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Abstract

Economic theory suggests that decentralized markets can achieve efficiency if agents
have many opportunities to trade. We examine this idea by using detailed eBay data to
estimate a dynamic model of bidding in overlapping, sequential auctions. The matching of
buyers to sellers in our model is in real time and endogenous: buyers use posted information
about the state of play in each auction when choosing where and how much to bid. We prove
that, in thick markets, a bidder’s choices have vanishing influence on her re-entry payoff
(conditional on losing), so optimal bids are invariant to the state of play and increasing in
type. Given this result, our model is identified from bidding data. Our estimator accounts
for the selection arising from auction choice and avoids the substantial underestimate of
bidders’ valuations that would occur under random matching. We find that outcomes fall
well short of the efficient allocation, largely due to inefficient matching of buyers to sellers.
We show that a posted price mechanism can implement the efficient allocation and does so
in our application.

1

mailto:hendrick@ssc.wisc.edu
mailto:sorensen@ssc.wisc.edu
mailto:wiseman@austin.utexas.edu


1 Introduction

Many goods and services are bought and sold in decentralized, dynamic auction markets, where

buyers who fail to purchase—and sellers who fail to sell—can return to the market and try

again. Despite information and matching frictions, this opportunity to re-attempt trade makes

the market for each trader large over time; and as the number of trading opportunities gets large,

Satterthwaite and Shneyerov (2007, 2008) have shown that prices and allocations can converge

to the efficient Walrasian equilibrium.

The goal of this paper is to evaluate whether this theoretical result is attained in a real-world

dynamic auction like eBay, and to examine what a platform can do to increase market efficiency

and/or revenues. Like other recent empirical studies,1 we develop and estimate a model based

on the main features of the eBay marketplace. However, our analysis incorporates an important

aspect of the marketplace that has not been addressed in the literature: auction choice. Previous

studies have assumed that each buyer who arrives at the marketplace bids in the soonest-to-

close auction2 and, as a result, the matching of buyers to sellers is randomly determined by their

arrival times. In our model, as in reality, each buyer selects an auction from the set of available

auctions, and this choice depends on the state of play in those auctions - namely, the highest

losing bid (or start price if there are no bids) and time remaining. Thus, the matching process

in our model is endogenous, and this feature needs to be taken into account in characterizing

equilibrium bidding behavior and in estimating the model.

In principle, auction choice poses a serious modeling challenge, because it means that a forward-

looking bidder needs to consider how his auction choices (and bid) can affect the decisions of

subsequent buyers and, as a result, his re-entry payoff if and when she returns to try again. How-

ever, we show that these considerations become unimportant if the market is large enough. We

prove that, as the market thickens, the equilibrium response of buyers to differences in posted

bids and closing times across auctions causes many states to have nearly the same value. As

a result, the buyer’s expected re-entry payoff depends only on his type — not on his previous

actions or on the losing state. Intuitively, in thick markets, the state is likely to undergo many

transitions before a losing buyer returns, so the effects of the losing state and of the buyer’s

1For example, Adachi (2016), Backus and Lewis (2023), and Bodoh-Creed et al (2023).
2Bodoh-Creed et al (2021) assume that bidders are assigned to the soonest-to-close auction and bid sequentially

in a random order, so some bidders are censored because they are outbid before their turn. By contrast, we assume
that these bidders bid in a later-to-close auction, since there is always an auction that closes within a day that has
no bids and a low start price.
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past actions on his expected re-entry payoff have largely washed away. We then prove that, in

our second-price auction setting, it is nearly optimal (in the ϵ-equilibrium sense) for each buyer

to always bid his value less his expected re-entry payoff. This bid is invariant to the choice of

auction or state of play, and is strictly increasing in a bidder’s value.

These properties of the equilibrium enable a surprisingly straightforward empirical strategy.

Monotonicity implies that a buyer’s value can be equivalently represented by his equilibrium

bid, or what Backus and Lewis (2023) call her “pseudo-type”. Invariance allows us to aggregate

across states and express the bidder’s expected re-entry payoff as a function of his bid and the

distribution of the highest rival bid in the set of auctions in which he chooses to bid. We can

account for this selection by estimating the probability that a buyer with pseudo-type b wins

conditional on the set of auctions chosen (in different states) by buyers who bid b. Thus, we do

not have to solve for the equilibrium auction choice rule to estimate a buyer’s re-entry payoff.

