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Abstract

We use Medicare claims data to measure how hospice enrollment affects cancer patients’ costs
and mortality. We directly model the endogeneity of the hospice enrollment decision, framing
patients’ choices of whether and when to enroll as a single-agent dynamic discrete choice problem
with an unobserved state variable (health status). Preliminary estimates of the model indicate
that the option to enroll in hospice leads to substantial cost savings, and almost all of these
savings result from lower daily costs rather than accelerated mortality.
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1 Introduction

End-of-life care figures prominently in policy debates about how to control health care costs. Medi-

care spends over $200 billion each year—more than a quarter of its total expenditures—on care for

patients in their last year of life, and annual per capita spending on inpatient hospital services is

roughly seven times higher for patients who died than those who did not. To some extent these cost

differences are unavoidable, since dying patients are naturally sicker and more expensive to treat.

But to the extent that the cost differences reflect overuse of resource-intensive treatments at the

end of life, limiting such treatments could significantly reduce overall costs without meaningfully

reducing patients’ quality of life—especially given that some studies have suggested that higher

costs are associated with a worse quality of death (Zhang et al (2009)).

Hospice has played an increasingly important role in end-of-life care, as the share of dying pa-

tients who enroll in hospice grew from 25 percent in 2000 to 46 percent in 2015.1 Hospice provides

palliative care, such as pain management and emotional counseling, in lieu of aggressive medical in-

tervention. Since patients who choose hospice are choosing to forego expensive curative-treatments,

hospice has the potential to substantially reduce Medicare’s costs, both because hospice patients

have lower daily costs (since palliative care is cheaper than curative care) and because they may

live fewer days (as a consequence of foregoing life-prolonging treatments).

Our aim in this paper is to use Medicare claims data to directly measure how hospice enrollment

affects cancer patients’ costs and mortality. That is, if a patient chooses hospice, how much does this

reduce the expected costs of that patient’s end-of-life care? And how much of the cost reduction

is due to accelerated mortality? These effects are difficult to measure empirically, due to the

endogeneity of the hospice enrollment decision. Patients who choose hospice tend to be sicker than

non-hospice patients in ways the econometrician cannot observe, so simple comparisons of hospice

vs. non-hospice patients’ costs and mortality would obviously be misleading. Moreover, hospice

enrollment is not only an endogenous decision, it is a dynamic one: one cannot simply compare

the outcomes for patients who did vs. did not choose hospice, since this would ignore the arguably

more important decision of when to enter hospice.

To address these challenges, we develop and estimate a model that frames patients’ hospice enroll-

ment decisions as a single-agent dynamic discrete choice problem with an unobserved state variable.

In the model, a patient who is diagnosed with metastatic cancer begins with some initial unobserved

health state θ0 > 0, and this health state then declines stochastically over time until it crosses zero,

at which point the patient dies. The hospice enrollment decision is driven by differences in flow

utilities, which depend on the patient’s health state. If a patient enrolls in hospice, she earns a

constant flow utility until she dies. While not enrolled in hospice, her flow utility is an increasing

function of her health state, and this flow utility goes to zero as her health state approaches zero

1See Han et al (2006) and NHPCO (2016).
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(i.e., as she approaches death). Thus, the patient enrolls in hospice once her health state falls below

some optimal threshold. This threshold is partly a function of a patient’s idiosyncratic preferences

for hospice, but we also assume it can be shifted by instruments that are exogenous to the patient’s

health state. We use as our primary instrument the overall hospice utilization rate in the patient’s

hospital service area in the year prior to the patient’s diagnosis. Thus, our structural model makes

explicit the endogeneity of the hospice enrollment choice, and also exploits plausibly exogenous

variation in the data to identify the model’s key parameters.

Our empirical analysis focuses on a sample of over 30,000 patients who were diagnosed with

metastatic cancer between 2005 and 2011. Among the patients who died before the end of our

sample period, 61% enrolled in hospice before dying. Unconditional average costs are lower for

hospice patients, even though their average survival times are longer than for non-hospice patients.

We show that average daily costs increase significantly in the days just prior to death, but this

increase is not as sharp among hospice patients. We also show that patients in regions with high

hospice utilization rates tend to enroll in hospice slightly sooner and also die slightly sooner.

Preliminary estimates of the model indicate that the option to enroll in hospice leads to substantial

cost savings, and almost all of these savings result from lower daily costs rather than accelerated

mortality. Our model does imply that forgoing curative care stochastically shortens one’s life, but

the effect is small, accounting for less than 5 percent of the overall cost savings from hospice.

