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Abstract

This paper investigates firms’ post-merger product repositioning. We compile in-

formation on conglomerate firms’ additions and removals of products for a sample of

61 mergers and acquisitions across a wide variety of consumer packaged goods markets.

We find that mergers lead to a net reduction in the number of products offered by the

merging firms, and the products that are dropped tend to be particularly dissimilar to

the firms’ existing products. These results are consistent with theories of the firm that

emphasize core competencies linked to particular segments of the product market.
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1 Introduction

Analyses of horizontal mergers have focused primarily on price effects, because a central

tenet of industrial organization theory and antitrust policy is that mergers lead firms—both

merging firms and their rivals—to charge higher prices. Such price effects have been af-

firmed in a wide variety of contexts (Kim and Singal (1993); Prager and Hannan (1998);

Nevo (2000); Town (2001); Vita and Sacher (2001); Blonigen and Pierce (2016) to name a

few examples), and concerns about price effects form the basis for the antitrust authorities’

horizontal merger guidelines. However, prices are but one channel through which mergers

affect consumer welfare; mergers also typically result in a substantial reshuffling of the prod-

ucts offered in the market. This paper’s aim is to quantify and describe patterns in these

changes to merging firms’ product portfolios.

We focus on measuring whether merging firms increase or decrease the number of products

they offer, and whether the added or dropped products tend to be similar vs. dissimilar to

the products in the firms’ existing portfolios. These are both open empirical questions, since

firms face competing incentives when making these decisions. On the one hand, merging

firms may decide to close competing business lines or to discontinue competing products so

as to reduce costly duplication and product market cannibalization. On the other hand,

to the extent that the target and acquiring firms have “core competencies” over the sets of

products they are able to produce and distribute, post-merger restructuring may involve the

merged firms discontinuing products that are far from the center of their product portfolios,

thus leading to a narrower range of products to which consumers have access. Whether

consumers have access to a narrower or wider range of products has potentially important

implications for consumer welfare and antitrust policy. Reduction in the diversity of products

implies lower consumer surplus, beyond the higher prices that the previous literature has

generally focused on.

Our main analysis combines two datasets, one containing detailed information on firms’

product offerings and a second comprising a comprehensive list of mergers and acquisitions.

The latter is recorded in the Securities Data Company (SDC) database of mergers and

acquisitions. The former, the Nielsen Retail Scanner dataset, contains information about

each universal product code (UPC) sold by each brand in each quarter between 2006 and

2017. Critically for our analysis, this dataset contains a short product description and

information on the size of the product sold. Based on the text within the product description

and on the product’s size, we calculate the similarity between any two products within a

given market: Products with a high fraction of overlapping text, or which are of similar

size, are defined to be “close” to one another. Though coarser than comparisons one might
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make when looking carefully at a small set of products involved in one specific merger,

this approach enables us to compare tens of thousands of products across many different

product categories. We can then compute the distance among the UPCs within firms’

product portfolios in periods surrounding a merger or acquisition, and employ an event-

study framework to assess mergers’ impact on the number and variety of products sold by

firms participating in the merger.

Looking across a sample of 61 conglomerate mergers – across a wide variety of consumer

packaged goods markets – we find that mergers lead to significant net reductions in the

number of offered products, but only with a lag. Beginning one year after the merger,

we observe a statistically significant 6 percent decrease in the number of UPCs, and this

reduction persists for several years beyond the merger. We then turn to the question of which

products tend to be added and dropped subsequent to a merger. We find that products that

are far away from the merged firm’s product portfolio are substantially more likely to be

dropped and less likely to be added. In other words, the merged firm’s products increasingly

become close to one another.

Our analysis builds on three literatures. While the IO literature has long sought to

quantify the unilateral price effects of mergers, a more recent strand has considered how

mergers affect the products offered by firms. Gandhi et al. (2008) theoretically show that

product repositioning can mitigate the anticompetitve effects of a merger. Using a Hotelling-

type model to analyze firms’ pre-and post-merger product location decisions, they find that

mergers lead to greater product differentiation, implying that analyses of mergers that focus

only on the effect of price or the number of products in the market may be overstating

mergers’ harm to consumers.1 Their analysis holds fixed the number of products in the

market and ignores fixed costs. Berry and Waldfogel (2001) illustrates that, when one

considers the fixed cost of product introductions, the effect of merger on product variety

becomes theoretically ambiguous, necessitating empirical analysis.

A growing body of empirical work has considered the effect of endogenous product po-

sitioning on the unilateral effects of mergers.2 Examples include Draganska, Mazzeo and

Seim (2009), Fan (2013), and Mao (2018), which demonstrate empirically, in the respective

contexts of premium ice cream, newspapers, and shampoo, that prospective merger analysis

which ignores repositioning can be misleading. As the aim of this literature is to measure

1See also Mazzeo and Varela (2018).
2Variety may further be impacted if the merger results in coordinated effects. Sullivan (2020a,b) doc-

uments that firms may coordinate their product choices in a horizontally differentiated product market,
resulting in reduced cannibalization and greater product variety. Bourreau, Sun and Verboven (2018) find
that firms may collude to restrict the availability of vertically differentiated offerings. See Porter (2020) for
a discussion of the literature on coordinated effects.
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the effect of a specific merger on welfare, these papers restrict attention to a single product

market and necessarily make assumptions concerning the models of demand and supply.