Bidder values can be identified and estimated directly from bids based on the (unknown) choice

rule that they are actually using.

We estimate our model on data from the eBay mark for used iPads and obtain two important

findings. One is that accounting for auction selection is empirically important. We find that

we would have substantially over-estimated buyer values if we had assumed (like the previous

literature) that buyers are randomly matched to sellers. We also find that random matching is not

consistent with the data because the failure to account for auction selection leads to violations of

the model’s steady state conditions. The second is that, while the eBay mechanism significantly

increases efficiency relative to a static benchmark (where buyers have only one chance to bid), it

falls well short of the efficient equilibrium hypothesized by Satterthwaite and Shneyerov (2007,

2008).

One might expect eBay’s real-time disclosure of the highest losing bids to improve market

efficiency, since it allows buyers to avoid bidding in auctions where they have already been

outbid and to respond to the differences in expected payoffs across auctions. We examine this

issue by considering a counterfactual in which the platform does not post the highest losing

bid during the auction, effectively making each auction a sealed bid auction.3 In this case, we

show that there is an equilibrium in our model where buyers always choose the soonest-to-close

auction. We simulate this auction choice rule for the sample period of our data and find, contrary

3This situation can also arise in open auctions if buyers wait until the last minute to submit their bids. Several
papers (e.g., Ockenfels and Roth (2006), Bajari and Hortascu (2003)) have argued for this model of eBay auctions.
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to expectations, that posting the highest losing bid actually decreases efficiency. The intuition

is that posting the highest losing bids in real time disproportionately generates auctions with

two high-value bidders, which in turn makes it more likely that high value buyers lose and exit

without winning a unit.

The counterfactuals make clear that the primary source of inefficiency in a decentralized auction

market like eBay is the matching process, which results in too many low value buyers winning

units at the expense of high value buyers (who lost an auction to another high-value bidder,

and decided not to return), a misallocation that also leads to lower prices. As noted by Bodoh-

Creed et al (2023), a uniform price batch auction could solve this problem by pooling buyers

and sellers who arrive in a period and matching them based on their values. However, buyers

may not want to wait until the platform conducts the batch auction to get their units. As an

alternative, we consider a mechanism in which the platform sets a single price P at which each

seller must sell and a posting period. We show that, if the price is chosen appropriately and

the posting period is sufficiently long, then seller revenue, average price, and total surplus all

increase, and the average time until sale decreases. In fact, for large markets, the optimal posted

price mechanism achieves approximately the maximum possible level of both revenue and total

surplus.

We simulate this mechanism for the sample period of our data, taking the arrival times of sellers

and new buyers as given by the data, and find that it successfully implements the efficient

allocation. Supply never falls to zero, so there are no stockouts. As a result, every buyer with a

value above P is able to purchase a unit when they arrive. Some sellers fail to sell before their

posting expires, but the number is quite small. Finally, trading costs fall, since buyers visit the

platform only once and sellers sell more quickly. The average time to sale falls from seven days

to a little more than three days.

Of course, the platform needs to know the market-clearing price to implement the optimal

posted price mechanism, but this should not be too difficult in a stationary environment.4 We

show that, at the market-clearing price, the number of seller postings follows a random walk, but

at any lower price it converges to zero, and at any higher price it converges to an upper bound

determined by the posting duration and the arrival rate of sellers. Thus, movements in the

number of available postings would be enough for standard reinforcement learning algorithms

4By market-clearing price we mean the price at which all sellers would sell, and the successful buyers would
be those with the highest willingness to pay.
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to determine the market-clearing price.

2 Related Literature

The theoretical literature on large, decentralized, dynamic auctions focuses on a setting in which

a continuum of sellers and a continuum of buyers simultaneously arrive each period to trade

units of a homogeneous good, each buyer is randomly matched to a single seller, and traders

who fail to trade either exit or return the following period.5 Papers in this literature include

McAfee (1993), Satterthwaite and Shneyerov (2007, 2008), and Bodoh-Creed et al (2021).