2 A brief background on hospice care

Hospice takes a palliative approach to end-of-life care, aiming to allow patients to die “pain-free

and with dignity.” Medicare began coverage of hospice services in 1983, and since then there has

been an increasing acceptance of hospice as a viable mode of care for the terminally ill. In the

U.S. in 2015 there were 4,199 hospice providers that served 1.38 million patients. Nearly half of

Medicare decedents were enrolled in hospice at the time of death.2

Patients usually enroll in hospices through referrals from physicians and long-term care facilities. In

order to be eligible for Medicare’s hospice benefit, the patient’s physician and the hospice medical

director must certify that the patient has a terminal disease with a life expectancy of 6 months

or less. Hospice services are typically provided in the home. A family member usually serves

as the primary caregiver, while hospice staff members—including physicians, nurses, home health

aides, social workers, clergy and other volunteers—make regular visits to the patient and provide

other support services for the family. Typical hospice services include pain management, emo-

tional/psychosocial counseling, drugs and medical equipment, and bereavement care for family and

friends.

2See National Hospice and Palliative Care Organization: Facts and Figures, 2016.
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Medicare reimbursement for hospice services is on a per diem basis, with four tiers of reimbursement

rates corresponding to different intensities of care. The payment rates were set based on data from

a Medicare demonstration project done in the early 1980s, and are adjusted annually to reflect

inflation. The vast majority of patient days are categorized as Routine Home Care, for which

the reimbursement rate is roughly $150 per day. During brief periods of crisis (e.g., to manage

acute medical symptoms), the reimbursement level can be escalated to Continuous Home Care,

which is reimbursed at roughly $900 per day. When patients need pain control or other symptom

management that cannot be managed at the patient’s home, they can be hospitalized on a short-

term basis in a hospice inpatient facility, or a hospital with which the hospice has contracted,

and the hospice is reimbursed for General Inpatient Care at roughly $700 per day. Finally, when

inpatient care is needed on a short-term basis in order to relieve the beneficiary’s primary caregiver,

the hospice can be reimbursed for Inpatient Respite Care at roughly $160 per day. In addition to

the annual inflation updates, these reimbursement rates are also adjusted locally using area wage

indexes to reflect differential labor costs in different markets. The per-diem rates include payment

for drugs used for pain control and symptom management; drugs prescribed for conditions unrelated

to the patient’s terminal illness must be reimbursed separately.

3 Previous studies of hospice costs

Given the growing importance of hospice and the strong a priori arguments for potential cost

savings, it is not surprising that several previous studies have attempted to measure cost differences

between hospice and non-hospice patients. These studies are best characterized by how they address

two fundamental challenges: endogeneity of the hospice choice, and heterogeneity in the timing of

hospice enrollment. One thread in the literature addresses the endogeneity problem with propensity

score methods. For example, Taylor et al (2007) study a random sample of Medicare decedents

who died between 1993 and 2003, and use propensity score matching to match hospice patients to

a control group of patients who did not enter hospice but had similar characteristics. Comparing

the costs of hospice patients to the costs of the matched control patients, they find that hospice

patients’ costs were on average $2,309 lower in the period after hospice initiation. However, total

costs in the year of death were not statistically different for hospice patients when compared to

non-hospice patients ($32,727 vs. $33,837) because the average costs for hospice patients prior to

hospice enrollment were higher for the hospice group. Kelley et al (2013) take a similar approach,

but improve on the propensity score matching by augmenting Medicare claims with matched data

from the Health and Retirement Study, which includes information about patients’ functional status

and social characteristics. They find cost reductions of roughly the same magnitude as the Taylor

et al (2007) study, and also document reductions in hospital days and ICU days for patients who

choose hospice.

A drawback of these studies is that they employ what Kelley et al (2013) call a “mortality follow-
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back” design. To compare the costs incurred by a hospice patient vs. non-hospice patient, they

consider costs in the last N weeks of life for the two patients, counting back from the date of death.

While useful, such comparisons do not capture any differences in the length of life for the two

patients—and such differences may be important, since hospice patients do not typically receive

curative treatments. An alternative approach that does allow for these differences is what might

be called a “follow-forward” design. For example, Pyenson et al (2004) and Connor et al (2007)

compare costs and times until death for terminally ill hospice and non-hospice Medicare patients

within narrowly defined trigger diagnoses—i.e., diagnoses identified by a group of physicians as

indicators of hospice eligibility. The researchers calculated all costs between time of diagnosis and

time of death for each patient with one of these trigger diagnoses, and then compared the costs for

patients who chose hospice to the costs of those who did not. Pyenson et al (2004) found lower

mean costs for hospice patients overall, but for most diagnoses the differences were not statistically

significant. Both the Pyenson et al (2004) and Connor et al (2007) studies report that patients

who chose hospice actually lived longer on average than patients who did not; they suggest this

may simply reflect that patients who live longer have more time to choose hospice. While these

studies have the advantage of being able to analyze mortality differences for hospice vs. non-

hospice patients, the main drawback is that they ignore any patient heterogeneity within diagnosis

categories—that is, they do not attempt to control for the possibility that among patients with the

same trigger diagnosis, the sickest of these patients may be the ones who choose hospice. To some

extent, differences in patients’ health status can be controlled for with observable covariates,3 but

unobservable patient heterogeneity is also undoubtedly important. Additionally, while the setup

of these “follow-forward” studies is conceptually appealing, it turns out that patients who choose

hospice often wait several weeks or months before doing so. This means that simply comparing

hospice patients to non-hospice patients ignores what appears to be an important decision margin:

when to enroll in hospice.