We extend this body of work by demonstrating the effect of mergers on endogenous prod-

uct repositioning for a large set of mergers across many consumer packaged goods markets.

While our approach does not allow us to document merger effects on prices or welfare, we

are able to be agnostic as to the underlying model generating the pre- and post-merger

equilibria. Thus, it is similar in spirit to Sweeting (2010) and Berry and Waldfogel (2001),

which find that across mergers in the radio industry, merging stations modify their formats

and playlists to reduce within-firm audience cannibalization.

Second, a parallel literature, largely within management and finance, emphasizes that

asset synergies, both during and subsequent to mergers, shape firms’ decisions about when

and with whom to merge, and about which lines of business to add and drop following the

merger. Hoberg and Phillips (2010) parse the text from firms’ annual filings to the Securities

and Exchange Commission to characterize the lines of business in which firms operate. They

document that pairs of firms with overlapping business lines are more likely to merge and,

conditional on merging, experience faster sales and profitability growth. Maksimovic, Phillips

and Prabhala (2011) use data from the Census Longitudinal Business Database, documenting

that a sizable fraction of target firms’ plants are either spun off or shut down in the first

three years after being acquired; see also Li (2013). Those target firm plants that are kept

tend to be in the acquiring firms’ main industries of production. These analyses focus on the

broad product lines that target and acquired firms produce before and after merging. Our

contribution, relative to this literature, is to establish that firms’ product portfolios condense

as a result of merger and acquisition (M&A) activity, even within product lines.

Finally, this paper contributes to a long macroeconomic literature emphasizing the real-

location of inputs across firms (see Van Reenen (2018) for a review). Even within industries,

firms differ markedly in their productivity (Syverson, 2004, 2011), labor shares (Autor et al.,

2020; Kehrig and Vincent, 2020), and organizational practices (Bloom et al., 2012, 2019).

The re-allocation of inputs across firms is of central importance in declines in the aggre-

gate labor share, increases in price-marginal cost markups, and expanding wage inequality

(Song et al., 2019; De Loecker, Eeckhout and Unger, 2020). Our paper characterizes a pri-

mary channel through which this reallocation of inputs occurs—namely in the reshuffling of

product lines during and after mergers and acquisitions.

In the remainder of the paper, we describe our data sources and our measurement of

product similarity (Section 2), present our main empirical results (Section 3) and briefly

conclude (Section 4).
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2 Data Sources and Definitions

Our dataset has two main components: (1) the Nielsen Retail Scanner database– data on

individual products and their weekly sales from 2006 to 2017, and (2) the SDC Platinum

Mergers and Acquisitions database– a list of mergers and acquisitions between 1979 and

2018. We supplement these datasets with a mapping we have compiled between brands and

their parent firms, drawing on the GS1 Database. These three pieces of information, in

combination, allow us to measure how firms’ product portfolios evolve following each merger

and acquisition. We describe our datasets, then close this section by explaining how we

measure product dissimilarity.3

2.1 The Product Data

The Nielsen Retail Scanner Dataset, obtained from the Kilts Center for Marketing at the

University of Chicago Booth School of Business, contains detailed information on products

sold in a wide variety of retail chains from 2006-2017. This database draws on more than

35,000 participating grocery, drug, mass merchandiser, and other stores. It covers more than

half of the total sales volume of U.S. grocery and drug stores, and more than 30 percent of

all U.S. mass merchandiser sales volume.

For each UPC, we obtain a description of the product along with information on the

product’s brand, size, and weekly sales from the Nielsen database for the years 2006-2017.4

We use the sales data primarily to determine when new products are added or existing

products are dropped. If an existing UPC disappears from the data or stops having positive

sales, we infer that the product was dropped.

In addition, Nielsen categorizes products into a set of modules, groups, and departments.

Each of these are groups of products, at increasing levels of aggregation, that are relatively

similar to one another. We focus on products from four Nielsen departments: dry grocery,

frozen foods, dairy, and alcoholic beverages. In our analysis, we define each product module

as a distinct product market. In the four departments of our sample, there are 612 product

modules. To provide a sense of the scope of the typical product module, broader examples

include Ready-to-Eat Cereal and Diet Soda while more narrow examples include Capers,

Matzo Meal / Mixes, Breading Products, and Croutons. We use Nielsen’s module codes to