McAfee studies competing mechanisms and shows that, in steady state, there is an equilib-

rium in which all sellers choose to sell via second-price sealed bid auction; Satterthwaite and

Shneyerov examine what happens to prices and allocations as the number of trading opportu-

nities for each trader gets large; and Bodoh-Creed, Boehnke, and Hickman (2021) show that a

steady state equilibrium of this model is an ϵ-equilibrium of the analogous model with a large

but finite number of buyers and sellers. An important feature of this setting is that a bidder’s

option value of losing depends only on his type. This is because, in each period, buyers are

randomly matched to sellers and, in steady state, the actions of any single buyer or seller today

have negligible impact on the state of the market tomorrow. We contribute to this literature by

providing an analogous result in a dynamic auction market where the matching is in real time

and endogenous. An important empirical implication of our result is that our dynamic model is

identified under any auction format in which the static, one-shot auction is identified, not just

the second-price auction.6

There is a nascent literature on structural estimation of dynamic auction markets. The main

papers in this literature are Adachi (2016), Backus and Lewis (2023), and Bodoh-Creed et al

(2021), all of whom estimate their models using data from eBay. Backus and Lewis model the

eBay auction marketplace as a sequence of sealed bid auctions and use data on buyers’ product

choices and bids to estimate substitution patterns in a differentiated good market. Adachi and

Bodoh-Creed et al focus on homogenous good markets and estimate dynamic models of bidding

to evaluate the efficiency of the eBay mechanism. These papers assume that the matching of

5A second strand of this literature characterizes equilibrium bidding in settings where buyers arrive randomly
over time and compete in an infinite sequence of single unit, sealed bid, second-price auctions (e.g., Said (2011),
Backus and Lewis (2023), and Zeithammer (2006)). These two strands focus on inter-auction dynamics. There
is another strand that studies intra-auction dynamics of equilibrium bidding in open second-price auctions (e.g.,
Hopenhayn and Saeedi (2017), Nekipelov (2007)).

6This is a property that Bodoh-Creed et al (2021) refer to as the “plug-and-play” property.
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buyers to sellers is randomly determined by their arrival times. Our contribution to this literature

consists of identifying and estimating a more general (and realistic) empirical model in which

posted bids and auction closing times are informative and influence auction choices.

Our counterfactual on posted prices relates to work on posted prices versus auctions. Wang

(1993) considers a setting in which buyers with private values arrive randomly over time to

purchase an item from a monopoly seller, and shows that sellers prefer auctions when buyer

values are more dispersed. Einav, Farronato, Levin, and Sundaresan (2018) study how sellers on

eBay choose between auctions and posted prices, and how their incentives to use auctions have

changed over time.7 They propose a parsimonious choice model in which each seller is matched

with at least two buyers who have private values and a common outside option. In their model,

posted prices are favored when there is less dispersion in buyer values, better outside options,

and/or greater demand for convenience.8 In our counterfactual, it is the platform, not individual

sellers, who chooses between the two trading mechanisms, but the conditions that favor posted

price are similar: the product needs to be standardized, so the benefits of price discovery are

low; the market needs to be competitive, so buyers have good alternatives (including the option

to bid again); and the market needs to be thick and stationary, so the market-clearing price is

stable.9 Furthermore, when this is the case—as in our application—the posted price mechanism

lowers time costs for both buyers and sellers.10

There is an earlier structural literature that models eBay auctions as independent, static games

(e.g., Bajari and Hortascu (2003), Gonzalez, Hasker, and Sickles (2009), Canals-Cerda and

Pearcy (2006), Ackerberg, Hirano, and Shahriar (2017) and Lewis (2011)). These static models

ignore the effect of the option value of losing on bids, and make no distinction between new and

returning buyers, these models implicitly treating the steady state distribution of buyer values as

the primitive rather than the distribution of new buyer values. This matters for counterfactuals,

since changes in the auction mechanism likely result in different stationary distributions of

buyer values.