Our study aims to incorporate the desirable aspects of both the aforementioned types of studies.

We analyze our sample of patients prospectively, using a “follow-forward” rather than “follow-back”

design, so we can measure any effects of hospice on mortality. Instead of simply comparing hospice

patients to non-hospice patients, we develop a dynamic discrete choice model of patient’s decisions

about when to enter hospice. To address endogeneity, our model explicitly accounts for unobserved

health status, and in estimating the model we exploit instrumental variables that generate plausibly

exogenous variation in patients’ propensity to choose hospice. In this respect, our paper is similar

to others that have modeled dynamic decision-making in the presence of an an important but

unobserved (to the researcher) state variable. For example, Fang and Kung (2012) use a dynamic

discrete choice model with serially correlated unobserved state variables to empirically analyze

individuals’ decisions to let their life insurance policies lapse. Chan and Hamilton (2006) develop

a dynamic model of patients’ decisions to drop out of a clinical trial for HIV drugs; in their model,

3See, for example, Kelley et al (2011), which shows that observable covariates meaningfully improve predictions
of Medicare expenditures in the last six months of life.
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the patient-specific side effects of a drug are the key unobservable factor.

4 Data

Our data consist of Medicare claims for a sample of 30,102 patients who were diagnosed with

metastatic cancer between 2005 and 2011. The patients were identified and selected from a 5%

random sample of all Medicare patients by finding patients with either (a) a “bad” cancer that had

metastacized; or (b) any cancer that had metastacized to the brain or liver.4 Prognosis for such

patients is generally grim. Measuring from the date of the first appearance of a secondary neoplasm

in the claims data, 57 percent of the patients in our sample died within six months, and 69 percent

died within a year. Table ?? lists the different cancer types and the corresponding mortality rates.

Table 1: Mortality rates by cancer type

Percent dying within:
Primary cancer type # patients 3 months 6 months 12 months
Esophagus 629 0.41 0.55 0.66
Stomach 1,099 0.36 0.49 0.63
Liver 2,493 0.48 0.60 0.73
Gallbladder 554 0.46 0.60 0.75
Pancreas 2,102 0.53 0.65 0.77
Lung 11,783 0.44 0.56 0.69
Pleura 804 0.38 0.52 0.67
Brain 1,405 0.34 0.51 0.65
Other 9,233 0.47 0.58 0.68
Total 30,102 0.45 0.57 0.69

Survival times are calculated relative to the date of the first appearance of metastasis, as
indicated by a claim with an ICD-9 code for a secondary neoplasm. To avoid censoring,
patients whose initial diagnosis occurred within 12 months of the end of our data sample
were excluded from the calculations in this table. Patients with cancer type “Other” are
patients with primary cancers in other sites where the metastases were to the brain or liver.

The claims data cover the period 2004-2011 and include Medicare parts A (hospital, skilled nursing

facility, and hospice claims), B (physician services, lab tests, and imaging claims), and D (prescrip-

tion drug claims).5 For each claim we know the date, claim type, HCPCS or CPT code describing

the procedure or service, and cost (amount paid by Medicare). We determine the date of hospice

enrollment as the first date on which a hospice claim is observed.

4The specific criteria for inclusion were either (a) having a claim with an ICD-9 code of 150 (Malignant Neoplasm
of Esophagus), 151 (Stomach), 155 (Liver), 156 (Gallbladder), 157 (Pancreas), 162 (Lung), 162 (Pleura), or 191
(Brain), and also a claim with an ICD-9 code of 196, 197, or 198 (Secondary malignant neoplasms); or (b) having
a claim with an ICD-9 code for any cancer (140-209), and also a claim with an ICD-9 code of 198.3 (Secondary
malignant neoplasm of brain) or 197.7 (Secondary malignant neoplasm of liver).