3Additional details on our data cleaning procedures are given in Appendix A.
4Similar to our paper, Argente et al. (2020) apply information from the Nielsen Retail Scanner dataset

to measure the evolution of firms’ product portfolios. Their aim is to link firm patenting activity, from the
U.S. Patent and Trademark Office, to the introduction of “novel” products. Product novelty is computed
not from the text UPC product description and size measures, as in our main measurements, but from a
separate Nielsen file of product attributes.
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determine when a merger involves firms in overlapping product markets. In many mergers,

the merging firms’ product portfolios are at least partially in separate markets. Since we are

interested in the product portfolio decisions made after a horizontal merger—i.e., a union of

firms that previously competed in at least some product markets—we focus on cases where

there was at least some overlap in the merging firms’ product module codes prior to the

merger. 5

2.2 The Merger Data

We use the Securities Data Company (SDC) Platinum - Mergers and Acquisitions database

for merger-and-acquisition (M&A)-level information. The database covers all corporate

transactions, both public and private, for which the transaction (i) represents at least 5

percent of the value of the companies involved, and (ii) is valued at $1 million or more, or

has an undisclosed value. For each merger, we observe the announced and effective date of

the transaction, as well as the name and industry (defined by the Standard Industrial Clas-

sification (SIC) code) of the companies involved. Throughout the paper, we apply SDC’s

labeling of the firms which acquire or sell assets as, respectively the “acquirer” and the “tar-

get”. To be consistent with the product data, we limit our attention to transactions whose

acquirer and target both operate in the aforementioned four Nielsen departments.6

2.3 The Company Prefix Data

While Nielsen reports the brand of the product (e.g. Sprite), it does not indicate the parent

company that manufactures that brand (e.g. Coca-Cola). In order to merge the Nielsen

product data with the SDC transaction data, we need to know the parent company that

produces each product at each point in time in our sample. Each product is uniquely identified

by a UPC code; the first six digits of each UPC (the “company prefix”) is associated with

an individual manufacturer.7 We use the GS1 database to get the name of manufacturer

5Of the 61 mergers that will form our baseline sample, there were 286 merger-product module pairs. In
addition, outside of our sample, are 251 merger-product module pairs associated with the target firm but
not the acquiring firm, and 2,779 merger-product module pairs associated with the acquiring firm but not
the target firm.

6The SDC Platinum database includes not only mergers and full takeovers but also acquisitions of certain
lines of business. As an example of the latter case, Flowers Foods acquired Wonder Bread and other bread
brands from Hostess in 2013 (Hals and Stempel, 2013). Other Hostess Brands – including Twinkies, Sno
Balls, and Hostess CupCakes – were retained. Below, when we analyze the impact of the transaction between
Flowers Foods and Hostess, we will restrict our sample to Nielsen modules that correspond to bread products.
More generally, for each transaction in our dataset, we focus only on the relevant product modules.

7UPC codes and UPC prefixes are managed by GS1, a not-for-profit organization that develops and
maintains global standards for business communication. In principle, manufacturers do not need to purchase
their UPC prefixes from GS1. However, purchasing a UPC prefix from GS1 lowers retailers’ cost of stocking

6



for every company prefix in the product data. One complication with the GS1 data is that

the owners of company prefixes are sometimes subsidiaries of larger conglomerates, so the

prefixes are not always perfect indicators of products’ owners. To address this issue, we

manually collected listings of subsidiaries of the largest 100 conglomerates in the United

States, and then associated company prefixes to those conglomerates. Our M&A sample

focuses only on transactions in which the acquirer was one of these 100 conglomerates.

2.4 Calculation of Distance Measures

A key component of our analysis requires measures of the dissimilarity (“distance”) between

any two products in our dataset. In computing these distances, the first step is to represent

each product, p, within our database as a vector vp summarizing its characteristics. To

construct these vector representations, we draw on two components of the Nielsen Retail

Scanner Data: the UPC description and the size of the product that is being sold.

First, Nielsen’s UPC descriptions comprise a list of abbreviations, describing the brand of

the product, certain product characteristics, and (if applicable) the number of units within

the package. For instance, the UPC description for a 4-pack of Dannon’s nonfat vanilla

Greek yogurt would be “DN-A NF GK Y V 4P”. Since we want our measures to describe the

characteristics of the product, and not mechanically capture information on the manufacturer

of each UPC, we excise information about the brand (e.g., removing the DN-A.)

Second, Nielsen records the size of the product sold— a continuous variable, in different

units for different product modules (ounces for carbonated soft drinks, counts within packets

of gum, and so forth). For each product module, we compute the quartiles of the size

distribution. Continuing with our nonfat vanilla Greek yogurt example, each packet of

Dannon’s nonfat vanilla Greek yogurt is 5.3 ounces, which is within the first (smallest)

quartile of the size distribution for the refrigerated yogurt module.