7They document that the share of posted price listings by sellers on eBay grew from roughly 10% in 2003 to
more than 90% in 2015.

8The model estimates suggest that the main driver of the increase in posted price listings over time is an
increase in the buyer’s “hassle” costs of auctions.

9To quote Milgrom (1989): “When the good is not standardized or when the market clearing prices are highly
unstable, posted prices work poorly, and auctions are usually preferred.”

10In a dynamic auction market, bidders often have to bid more than once to win. In our application, winners
bid on average 2.33 auctions.
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Finally, our paper is also related to the empirical literature on dynamic search-and-bargaining

models of trade, such as Gavazza (2011, 2016), Brancaccio et al (2021), Buchholz (2022), and

Coey, Larsen, and Platt (2020). These papers use a continuum of agents to approximate markets

with finite numbers of buyers and sellers and steady-state restrictions on entry and exit flows as

the basis for estimation. By contrast, we work with the stationary state of a finite market, and

use the restrictions on flows as over-identifying tests of our model.

3 Background

In this section, we briefly describe some key patterns in our data and present some evidence

on how bidders choose auctions. The objective is to motivate several of our modeling choices

and our assumption that buyers choose auctions endogenously based on the state of play. We

provide a more thorough description of the data, including details relevant to estimation, in

Section 6.

Our data consist of all eBay listings for a specific iPad model during an 8-month period in 2013.

For each listing, the data contain information about the seller (e.g. identity, feedback rating) and

about the timing and characteristics of the listing (e.g. end date, start price, secret reserve price,

shipping options, etc.). We also observe all bids (including the winning bid) submitted for each

listed item, the times at which they are submitted, and the identities of the bidders submitting

them. Importantly, the latter information allows us to track repeat bidding by the same bidder.

In posting an item for auction, each seller sets a start price, which serves as a public reserve

price. She also has the option of setting a secret reserve for a small additional fee, but this

option is rarely used. Most sellers choose very low start prices at which they are certain to sell.

Of the sellers who set binding start or secret reserve prices, only a small fraction fail to sell, and

an even smaller fraction return to sell again.11. With this in mind, the model we present in the

next section ignores the role of reserve prices and treats sellers as non-strategic players.

Our model also assumes for simplicity that the interval between seller arrivals (or equivalently

auction closings) is constant, and the arrival rate of buyers is measured relative to this period.

In reality the arrival rates of sellers and buyers fluctuate by time of day, but they tend to vary

proportionately: in the data the number of bidder arrivals per auction closing is approximately

constant, as shown in Table H.1 of the online appendix. Assuming constant arrival rates is thus

11eBay requested that we not report the exact conversion rate, but it is higher than 85%.
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a useful normalization.

Buyers in our model are assumed to have unit demands, and this is largely consistent with the

data: over 94% of buyers (auction winners) in the data purchased only one unit. Buyers who

lose an auction can return at some future time to bid again in a later auction, and roughly half

of losing bidders do this. Some return quickly—one third of returning losers come back within

an hour—but the median return time is nearly 12 hours. The median number of intervening

auctions that have closed in the time it takes a losing bidder to return is 15.

Our model ignores intra-auction dynamics by assuming that buyers bid only once in whatever

auction they choose. This is true for many bidders, but bidding more than once in an auction

is not uncommon and, when a bidder does this in our data, we consider her bid to be the

maximum bid that she submitted in the auction. We refer to repeat bidding within an auction

as incremental bidding, and discuss the prevalence of this kind of behavior and its implications

for our empirical analysis in more detail in Section 6.

The market we study is a thick one: an average of 23.2 items are posted for auction each day

(meaning sellers arrive at an average rate of one per 62 minutes), and an average of 5.47 new

bidders and 4.86 returning bidders participate in each auction. At any point in time, an arriving

bidder can choose from over 100 auctions that are open for bidding.

Table 1 offers some information about how bidders make this choice. The table shows summary

statistics by rank, where an auction’s rank is its position in the sequence of soonest-to-close

auctions (so the auction with rank 1 is the next to close, rank 2 is the soonest auction to close

after that one, and so on). The first column shows how posted bids decline with rank. The

posted bid of an auction with rank j is the highest losing bid at the time it becomes the jth

auction to close. Thus, the average posted bid of an auction when it becomes next to close —

which typically happens when slightly more than one hour remains in the auction — is $259.54.

