1 − φ′(c)(1 − ​F​U​( p − H ))]}

	 =  ​l​0​​ 
[​F​U​( p) − ​F​U​( p − H )][φ(c) − cφ′(c)]    ___   

​(φ(c)[1 − ​F​U​( p − H )] − c)​2​
 ​   >  0, 

where the last inequality follows from the fact that φ′(c) = 1 − ​  ​_ σ​ _ 1 − ​_ σ​ ​ < 0.
Finally, differentiating equation (A3) with respect to p yields

​ ∂ Pr {​l​∞​  = ​
_
 l​}  _ ∂p

 ​   =  (​  ​l​0​  ___   
​(φ(c)[1 − ​F​U​( p − H )] − c)​2​

 ​)
	 ×  {[φ(c)[(1 − ​F​U​( p − H ))] − c]φ(c) ​f​U​( p)

 	 + [c − φ(c)(1 − ​F​U​(p))] φ(c) ​f​U​( p − H )} >   0.

Proof of Proposition 7:
Differentiating equation (A4) with respect to H yields

​ ​∂​2​Pr{​l​∞​  = ​
_
 l​}  _ ∂c∂H

 ​   =   ​l​0​[φ(c) − cφ′(c)]​  ∂ _ ∂H
 ​{​  ​F​U​( p) − ​F​U​( p − H)   ___   

​(φ(c)[1 − ​F​U​( p − H )] − c)​2​
 ​}
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	 =   ​  ​l​0​[φ(c) − cφ′(c)]   ___   
​(φ(c)[1 − ​F​U​( p − H )] − c)​4​

 ​

	 ×  {(φ(c)[1 − ​F​U​( p − H )] − c​)​2​ ​f​U​( p − H )

 	 −  (​F​U​( p) − ​F​U​( p − H ))2(φ(c)[1 − ​F​U​( p − H )]  −  c)

	 ×  φ(c) ​f​U​( p − H )}

	 =   ​ ​l​0​[φ(c) − cφ′(c)] ​f​U​( p − H )   ___   
​(φ(c)[1 − ​F​U​( p − H )] − c)​3​

 ​

	 ×  {(φ(c)[1 − ​F​U​( p − H )] − c)

 	 − (​F​U​( p) − ​F​U​( p − H ))2(φ(c)}

	 =   ​ ​l​0​[φ(c) − cφ′(c)] ​f​U​( p − H )   ___   
​(φ(c)[1 − ​F​U​( p − H )] − c)​3​ ​

	 ×  {(φ(c)[1 − ​F​U​( p − H)] − c)

 	 − φ(c)[​F​U​( p) − ​F​U​( p − H )]} <  0,

where the last inequality follows because φ(c) > 0, φ′(c) < 0, and both the numer-
ator and the denominator of equation (A3) are positive.
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