5Since the Medicare prescription drug program began in 2006, Part D claims are only available from 2006 on.
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Table ?? reports summary statistics describing the sample patients’ characteristics. Since these are

Medicare-eligible patients, the average age is relatively high. The HRR hospice utilization rate is

the average hospice utilization rate in the patient’s home hospital referall region, calculated in the

year prior to the patient’s initial metastatic diagnosis. The HCC score is a CMS risk score based

on the patient’s previous claims, computed at the time of the initial metastatic diagnosis; higher

scores indicate sicker patients.6 In our sample, patients with HCC scores below the mean (2.07)

had a 6-month mortality rate of 55 percent, while the rate for patients with HCC scores above

the mean was 61 percent. Of course, all of the patients in our data were quite ill, so the costs of

treating them were high: from the date of diagnosis of metastatic cancer to the date of death, the

average total cost per patient was $58,378.

Table 2: Patient Characteristics

Percentiles
Mean Std. Dev. 0.05 0.50 0.95

Age 77.69 7.09 67.28 77.20 90.02
Female 0.54 0.50 0.00 1.00 1.00
HCC score 2.07 1.40 0.44 1.78 4.79
HRR hospice util. 0.45 0.21 0.11 0.44 0.86
Total inpatient days 16.26 19.36 0.00 11.00 51.00
Total hospice days 116.82 497.65 0 0 564
Total costs 58,378 54,740 8,078 42,528 163,473
Average daily costs 1,072 3,297 37 362 3,708

Age and HCC score are recorded on the date of the first diagnosis of metastatic cancer. HRR
hospice utilization is the average hospice utilization rate (hospice deaths divided by total
deaths) in the patient’s hospital referral region. Total inpatient days, hospice days, and costs
are calculated from the date of metastatic cancer diagnosis to the date of death. Censored
patients—those who were still alive at the end of our sample period—were excluded from the
calculations for inpatient days, hospice days, and costs.

4.1 Patterns in Hospice Utilization, Costs, and Mortality

Among the 22,474 patients in the sample who died before the end of the sample period, 60.7 percent

enrolled in hospice before dying. Table ?? shows a simple comparison of unconditional mean costs

and survival times for patients who chose hospice vs. those who did not. Total costs—i.e., total

charges to Medicare from the time metastasis was diagnosed until death or censoring at the end

of the sample period—were roughly $2,400 lower for hospice patients, and inpatient costs were

roughly $4,900 lower.

Costs were lower for hospice patients even though on average they lived longer than non-hospice

patients. As noted by Pyenson et al (2004), the longer survival times for hospice patients may

6See Pope et al (2000) for a detailed explanation of the CMS Hierarchical Condition Categories risk scoring
protocol.
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Table 3: Differences in costs and survival times

Patients who enrolled Patients who never
in hospice enrolled in hospice

Total costs 46,292 48,738
(53,801) (58,163)

Inpatient costs 15,012 19,891
(20,515) (26,506)

Survival time (days) 257 193
(355) (317)

Cells report means and standard deviations (in parentheses). Patients whose
initial diagnosis was in 2010 or 2011 are excluded from these calculations, in
order to minimize the potential impact of censoring. Total costs are the sum of
all claims from diagnosis to death; inpatient costs are the sum of all inpatient
costs.

reflect the fact that patients who live longer have more of an opportunity to choose hospice. For

example, patients who die shortly after the diagnosis of metastasis may not have had time to make

the decision and transition to hospice. However, while the full distribution of survival times (shown

in Figure ??) does indicate that non-hospice patients were more likely to die within a few days

of diagnosis, the shapes of the distributions are otherwise similar, and there is a thick tail of long

survival times for hospice patients.

Figure 1: Distributions of survival times
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Simple comparisons between patients who did vs. did not enroll in hospice ignore a dimension of the

data that appears to be important: the timing of the hospice enrollment decision. Conditional on

enrolling in hospice, there is wide variation in how long it takes patients to do so. Approximately

25% of patients who choose hospice enroll within two weeks after the diagnosis of metastasis, but

another 25% wait six months or longer before enrolling. Presumably much of this variation reflects

heterogeneity in the severity of illness, though we expect some of it reflects heterogeneity in patients’

preferences as well. There is also substantial variation across patients in the time between hospice

enrollment and death: roughly half of hospice patients die within two weeks after enrollment, but

over 10% live for three months or longer after enrolling.

The model we develop below is focused on three time intervals: the time between diagnosis and

hospice enrollment, the time between hospice enrollment and death, and the overall time between

diagnosis and death (which, for hospice patients, is simply the sum of the first two intervals).

Table ?? shows the average lengths of these intervals for patients who chose hospice, in regions

with high vs. low hospice utilization. The numbers suggest that hospice enrollment decisions are

influenced by location. On average, patients in high-utilization regions enroll in hospice roughly 4

days sooner than patients in low-utilization regions. If enrolling in hospice—and therefore foregoing

curative treatments—had no impact on mortality, then the accelerated hospice enrollments of

patients in high-utilization regions would not lead to accelerated mortality; but the average overall

survival times are 3 days shorter for patients in high-utilization regions. We return to this point

when discussion identification of our model in Section ??.