By contrast, the average posted bid of an auction at rank 30 (typically more than 24 hours before

its closing) is below $100.

The third column gives the distribution of ranks chosen by bidders. The typical auction sees an

increase in bidding near its closing time, but most of the bids are submitted well before this final

phase. The fourth column gives the distribution of ranks for winning bids. Most of the winning

bids are submitted toward the end of the auction — 60 percent of winning bids are submitted

when the auction is next-to-close (roughly the last hour) — but a lot of serious bidding occurs
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at lower ranks. For example, over 13 percent of the auctions received their winning bids when

they were ranked 10 or above.

Table 1: Bids and prices by auction rank

Auction Average Std. dev. Fraction of all Frac. of winning
rank posted bid posted bid bids submitted bids submitted

1 259.54 59.11 .152 .601
2 228.69 81.43 .054 .099
3 215.40 87.86 .039 .056
4 204.88 92.11 .032 .036
5 196.42 94.57 .029 .024
6 188.08 96.81 .025 .019
7 181.55 98.08 .023 .012
8 175.21 99.14 .020 .011
9 169.39 100.01 .020 .008

10+ 72.96 74.14 .607 .134

The declining price pattern shown in Table 1 means that a low-value buyer who arrives to the

platform cannot participate in the soonest-to-close auctions, as he has effectively been outbid

already. But, even beyond this mechanical effect, high-value bidders appear to have stronger

preferences for soon-to-close auctions.12 The large standard deviations reported in the second

column of Table 1 indicate a lot of dispersion in posted bids. This means that when choosing in

which auction to bid, buyers may favor auctions whose current posted bids are unusually low

given their position in the queue.13

In summary, our data make it clear that arriving bidders do not simply bid in the auction that

is next to close. In fact, most of the bidders who arrive in any given period submit their bids

in auctions that are not the soonest-to-close, since in the sooner-to-close auctions they have

already been outbid. Furthermore, these are not merely low-value bidders submitting irrelevant

bids: 19.8% of bidders submit bids in their chosen auctions that are higher than the posted bid in

the soonest-to-close auction they chose to pass up, and 9.6% submit bids that were even higher

than the eventual price (i.e., the second-highest bid) of the auction they passed up.

12In section J of the online appendix, we show that even after conditioning on the set of auctions available to a
buyer—meaning the set of open auctions whose posted bids were below the bid the buyer submitted—high bidders
are significantly more likely to choose sooner-to-close auctions.

13Section J of the online appendix shows that final prices become more predictable over time, in the sense
that the variance of the final price conditional on posted information—including the posted bid and the number of
bidders so far—declines as the auction nears its end.
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4 A Dynamic Model of Trade

Our model is a discrete approximation to a continuous-time eBay auction market. Discretizing

time, values, and bids with arbitrarily defined grids means we can analyze dynamics using the

theory of Markov chains.

In our model, sellers arrive exogenously at fixed intervals to sell a homogenous good. We

define a unit of time to be the length between arrivals. Upon arrival, each seller contracts with

the platform to sell her good in an ascending, second price auction and sets a start price equal to

zero. Each auction lasts for J (an integer) units, so in every unit of time one auction closes and

another opens. Sellers exit the market when their auction closes. The open auctions, starting

with the next-to-close, are indexed by j = 1, .., J. We divide each unit of time into T periods of

equal length, so ∆ ≡ 1/T is the length of a period. Thus, each auction lasts for J · T periods.

Let d(t) ∈ {1, .., T} denote the number of periods remaining in the next-to-close auction in

period t. The remaining time in auction j is dj(t) = d(t) + T · (j − 1). Thus, at any time t, the

supply side of the market consists of J overlapping auctions.