For each product, p, we construct a vector vp based on the occurrence (or lack thereof)

of the elements within that product’s UPC description and on the product’s size. For our

4-pack of nonfat vanilla Greek yogurt, the elements associated with “NF”, “GK”, “Y”,

“V”, “Size∈ 1st Quartile” will be nonzero. For all other possible word abbreviations, and

for the “Size∈2nd Quartile”, “Size∈3rd Quartile”, and “Size∈4th Quartile” categories, the

elements of vp will be equal to 0. As in other applications of text data, we apply a term

frequency-inverse document frequency weighting scheme to fill in the nonzero elements of

the manufacturer’s products.
The terms UPC and GTIN (Global Trade Item Number) are sometimes used interchangeably. UPC codes

may be 8, 12, 13 or 14 digits long, and each of these four numbering structures are constructed in a similar
fashion, combining company prefix, item reference, and a calculated check digit. To make different numbering
structures compatible, leading zeros are added to shorter codes.
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vp. This scheme assigns greater weight to strings that appear more frequently (this is what

“term frequency” refers to) in product p’s UPC description or size categorization, and less

weight to strings that appear commonly across all products (this is what “inverse document

frequency” refers to). We set these weights separately for each product module, since inverse

document frequency varies across modules. Finally, we normalize each product’s vector so

that it has magnitude equal to 1.

Given a vector representation for each product, we measure the dissimilarity, dp,p′ be-

tween any two products p and p′ as the Euclidean distance between their corresponding

vectors. Intuitively, two products’ vectors will have a small distance if they share similar

characteristics. The distance measure ranges between 0, for two products with complete

overlap, and
√

2, for products with no overlapping characteristics.

For each transaction in our sample, we aggregate over the products that the acquiring

firm and target firm sell in each product module. Let PA,m,t refer to the set of products sold

by the acquiring firm A in product module m and quarter t, PT,m,t refer to the analogous

set of products for the target firm, and Pi,m,t refer to the union of these two sets. Use nA,m,t

and nT,m,t to refer to the cardinality of these sets, and define ni,m,t ≡ nA,m,t+ nT,m,t. We

first define the mean distance among the products associated with an acquisition i as:

D̄i,m,t =
1

ni,m,t
·
∑

p,p′∈Pi,m,t

dp,p′ . (1)

In other words, for each quarter we take the products sold by the parties to the transaction,

then compute the average Euclidean distance among all of the pairs of products sold by

either firm (or by the combined firm, when looking in quarters after the acquisition).

We will also, below, compute distances that focus only on the set of products associated

with either the acquiring or target firm:

D̄A,m,t =
1

nA,m,t
·

∑
p,p′∈PA,m,t

dp,p′ (2)

D̄T,m,t =
1

nT,m,t
·

∑
p,p′∈PT,m,t

dp,p′ . (3)

Finally, define Dq
i,m,t as the qth quantile of distances among the products in Pi,m,t. As we will

see, below, most pairs of products have little overlap in their characteristics. The distribution

of dp,p′ has significant mass near the maximum value of
√

2. For this reason, it will be useful

to consider quantiles that accentuate whatever variation exists among similar products, in

the left tail of the dp,p′ distribution.
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3 Results

This section contains the main empirical results of our paper. We first provide descriptive

statistics on our sample of mergers and acquisitions (Section 3.1). Next, we apply an event

study regression to analyze the impact of M&As on the number (Section 3.2) and similarity

(Section 3.3) of the merging firms’ products. Finally, in Section 3.4 we relate individual

products’ likelihood of being dropped to their similarity to other products in their parent

firms’ portfolios.

3.1 Summary Statistics

Our sample consists of 61 mergers for which the target and acquirer had products in at

least one overlapping product module prior to the merger. In many cases the merging firms

had products in multiple overlapping product modules, so our sample includes 286 merger-

module pairs. Table 1 presents summary statistics for the 61 mergers. The first panel of

this table indicates that the size distribution of the merging firms – whether measured in

terms of modules, products, or sales — is skewed. The median number of UPCs (combining

the products of the acquiring and target firms within our sample of modules) in the quarter

preceding the M&A is 116; the mean is 180. Second, the firm that SDC labels as the acquirer

tends to sell, on average, 4 to 5 times as many products as the target firm.
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Table 1: Summary Statistics

Percentile

10 25 50 75 90 Mean SD

Panel A: Before the Merger

# Modules involved 1 1 3 6 10 4.69 4.61

# Products involved 5 16 116 234 420 180.93 234.61

Revenues 0.09 0.45 9.83 42.57 58.09 26.77 40.49

Products of the Acquirer 2 10 84 193 323 147.69 210.73

Products of the Target 0 3 11 37 78 33.25 56.98

Panel B: Change in the Number of UPCs

Unweighted -0.10 -0.01 0.00 0.04 0.07 0.03 0.31

Weighted by Products -0.37 -0.01 -0.00 0.03 0.06 -0.04 0.15

Weighted by Revenue -0.17 -0.05 0.00 0.02 0.06 -0.04 0.12

Notes: The first panel presents summary statistics for the sizes of acquisitions for the 61 transactions in

our sample. The second panel presents growth rates in the number of UPCs, comparing the quarter of the

transaction to the quarter before the transaction. Here, we apply three different weighting schemes: applying

the same weight across transactions, weighting by the number of products sold by the two firms in the period

before the acquisition in the product modules in our sample, or weighting by the total revenues of the two

firms in the period before the acquisition in the modules in our sample.