Table 4: Hospice enrollment and mortality in high- vs. low-utilization regions

Days between:

Diagnosis and Hospice enrollment Diagnosis

hospice enrollment and death and death

Low-utilization regions 126.6 36.2 162.8

(158.0) (61.2) (169.9)

High-utilization regions 122.3 37.6 159.8

(158.8) (67.4) (171.8)

Overall 124.3 36.9 161.2

(158.4) (64.6) (170.9)

Cells report means and standard deviations (in parentheses). The sample used for these

calculations included only patients who chose hospice, and whose initial diagnosis came

before 2010. Patients’ home regions (hospital service areas) are categorized as

high-utilization regions if the overall hospice utilization rate was higher than the median

(across patients) in the relevant year.

Table ?? describes the distributions of daily costs for hospice days and non-hospice days. A very
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small fraction of observations report negative costs or extremely high costs, presumably because

a provider was making a correction to previous submitted claims, or submitting a single claim for

services that spanned several days. To mitigate the influence of these anomalies, we trimmed the

sample by excluding observations with reported daily costs below the 0.25th or above the 99.75th

percentiles.

Table 5: Daily costs

Non-hospice days Hospice days
Number of patient-days 8,792,869 737,390
Average costs 130.04 176.12
Standard deviation 442.13 258.87
Percentiles:

0.05 0.00 0.00
0.25 0.00 108.23
0.50 0.00 135.36
0.75 30.15 157.60
0.95 830.53 563.27

Days with reported costs below the 0.25th or above the 99.75th percentile
were excluded from these calculations.

Figure ?? illustrates how daily costs change at the end of life. The figure shows smoothed plots

of average daily costs, estimated using local polynomial regression, as a function of time to death.

At 120 days prior to death, average daily costs are similar for hospice patients and non-hospice

patients. Unsurprisingly, costs increase as the patient approaches death, and the increase is much

more pronounced for non-hospice patients. The figure thus illustrates what we might expect to be

the principal effect of hospice: eliminating expensive medical interventions at the very end of life.
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Figure 2: Costs at the end of life
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5 Model

Our overall objective is to build a model that explains patients’ decisions about hospice, as well

as the implications of those decisions for costs. We begin by outlining our model of the hospice

decision. Since our model of costs is straightforward—we simply parameterize distributions of daily

costs for hospice and non-hospice patients—we postpone its description to section ??, where we

discuss the details of our estimation procedure.

We model the patient’s hospice enrollment decision as a dynamic choice problem in continuous

time. The patient chooses whether to enroll in hospice at any time t, indicated by ht ∈ {0, 1}. This

choice depends on the patient’s health state, θt, which is fully known to the patient but unobserved

by the econometrician. This health state starts at some initial value θ0 > 0 (at the time of the first

diagnosis of metastasis), and then declines stochastically until it falls below zero, at which point

the patient dies. Formally, we model θt as a Brownian motion with drift:

dθt = µdt+ σdWt , (1)

where dWt is a standard Wiener process and the drift is
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µ =

{
−1 if ht = 1

−(1 + κ) if ht = 0
(2)

The parameter κ captures any effects of hospice enrollment on mortality. If κ < 0, then health de-

clines less rapidly for non-hospice patients—e.g., because they are receiving life-prolonging treatments—

so choosing hospice means accepting a shorter expected survival time.

The initial value θ0, which represents the patient’s health state when he is first diagnosed with

metastatic cancer, is assumed to be a function of patient characteristics:

θ0 = θ̄ + x′α (3)

where x is a vector of characteristics such as the patient’s sex, age at diagnosis, and HCC score at

diagnosis.

Patients trade off the costs of hospice (accelerated mortality) against the benefits of higher flow

utility. When health deteriorates sufficiently—i.e., for low enough values of θt—some patients will

prefer to enroll in hospice even if it stochastically shortens their lives. This is captured in our model

by differences in flow utility, which is given by

u(ht; θt) =


θt if ht = 0 and θt > 0

∆ + z′γ + ε if ht = 1 and θt > 0

0 if θt ≤ 0

(4)

For non-hospice patients, flow utility is simply the health state θt, which captures the notion that

better health results in a higher quality of life, and also builds into the model the idea that the

healthier the patient, the less likely she will be to enroll in hospice.

Flow utility while on hospice depends on three factors. The parameter ∆ represents the average

utility, common across patients, that results from being on hospice—for example due to palliative

treatments or the value of being at home vs. in the hospital. The instruments z are observable

characteristics of the patient or the patient’s market that shift the perceived costs or benefits of

hospice; in our application, the main instrument is the previous year’s hospice utilization rate in

the patient’s HSA. The ε term is an unobservable taste shock, assumed to be iid across patients,

intended to capture heterogeneity in preferences for hospice. We assume that ε is a draw from a

normal distribution with mean zero and standard deviation σε, and that ε’s are iid across patients.