New buyers with unit demand arrive randomly over time. The number of new buyers arriving

in a period is a random variable drawn from a Poisson distribution with mean λ∆. Arrivals

are independent over periods. Each new buyer’s value for the good is drawn independently

from distribution FE with density fE . The distribution has finite support X ⊆ (0, x] where

fE(x) > 0. A buyer’s value is fixed and does not change over time. Upon arrival, a new

buyer selects an auction in which to bid and which bid to submit. The set of bids is given by

B = {0, b, .., b} where 0 denotes no bid. A bid specifies the maximum amount the bidder is

willing to pay, and the platform bids on his behalf up to that level. These are known as proxy

bids.14 If his bid is the winning bid, then he gets the good, pays the second highest bid, and

exits. If he loses, then he exits with probability α and gets a payoff of zero;15 otherwise he goes

to the pool of losing buyers and returns at some future time to bid again.

An important feature of our model is that losing buyers who continue do not return immediately.

The return process is a discrete version of an exponential return rate γ. In each period, the

probability of returning is γ∆. This arrival rate is independent across time and buyers, and does

14Proxy bidding rules out intra-auction bidding dynamics such as incremental bidding.
15If exit means not buying the good, then the value of the outside option is zero and x is a buyer’s willingness-

to-pay for the good. If exit involves buying the good at a fixed price (e.g., retail market), then the value of the
outside option is the consumer surplus from this purchase and x needs to be interpreted as net of this surplus.
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not depend on when the buyer entered the pool, on how long she has been in the pool, or on

her value. Thus, if the number of buyers in the losers’ pool in a period is n, then the number of

returning buyers in that period is distributed Binomial with parameters (n, γ∆).16

At the beginning of each period, the platform lists the closing times of each open auction and

posts the current highest losing bid in each auction if it has received at least two bids, or a start

price of zero otherwise.17 It does not disclose the highest bids. We call the highest losing bid (or

start price if there are no bids) in an auction the posted bid. If multiple buyers (new or returning)

arrive in the same period, then they are ordered randomly, and their (simultaneously placed) bids

are processed in that order. Because we focus on small period lengths ∆, such simultaneous

arrivals are very unlikely. When an auction with at least one bid closes, the platform awards the

unit to the highest bidder at a price equal to the posted bid. Let wj(t) ∈ B denote the highest

bid in auction j in period t and let rj(t) ∈ B denote the posted bid in auction j in period t. The

vectors of highest bids and posted bids in period t are w(t) and r(t) respectively. The platform

only accepts bids above the posted bid, so any bids submitted to auction j in period t must be

strictly greater than rj(t).

The payoff-relevant information in period t consists of the closing times of the open auctions

d(t), the posted bids r(t) and highest bids w(t) in these auctions, the values of the highest

bidders, and the composition of the losers’ pool. Those are the variables that affect an arriving

buyer’s payoff from participating in an auction and his expectations of future competition. Let

aj(t) ∈ {0} ∪ X denote the value of the high bidder in auction j (aj(t) = 0 means that no one

has bid) and let a(t) denote the vector of aj(t)’s. The state of the pool at the beginning of period

t is represented by the distribution NL(t) ∈ (Z+)
|X |, which gives the number of losers of each

type in the pool. The (countable) set of states is

Ω ≡ {1, .., T} × BJ × {{0} ∪ X}J × BJ × (Z+)
|X |.

A buyer bids in the period of his arrival. When he arrives in period t, he observes d(t) and

r(t).18 We call ω̃(t) ≡ (d(t), r(t)) the observed state; Ω̃ is the set of observed states. We restrict

16As period length ∆ shrinks, the Binomial distribution converges to the Poisson distribution with mean nγ∆.
17The platform also discloses the number of bids, so a buyer can distinguish between an auction with no bids and

an auction with one bid. In order to avoid further complicating our notation, we omit from our analysis the number
of bids and other information available to bidders, such as the timing of those bids. It would be straightforward to
include those variables in our model, and none of our results would change.

18In our application, the platform reports the history of highest losing bids in an auction and partially masked
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buyers to stationary strategies that condition only on their value and the observable state. Let Σ

denote the set of such mixed strategies. In what follows, “strategy” means “stationary strategy”

unless otherwise noted.19

A profile σ = (σx)x∈X of mixed strategies, together with an initial state ω0, defines a Markov

process Φ(σ) on Ω, with one-step transition matrix P (σ). (We describe the state transitions

more precisely in section A of the online appendix.) We denote the n-step-ahead transition

function as P n(σ) and define the probability of reaching state ω from an initial state ω0 in

n-steps by P n([ω0, ω];σ).