The second panel of Table 1 describes the distribution of the change in the number of

UPCs, for the merging firms, during the quarter of the merger relative to the quarter before.

Here, we weight mergers equally, according to the number of products involved in the quarter

before the acquisition, or according to the total sales of the products in the period before

the acquisition. The table indicates an average 3 percent increase in the number of UPCs

after a merger if no weighting is applied, or a 4 percent decrease if mergers are weighted by

total sales. However, there is wide dispersion, around the mean, in the number of products

added and dropped.

Table 2 provides summary statistics for the 286 merger-module pairs in our sample. In the

quarter before the merger, the two firms produced 39 products within the average product

module in our sample, with 32 products associated with the acquiring firm and 7 with the

target firm. As in Table 1, the distribution of acquisition sizes is skewed. Also as in Table

1, acquisitions involve a net reduction in the number of products when merger-module pairs

are weighted according to their size.
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Table 2: Summary Statistics for Merger-Module Pairs

Percentile

10 25 50 75 90 Mean SD

Panel A: Before the Merger

Products 1 3 12 44 105 38.59 73.88

Revenues 0.00 0.06 0.61 3.57 13.28 5.71 18.84

Products of the Acquirer 0 2 8 39 84 31.50 67.15

Products of the Target 0 0 1 6 18 7.09 18.88

Panel B: Change in the Number of UPCs

Unweighted -0.11 0.00 0.00 0.04 0.17 0.01 0.46

Weighted by Products -0.13 -0.03 0.00 0.04 0.07 -0.06 0.29

Weighted by Revenue -0.13 -0.06 -0.01 0.02 0.06 -0.05 0.20

Notes: The first panel presents summary statistics for the sizes of acquisition-product module pairs, for the

268 pairs in our sample. The second panel presents growth rates in the number of UPCs for each transaction-

product module pair, comparing the quarter of the transaction to the quarter before the transaction. Here,

we apply three different weighting schemes: applying the same weight across transaction-product module

pairs, weighting by the number of products sold by the two firms in the period before the acquisition in

the relevant product module, or weighting by the total revenues of the two firms in the period before the

acquisition.

Figure 1 presents distributions of within-firm distances in the quarter before the merger

(left panel) and changes in within-firm distances in the periods surrounding the merger (right

panel). In more detail, over all pairs of products corresponding to an individual acquisition-

product module pair, we compute various distributional statistics: the mean, 10th percentile,

30th percentile, and 50th percentile distances. The left panel of Figure 1 plots the distri-

bution of these statistics, looking across all pairs of acquisitions and product modules. For

most pairs of products, there is little to no overlap in their product characteristics, yielding

a distance equal to
√

2. Given this, the mean or median distance, among the set of products

for each acquisition-product module pair, is also close to
√

2 in most cases. Looking at

quantiles which emphasize the left tail of the distribution generates more variation across

acquisition-product module pairs. In our event study regressions, below, our analysis will

focus on D0.1
i,m,t, the 10th percentile distance among products sold by merging firm i in

product module m and quarter t.
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Figure 1: Product Dissimilarity Distributions
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i,m,t. In the right panel, we present differences
in the within-firm distances, comparing the quarter before the acquisition with 5 or 10 quarters after the
acquisition.

The right panel of Figure 1 presents the change in our distance measures, comparing the

quarter before the M&A to 5 or 10 quarters after. While there is substantial variation across

acquisitions and product modules, in each of the four plotted distributions the mean and

median are both to the left of zero. In other words, most acquisitions are associated with a

net decline in our dissimilarity measure. Product portfolios condense subsequent to a merger

or acquisition. While these results are suggestive, they may be explained by confounding

factors for which this simple analysis does not control. With that in mind, in the subsequent

subsections, we apply an event study methodology to more rigorously assess the impact of

acquisitions on the number and diversity of products supplied to the market.

3.2 Changes in the Number of Products

To examine the effect of mergers on the number of offered products, we employ a standard

event study framework. Letting ni,m,t denote the number of products offered by firm i in

product module m in quarter t, and letting τ denote the quarter in which firm i was involved

in a merger (either as acquirer or target), we estimate the following regression:

log (ni,m,t + 1) = λ(t−τi) + βt + βi,m + εi,m,t . (4)

The βt are quarter fixed effects and the βi,m are firm×module fixed effects. Our coefficients

of interest, the λt−τi , represent the effect of the merger on the number of products sold by

the merging firm.
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For each merger, we compare the total number of products offered by the merged firm up

to 10 quarters after the M&A to the combined number of UPCs offered by the merging firms

directly before. As the top left panel of Figure 2 indicates, when observations (M&A-product

module pairs) are weighted equally, the number of products offered declines by 6 percent

four quarters after the merger, then is relatively constant for at least the subsequent year.