We assume that, from the patient’s perspective, enrolling in hospice is an irreversible decision. The

value function can then be expressed as
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V (θ; z, ε) = max

{∫ ∞
0

[∫ t

0
e−ρsh(z, ε)ds

]
f(t|θ)dt , θ +

1

1 + ρdt
E [V (θ + dθ; z, ε)|θ]

}
(5)

where f(t|θ) is the density of time to death conditional on the current health state θ. The solution

to the patient’s decision problem is a threshold rule: given the patient’s z and ε, there is some

threshold θ̄(z, ε) such that when θt reaches this threshold, the patient will enroll in hospice. For

low enough values of ε, this threshold may be negative; in that case, the patient will never enroll in

hospice. In fact, this is the only way the model can rationalize patients who die without enrolling

in hospice, which is a point we will return to below when interpreting our results.

We make one further simplifying assumption, which is that patients do not discount future payoffs:

ρ = 1. One rationale for this assumption is that since patient’s expected survival times are relatively

short, time discounting may not be quantitatively important in their decision-making. But the

main motivation for this assumption is computational convenience. When ρ = 1, we can derive an

almost-analytic solution for the threshold θ as a function of z and ε: it is the non-trivial solution

to the equation7

σ2

2µ

[
exp

(
2µ

σ2
θ̄

)
− 1

] [
h(z, ε) +

1

µ
θ̄ − σ2

2µ2

]
− 1

2µ
θ̄2 −

[
h(z, ε)− σ2

2µ2

]
θ̄ = 0 (6)

In estimating the model, this allows us to quickly solve the patient’s dynamic decision problem

given any guess of the parameters.

Another important convenience that results from modeling the health status as a Brownian motion

is that first-passage times have known densities. Letting g(t|θa, θb, µ) denote the density of the time

to first crossing of θb, starting at θa with a drift of µ, then

g(t|θa, θb, µ) =
θa − θb√
2πσ2t3

exp

[
−(θa − θb − µt)2

2σ2t

]
(7)

The corresponding survivor function—the probability that θt hasn’t yet crossed θb at t—is

S(t|θa, θb, µ) = Φ

(
θa − θb − µt√

σ2t

)
− exp

(
−2(θa − θb)µ

σ2

)
Φ

(
θa − θb + µt√

σ2t

)
(8)

where Φ is the CDF of the standard normal distribution.

7The derivation is provided in Appendix ??.
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5.1 Estimation

Our model has two parts: the model of patients’ hospice enrollment decisions, and the model

of daily costs conditional on hospice status. For reasons explained below, we estimate these two

components in separate steps.

Hospice enrollment

Estimation of the first component is relatively straightforward, since our model of stochastically

declining health implies that patients’ decisions are threshold rules. The threshold θ̄ determines

the timing of hospice enrollment. After a patient enrolls in hospice, the time until death is the time

it takes for the health state—which now follows a Brownian motion with drift µ = −1—to go from

θ̄ to 0. Our model thus generates likelihoods for two key dependent variables in the data: TH , the

time from diagnosis to hospice enrollment; and TD, the time from hospice enrollment to death.

The parameters to be estimated are α, κ, and ση, which govern the process of the unobserved

health state; and ∆, γ, and σε, which determine the utility differential that results from choosing

hospice. Let Ψ ≡ (α, κ, ση,∆, γ, σε)
′ be the vector of these parameters. Let Di equal one if patient

i’s death is observed, and let Hi equal one if patient i entered hospice prior to death. In our model,

if a patient dies before entering hospice then her threshold θ̄ must have been negative. Under our

assumptions outlined above, the likelihood function for patient i can then be written as

Li(Ψ) =



∫
{ε:0<θ̄(zi,ε)<θ0(xi)}

g
(
TH,i|θ0(xi), θ̄(zi, ε), µ0

)
g
(
TD,i − TH,i|θ̄(zi, ε), 0, µ1

)
φ (ε/σε) dε Di = 1, Hi = 1

∫
{ε:θ̄(zi,ε)<0}

g (TD,i|θ0(xi), 0, µ0)φ (ε/σε) dε Di = 1, Hi = 0

∫
{ε:0<θ̄(zi,ε)<θ0(xi)}

g
(
TH,i|θ0(xi), θ̄(zi, ε), µ0

)
S
(
TD,i − TH,i|θ̄(zi, ε), 0, µ1

)
φ (ε/σε) dε Di = 0, Hi = 1

∫
{ε:θ̄(zi,ε)<θ0(xi)}

S
(
TD,i|θ0(xi),max{0, θ̄(zi, ε)}, µ0

)
φ (ε/σε) dε Di = 0, Hi = 0

(9)

where µ0 = −(1 + κ) is the health drift while a patient is not on hospice, µ1 = −1 is the drift

rate while on hospice, and φ is the pdf of the standard normal distribution. Note that for censored

patients—i.e., patients who are still alive at the end of our sample period—TD is still defined as

the number of days lived beyond the initial diagnosis.