Given the observed state ω̃, buyers have to form beliefs about the high bids in the open auctions

and the state of the losers’ pool. In section B of the online appendix we prove that the Markov

process induced by σ has a unique limiting distribution, implying that buyers’ conditional be-

liefs are given by Bayes’ rule at every ω̃ ∈ Ω̃ that is on the long-run path of σ; i.e., that has

positive probability under the invariant measure on Ω̃ induced by σ. At off-path observable

states, Bayes’ rule does not pin down beliefs. In our equilibrium definition in the next section,

we deal with this issue by requiring that conditional beliefs be the limit of the beliefs π(σk, ω̃)

induced by some sequence of full-support strategies {σk} that converges to σ, as in sequential

equilibrium.

Definition 1 A conditional belief system p : Ω̃ → ∆(Ω) is consistent with strategy profile σ if

there exists a sequence of full-support strategies {σk} such that (i) σk → σ, and (ii) π(σk, ω̃) →
p(ω̃) for every observable state ω̃ ∈ Ω̃.

Given a strategy profile σ, buyers can use these beliefs about the unobserved current high bids

in open auctions and about the amount of future competition from the losers’ pool to compute

their expected payoffs from choosing an auction and submitting a bid.

4.1 Stationary Equilibrium

We next specify what it means for a strategy to be a best response, given the strategy profile σ

identities of losing buyers for each auction. The assumption here is that buyers do not bother to use this information
in forming beliefs about the high bid or the pool of losers. The value of this information is likely to be quite small
in thick markets where buyers have the option to bid again, and there is a time cost involved in accessing the
information because it is not prominently displayed.

19The restriction to stationary strategies means that a returning buyer cannot condition on any private informa-
tion about his previous bidding experiences. That is, a returning buyer behaves the same way as a new buyer of the
same type.
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used by other players and conditional belief system p. Suppose buyer i with value x submits

a bid b in auction j in observable state ω̃. Then σ and p(ω̃) determine the buyer’s beliefs over

future states, and specifically over other bids in auction j. Let Mj denote the highest rival bid

in auction j. If buyer i wins the auction, then only the value of Mj affects his payoff. For each

weakly lower bid m ∈ {0, .., b}, let gσ,p(m; ω̃, j, b) denote the probability that buyer i wins and

that the highest rival bid (including bids submitted before or at the same time as b) is m. Buyer

i wins for sure when m < b, but he also wins when m = b and m is submitted after b. If buyer

i loses and enters the losers’ pool, then what matters for his expected continuation value is the

state of the market in the period after his loss. Let ωl denote this losing state. For each ωl ∈ Ω,

let hσ,p(ω
l; ω̃, j, b) denote the probability that buyer i loses the auction and that the losing state

is ωl. These winning and losing probabilities depend not only on the observable state, but also

on the buyer’s auction choice and bid since they can affect the distribution over future bids in

auction j.

We now define payoffs. Given (σ, p), let v(x, ω;σ, p) be the expected payoff to a buyer of type

x who arrives at state ω and plays his optimal strategy (which depends on the strategies of other

buyers σ, the observable component ω̃, and his beliefs p about the unobserved component).

Then, taking expectations over the unobserved component, define

ṽ(x, ω̃;σ, p) ≡
∑
ω∈Ω

v(x, ω;σ, p) · p(ω; ω̃)

as his maximized payoff when he arrives and observes ω̃, given conditional beliefs p(ω̃). His

expected re-entry payoff if he loses and the losing state is ωl is given by

V (x, ωl;σ, p) ≡
∞∑
t=1

γ∆(1− γ∆)t−1

(∑
ω′∈Ω

P t−1([ωl, ω′];σ)v(x, ω′;σ, p)

)
. (1)