In the other two panels, we weight observations by the number of products of the combined

firms directly before the merger (top right panel), or the total sales of the products of the

combined firm (bottom left panel). In these specifications, the number of products offered

also declines, but with substantially larger standard errors.

Within each panel, we first test whether the average of the λt−τi coefficients in the four

quarters preceding the merger is different from zero. We then test whether the average of

the λt−τi coefficients in quarters 7 through 10 after the merger is different from zero. In all

three specifications we find no evidence that the average of the λt−τi is different from zero

in the periods before the merger. Depending on the weighting scheme, we either strongly

reject (unweighted), marginally reject (weighted by sales), or do not reject (weighted by the

number of UPCs) the hypothesis that λt−τi are on average different from zero seven to ten

quarters after the merger.8

8In Appendix B, we report the results of regressions using the sample of products initially offered by the
target firm or the acquiring firm, separately. There, we demonstrate that net changes are similar for these
two groups of products.
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Figure 2: Event Study Regression Results –Number of Products
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Notes: This figure presents changes in the number of products surrounding an acquisition, using estimates of
Equation 4. In the top left panel, no weights are applied. In the top right panel, observations are weighted
according to the number of products involved in the acquisition (as of the quarter preceding the merger).
In the bottom left panel, observations are weighted according to the sum of sales of the products involved
in the merger. Within each panel, we test the hypothesis that the sum of the coefficients, either in the four
quarters before the acquisition or in quarters seventh through tenth after the merger, is equal to 0.

3.3 Distance within Firms

Having identified a net drop in the number of products offered by the merging firm, we next

examine which types of products tend to be added or dropped. To do so, we again conduct

an event-study analysis, estimating the following regression:

D0.1
i,m,t = λ(t−τi) + βt + βi,m + εi,m,t . (5)

Here, our dependent variable equals the 10th percentile of the distances among the products

sold by merging firm i in module m and quarter t. In the periods before the merger, our
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distance measure is computed for the union of products sold by the acquirer and target.9

Figure 3: Event Study Regression Results–10th Percentile Distance
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Notes: This figure presents changes in the distance among products involved in the merger, using estimates
of Equation 5 and D0.1

i,m,t as the distance measure. In the top left panel, no weights are applied. In the top
right panel, observations are weighted according to the number of products involved in the merger (as of the
quarter preceding the merger). In the bottom left panel, observations are weighted according to the sum of
sales of the products involved in the merger. Within each panel, we test the hypothesis that the sum of the
coefficients, either in the four quarters before the acquisition or in quarters seventh through tenth after the
merger, is equal to 0.

The results of our estimation are depicted in Figure 3. Similar to what we found in our

analysis of the number of products offered, we find no evidence of increases or decreases

in product similarity in the quarters preceding the M&A. When merger-module pairs are

weighted equally there is a small but not statistically significant decline in within-firm prod-

uct distances as a result of the merger. Furthermore, we estimate a negative long-term

impact on distance when observations are weighted according to the number of products

9In Appendix B, we reestimate 5 with D̄i,m,t as the dependent variable. Here, the λ(t−τi) coefficients are
similar, but with somewhat smaller magnitude and with wider standard errors.
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(top right panel) or the sales of the products associated with the merger (bottom left panel).

In other words, firms tend to drop products that are far from the merging firms’ product

portfolio (and tend to add relatively more products towards the center of the firms’ product

portfolio). The effects that we identify are relatively modest: The coefficient estimates in the

top right and bottom left panel, when looking 7 to 10 quarters after the M&A, respectively,

represent a 0.05 and 0.08 standard deviation decrease in D0.1
i,m,t.

10

3.4 Product-Level Analysis

Building on the firm-product module-level analysis in the previous sections, in Table 3 we

compare individual products’ likelihood of being dropped to various product characteristics.

According to column (1) of this table, a one standard deviation increase in the distance

between the product’s location and the other products of the merging firm is associated

with a 1.3 percentage point percent increase in the probability that the product is dropped

within 10 quarters of the merger.11 In column (2), we include the product’s sales in addition

to an indicator describing whether the product was initially produced by the acquiring (as

opposed to the target) firm. A one standard deviation increase in our distance variable has

roughly the same effect as having sales that are 76 percent smaller.12 Furthermore, whether

the product was initially produced by the target or the acquiring firm has little relationship

with its likelihood of being sold in the future. The acquiring firm’s products are roughly 10

percent less likely to be dropped. In column (3), we investigate the relative importance of

distance to the acquiring and target firms for whether a product is dropped. As this column

indicates, Columns (4) though (6) apply a more stringent set of fixed effects, controlling

for not only the module in which the product is located but also identity of the merging

firms. Within these specifications, the importance of distance to the firms’ other products

is somewhat muted, but still at least half as large as in columns (1) through (3).