We estimate the parameters Ψ by maximizing the log-likelihood
∑

i lnLi(Ψ), evaluating the inte-

grals over ε numerically.
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Costs

We model the distribution of daily costs (ct) using the following parametric functions of hospice

enrollment (ht) and health status (θt), suppressing i subscripts for convenience:

Pr (ct|θt, ht) =



λh if ct = 0 and ht = 1

(1− λh)φ
(
log(ct)−βh

σc,h

)
if ct > 0 and ht = 1

λnh if ct = 0 and ht = 0

(1− λnh)φ
(
log(ct)−β0−β1 log(θt)

σc,nh

)
if ct > 0 and ht = 0

. (10)

Conditional on θt and ht, costs are independent across days and across patients, and conditional on

being nonzero, costs follow a lognormal distribution. This specification captures several important

features of our data. First, there are many days during which patients incur zero costs, especially

while not enrolled in hospice. We allow costs to be zero with probability λh for hospice patients

and probability λnh for nonhospice patients. Second, costs increase significantly in the days just

prior to death, especially for nonhospice patients. To fit this feature of the data, we allow log costs

to depend on the log of health status for nonhospice patients; as health status approaches zero (i.e.,

as the patient approaches death), costs approach infinity in our model.8

We estimate λh and λnh directly from the data, since they are given by the fraction of days with

zero costs for hospice and non-hospice patients, respectively. The estimation of βh and σc,h is

also a straightforward maximum likelihood problem, since it reduces to estimating the mean and

variance of a normal distribution. However, estimation of the non-hospice cost function presents

several technical challenges. First, the integral over ε must be evaluated numerically just as in

the first step described above. Second, since θt is a serially correlated unobserved state variable,

calculating the likelihood involves evaluating a high-dimensional integral over the joint distribution

of {θt}
min{TH,i,TD,i}
t=0 for each patient. The direct evaluation of this integral is computationally

infeasible, so we adopt a simulation approach instead.

Frequency simulation from the Brownian motion with drift is not straightforward because the

simulated sequences must be consistent with observed behavior. In particular, for a patient who

enters hospice, we know that θTH,i = θ̄(zi, ε) and that θt > θ̄(zi, ε) for every t < TH,i. Similarly, for

patients who die, we know that θTD,i = 0 and that θt > 0 for every t < TD,i. If we simply simulated

R sequences of the Brownian motion with drift, it is extremely likely that none of the sequences

would satisfy these restrictions. As a result, the likelihood would be undefined. Clearly, we need a

better way of drawing sequences of θt.

8This does not present a problem for estimation; we assume that a patient wakes up with a positive θt on the date
of death. As a result, log(θt) is always well-defined in the likelihood function.
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A solution to this problem is found in the theory of restricted Brownian meanders. A restricted

Brownian meander Breme
t is a stochastic process for which Breme

0 = a, Breme
T = b for some T > 0,

and Breme
t > b for every t < T . This process can be simulated using the expression

Breme
t = b+

√(
a− b
T

(T − t) +Bbr1
t

)2

+
(
Bbr2
t

)2
+
(
Bbr3
t

)2
(11)

where Bbr1
t , Bbr2

t , and Bbr3
t , are independent standard Brownian bridges defined by the stochastic

differential equation

dBbr
t =

−Bbr
t

T − t
dt+ σdWt ∀t < T, Bbr

0 = 0 (12)

where dWt is a standard Weiner process.9

The restricted Brownian meander directly imposes both the equality and inequality restrictions

above. We use this result and the parameter estimates from step one to simulate sequences of

health status for nonhospice patients prior to hospice entry or death.10 For a patient who enters

hospice prior to death, we simulate from the restricted Brownian meander with a = θ0(xi) and

b = θ̄(zi, ε); for a patient who dies without entering hospice, we simulate using a = θ0(xi) and b = 0.

Figure ?? shows 50 simulated sequences for a hypothetical patient, including the continuation of

the sequences during hospice enrollment.