10To provide a second point of reference, we compare the estimated λ(t−τi) to the dispersion in D0.1
i,m,t that

is unexplained by the βi,m fixed effects. Here, the λ(t−τi) coefficients, 7 to 10 quarters after the merger, are
0.16 times (weighting by products) or 0.24 times (weighting by sales) the unexplained variation in D0.1

i,m,t.
11The marginal effect associated with column (1) equals 0.117; the standard deviation of the distance to

the combined firm’s products equals 0.116. So, 0.013 = 0.117 · 0.116.
12To arrive at this figure, note that 0.24 ≈ exp

(
1.689·0.116

−0.137

)
.
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Table 3: Logit Regression Results

(1) (2) (3) (4) (5) (6)

Log(Sales) -0.137 -0.165 -0.143 -0.173

(0.004) (0.006) (0.004) (0.006)

1(Acquiring Firm’s -0.0172 -0.119 -0.0317 -0.106

Product) (0.072) (0.083) (0.075) (0.085)

Distance to Target 0.981 0.604

Firm’s Products (0.326) (0.340)

Distance to Acquiring -0.115 0.0531

Firm’s Products (0.430) (0.461)

Distance to Combined 2.243 1.689 1.866 1.280

Firm’s Products (0.256) (0.268) (0.279) (0.292)

Observations 16,858 16,858 7,645 16,818 16,818 7,636

Module-Merger FE No No No Yes Yes Yes

Module FE Yes Yes Yes No No No

Number of Groups 86 86 58 131 131 78

Notes: The dependent variable equals 1 if the product is dropped within ten quarters of the merger.

4 Conclusion

Our goal in this paper has been to describe post-merger changes to firms’ product portfolios.

Using data from a large sample of mergers across a variety of product markets, we document

two main patterns, First, mergers tend to result in net reductions in the number of offered

products, with approximately half of the reduction occurring immediately following the

merger and the remainder materializing over the subsequent three years. Second, the dropped

products tend to be relatively dissimilar to others in the merged firms’ product portfolios.

The first of these findings is unsurprising, as the standard economic logic is that merging

firms will have incentives to eliminate previously competing products that now cannibalize

each other’s sales. In other words, assuming that offering a product involves fixed costs,

merged firms will tend to drop products that merely steal sales from another of the firm’s

own products. However, this logic suggests the products most likely to be dropped are ones

that are similar to others in the firm’s portfolio, and we find the opposite to be true. Instead,

firms tend to drop products at the periphery of their portfolios.

This finding does not mean conglomerate mergers never diversify the firms’ product

portfolios: In constructing our sample we intentionally excluded many mergers in which

the acquired firm sells products in modules where the acquirer was not previously active.
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However, it does suggest the main thrust of these mergers is not typically to eliminate the

closely competing products of a rival. When firms that operate in the same product markets

merge, they drop products in a way that makes their combined portfolio more dense rather

than more sparse.

Our findings can be rationalized by theories of the firm emphasizing core competencies.

Firms have heterogeneous capabilities in the markets that they serve. While mergers and

acquisitions allow firms to rapidly expand into new product markets (Levine, 2017), some

lines of business acquired during the transaction may not align with the merging firms’ core

competencies (Maksimovic and Phillips, 2002; Maksimovic, Phillips and Prabhala, 2011).

These “far away” lines of business from others within the newly-formed firm are relatively

less profitable to operate, and thus more likely to be dropped.

While some of the effects that we have identified — in particular on the declines of within-

firm distances — are modest, we still think it will be valuable to undertake careful studies of

product repositioning for individual mergers. Antitrust policy is concerned with the effect

of mergers on welfare, and small changes in product similarity may still have substantial

ramifications for consumer welfare. Furthermore, our current analysis does not consider the

product adjustments by non-merging firms or the effect of mergers in markets where the

merging firms do not compete before the merger. These effects may also be important for

welfare. We leave an exploration of these important issues to future research.
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Appendixes

A Data Cleaning Details

We clean the product data in five steps. First, we drop all private-label products, those

manufactured and sold under a retailer’s brand name. Second, some products have the same

UPC but different UPC versions. This happens when a firm changes the size, multipack or

other attributes of a product. For example, a firm might temporarily change a product’s size

to reflect special promoted product size and then revert to the original size. These products

are in fact the same product. We ignore different UPC versions and combine the sales of

products with the same UPC. Third, some products have different UPC codes but are not

different products. Firms might slightly change the attributes of a product and give it a new

UPC. To deal with this problem, we combine the sales of products with the same descriptive

information (description, brand, multipack and size) and treat them as a single product.

Furthermore, any time there are multiple products with the same description, brand, and

multipack, we search for a set of products whose sizes are within 10% of each other and

collapse them to a single product. Fourth, we drop products whose maximum quarterly sales

in all time or maximum number of selling stores in all time is too small.13 This prevents our

results from being affected by the noise of niche products. Finally, sometimes a product is

no longer produced but still registers a small number of sales in a quarter due to retailers’

inventory issues. We set the sales of a product in a quarter to be zero if it is smaller than 1%

of the product’s maximum quarterly sales and if the number of selling stores in that quarter

is smaller than 1% of the maximum number of selling stores in all time. After cleaning, the

product data is merged with the company prefix data on UPC prefix.