9See Devroye (2010) for more details.
10We do not use nonhospice patients who neither enter hospice nor die to estimate nonhospice costs. For these

patients, we have no information on the right endpoint of their health status; their health status could be almost
anything. As a result, these patients are not informative about the relationship between health status and costs, so
we exclude them from the nonhospice cost estimation. However, these patients are included in the estimation of the
other parameters.
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Figure 3: Simulated sequences of θt with σ = 2, θ0 = 180, θ̄ = 80, TH = 200, and TD = 280.
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Our second step estimator for the nonhospice cost parameters is then a simulated maximum like-

lihood estimator, defined as

(α̂0, α̂1, σ̂nh) = arg max
α0,α1,σnh

1

N

N∑
i=1

log

∫
ε

 1

R

R∑
r=1

min{TH,i,TD,i}∏
t=0

Pr (ci,t|θrt , hi,t)

φ (ε/σε) dε, (13)

For the results shown below, we use R = 25 sequences and draw a different set of sequences for

every candidate value of ε for every patient. We draw all of these sequences outside the estimation

algorithm, which significantly reduces the computational burden.

Discussion

Our model characterizes a patient’s hospice enrollment decision as trading off utility against mor-

tality: the palliative approach of hospice care may be more comfortable and convenient for a patient

nearing the end of life, but foregoing curative treatments may accelerate his death. The parameter

κ determines the degree to which hospice enrollment speeds a patient’s demise. This effect is in-

herently difficult to identify from observational data. Most patients choose hospice when they are
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already very sick, so a näıve analysis that merely compares death rates of hospice vs. non-hospice

patients might suggest that hospice sharply accelerates mortality. Our model addresses this chal-

lenge in two important and complementary ways. First, we model the hospice decision as being a

direct function of unobservable health status. In other words, we directly model the fundamental

endogeneity problem. Second, we incorporate instruments so that our estimate of hospice’s impact

on mortality is driven by plausibly exogenous variation.

As explained above, the main instrument (z) we use is the overall hospice utilization rate in the

patient’s county in the prior year—i.e., the fraction of hospice-eligible deaths in the county for

which the decedent was enrolled in hospice at the time of death.11 To understand how these

instruments help identify κ, consider two patients, A and B, located in counties with high and

low hospice utilization rates, respectively. Assuming the coefficient (γ) on the utilization rate is

positive, our model says that A will enroll in hospice sooner than B, meaning that A will have a

higher unobserved health state θt at the time of hospice enrollment. Suppose A enrolls in hospice N

days sooner than B. If health (θt) declines at the same rate for hospice patients as for non-hospice

patients, then A should simply be on hospice for N days longer than B before dying. If health

declines faster while on hospice, then A should be on hospice longer than B, but by fewer than N

days. Since health declines (1+κ) times more slowly for non-hospice patients than hospice patients,

A’s hospice-to-death time should be longer than B’s by approximately N/(1 +κ) days. Thus, if we

observed θt directly, κ would be identified by the differences in hospice-to-death times for patients

who enroll in hospice at different levels of θt due to exogenous regional variation in the popularity

or availability of hospice. Obviously, we do not observe θt directly, so the key comparisions are

observed with some noise, but the logic of the above identification argument still applies.

6 Results

6.1 Parameter estimates

Tables ?? and ?? present the results from the first and second steps of the estimation procedure

described above.

11These rates are calculated from hospice deaths reported in cost reports filed with CMS (the numerator) and non-
accidental deaths reported by the CDC (the denominator). See Chung and Sorensen (2017) for additional details.
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Table 6: First Step Estimation Results

Parameter Estimate (Std. Err.)

Initial health:

Age (β1) -2.468

HCC score (β2) -7.680

Hospice utility:

Constant (∆) 21.550

Utilization instrument (γ) 0.0002

Standard deviation σε 43.274

Evolution of health:

Nonhospice drift −(1 + κ) -0.578

Volatility σ 27.189

Number of patients 29,661

Log-likelihood -8.243

Table 7: Second Step Estimation Results

Parameter Estimate (Std. Err.)

Nonhospice costs:

λnh = Pr(ct = 0|ht = 0) 0.641 (0.0002)

Constant (α0) 8.813

log(θt) (α1) -0.676

Standard deviation (σnh) 2.084

Hospice costs

λh = Pr(ct = 0|ht = 1) 0.110 (0.0004)

Mean (αh) 4.932 (0.001)

Standard deviation (σh) 0.890 (0.001)

Number of patients 29,644 (25,019 for nonhospice costs)

Number of observations 9,474,506

6.2 Counterfactual simulations

We generated θt sequences for 50,000 simulated patients and calculated their hospice enrollment

decisions and simulated costs under the following scenarios:
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(1) The estimated model (benchmark case)

(2) Hospice doesn’t exist

(3) Hospice has no mortality effect (drift rates same for hospice and non-hospice)

(4) Double the size of ∆

(5) Halve the size of σε

This figure summarizes the results:

Figure 4: Counterfactual simulation results
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7 Conclusions

Too early to say.
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