Since company names in the GS1 and SDC datasets may be written differently, the two

data sources are not a priori directly compatible. For instance, the Alpine Valley Bakery

Company is called “alpine valley bread co” in the SDC merger data but “alpine lace brands,

inc.” in the company prefix data. To fix this problem, we standardize all company names

via a fuzzy matching exercise. For every company name in the SDC merger data, we search

across the company prefix data to find 5 closest names. Among these, we consolidate to the

most appropriate firm name (which we determine by hand). We include only those mergers

and acquisitions for which we can match both the acquirer and target firm in our company

prefix dataset.

13In the final sample selection criterion, we require that all products in our sample have at least one quarter
with 900 units sold and at least one quarter with sales in at least 10 stores.
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B Additional Figures and Tables

In this appendix, we compile additional figures and tables, ancillary to our Section 3 analysis.

First, Table 4 lists the mergers within our sample.14

14For certain transactions, either the acquiring or target firm may sell zero products in the quarter pre-
ceding the merger (e.g., the transaction between Mars and Preferred Brands International, as listed in the
second row of the final page of Table 4). We retain these acquisitions in our sample so long as both firms
share a product module with positive sales in at least one quarter at some point before the M&A, subject
to the restrictions described in Appendix A.
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In Section 3.2, we documented that mergers led to a decline in the number of products of-

fered overall. Are these declines larger for products that were initially sold by the target firm

or the acquiring firm? In Figures 4 and 5, we re-estimate Equation 4 using only the sample of

products initially offered by the target firm or initially offered by the acquiring firm. Overall,

we find somewhat more pronounced changes for products that were initially produced by

the acquiring firm. However, these differences depend somewhat on the weighting scheme

applied.

Figure 4: Event Study Regression Results–Target Firm Distance
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Notes: See notes for Figure 3. In contrast to that figure, the sample includes only products belonging to the
target firm.
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Figure 5: Event Study Regression Results—Acquiring Firm Distance
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See notes for Figure 3. In contrast to that figure, the sample includes only products belonging to the
acquiring firm.

In Figure 6, we re-estimate Figure 3 using D̄i,m,t instead of D0.1
i,m,t as our explanatory

variable. Since the distribution of distances is skewed — whereby a substantial fraction of

distances among pairs of products is close to the maximum value of 21/2 — D̄i,m,t is less

dispersed, also close to 21/2 for most acquisition, product module, quarter triples. We find,

as before, acquisitions are associated with a decline in the diversity of the products that

firms bring to the market. However, this relationship is statistically significant, and only

marginally so, only in the specification in which transactions are weighted by the number of

products involved.
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Figure 6: Event Study Regression Results —Mean Distance
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Notes: See notes for Figure 3. In contrast to that figure, we compute the mean, instead of the 10th percentile,
of the distance for each firm-year-product module as our dependent variable.

Finally, Tables 5 and 6 present the logit regression results, relating product characteristics

to the probability that the product disappears from the market. Analogous to Table 3, our

samples now comprise products initially corresponding to the target firm (Table 5) or the

acquiring firm (Table 6). In each subsample, we find that distance to the acquiring firm’s

products is strongly associated with product disappearance.
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Table 5: Logit Regression Results—Target

(1) (2) (3) (4) (5) (6)

Log(Sales) -0.176 -0.173 -0.182 -0.180

(0.012) (0.012) (0.012) (0.012)

Distance to Target 0.859 0.928

Firm’s Products (0.938) (1.079)

Distance to Acquiring 2.657 2.454

Firm’s Products (1.213) (1.274)

Distance to Combined 3.669 3.484 3.886 3.191

Firm’s Products (1.034) (1.117) (1.135) (1.233)

Observations 2,034 2,034 1,972 1,976 1,976 1,940

Module-Merger FE No No No Yes Yes Yes

Module FE Yes Yes Yes No No No

Number of Groups 39 39 35 42 42 41

Notes: See notes for Table 3. In contrast to that table, the sample involves only products from the target

firm.

Table 6: Logit Regression Results—Acquirer

(1) (2) (3) (4) (5) (6)

Log(Sales) -0.134 -0.167 -0.140 -0.174

(0.004) (0.007) (0.004) (0.007)

Distance to Target 0.702* 0.202

Firm’s Products (0.392) (0.409)

Distance to Acquiring -0.241 0.103

Firm’s Products (0.534) (0.594)

Distance to Combined 2.365 1.818 1.932 1.362

Firm’s Products (0.270) (0.281) (0.296) (0.309)

Observations 14,699 14,699 5,557 14,673 14,673 5,554

Module-Merger FE No No No Yes Yes Yes

Module FE Yes Yes Yes No No No

Number of Groups 76 76 50 118 118 69

Notes: See notes for Table 3. In contrast to that table, the sample involves only products from the acquiring

firm.
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