The term P t−1([ωl, ·]) gives the distribution over the state when the buyer returns after t periods

given the losing state ωl. The number of periods until he returns is itself random, and the term

γ∆(1− γ∆)t−1 represents its distribution.
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We can now write the Bellman equation. For each observable state ω̃ ∈ Ω̃,

ṽ(x, ω̃;σ, p) = max
j∈{1,..,J},b∈B


∑

m∈{0,..,b}
(x−m) · gσ,p(m; ω̃, j, b)

+ (1− α)
∑
ωl∈Ω

V (x, ωl;σ, p)hσ,p(ω
l; ω̃, j, b)

 (2)

A strategy is a best response to (σ, p) if it achieves these optimal values for every observable

state ω̃ ∈ Ω̃ and each value x ∈ X .

The first term in Expression 2 represents the payoff to a type-x buyer who wins auction j. The

summation is over the highest losing bid m, weighted by its probability. The second term is the

payoff if he loses: probability of losing, times probability of not exiting, times expected re-entry

payoff. The summation is over the set of possible losing states ωl.20

Both the probability of losing and the expected re-entry payoff depend on b and j. The first de-

pendence is straightforward—how much the buyer bids in which auction affects the probability

that he wins. The second dependence is less obvious. It operates through two channels. First,

b and j may directly influence continuation play (and thus the re-entry payoff) by changing the

actions of future buyers who observe them. Second, the buyer’s expectation of his re-entry pay-

off depends on the losing state, and different j’s and b’s lead to different distributions over ωl.

For example, if the buyer submits a very high b and loses, then he may conclude that the losers’

pool is likely to have lots of high types, and so his expected re-entry payoff is low. Losing after

a low b is less discouraging. The observed state ω̃ when the buyer arrives also is informative

about the losing state ωl.21

Having defined best responses and consistent beliefs, we can now define an equilibrium.

Definition 2 An equilibrium is a strategy profile σ∗ and a conditional belief system p∗ such that

(i) σ∗ is a best response to (σ∗, p∗), and (ii) p∗ is consistent with σ∗.

Proposition 1 An equilibrium exists.

20Note that, because the buyer either wins or loses,
∑

ωl∈Ω

hσ,p(ω
l; ω̃, j, b) = 1−

∑
m∈{0,..,b}

gσ,p(m; ω̃, j, b).

21In the thick market limit that we consider below, learning about the values of the bidders in a single auction
has only a tiny effect on expectations of future competition. Thus, a bidder has vanishing incentive either to shade
his bid down in order to lower future bids from other buyers who expect weaker competition, or to shade his bid
up in order to learn more about others’ values.
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The proof is in the online appendix. In general, there may be multiple equilibria. In estimation,

we will use a somewhat broader equilibrium concept, ϵ-equilibrium. The existence of an ϵ-

equilibrium is implied by Proposition 1.

4.2 An Approximation Result

Here we characterize equilibrium bidding in thick markets. We leverage the fact that losing

buyers do not return immediately—it takes time for them to learn and respond to the news that

they have lost. As a result, if the arrival rates of buyers and sellers are high, then many buyers

may have bid and a large number of auctions may have closed before a buyer returns. A buyer’s

re-entry payoff may then be largely independent of the losing state since, by the time he returns,

the market has undergone many transitions. In that case, his continuation value after losing

depends only on his type, not on his previous actions or the observable state. We look for an

equilibrium that satisfies that condition, which greatly simplifies the buyer’s bidding decision.

To see why, suppose that a type-x buyer’s expected re-entry payoff V (x;σ, p) does not depend

on the losing state. Then the following bid is weakly dominant:

b(x) = x− (1− α)V (x;σ, p) (3)

That result (Proposition D.1 in the online appendix) states that each buyer should bid his value

less his expected re-entry payoff. When the latter depends only on the buyer’s type, each type-x

buyer submits the same bid regardless of which auction he chooses and what the observed state

is. Call such a strategy a constant bidding strategy. Adachi (2016), Backus and Lewis (2019),

and Bodoh-Creed, Boehnke, and Hickman (2020) get a similar result, but in their models the

standard weak dominance argument for second-price auctions applies. Our proof extends this

argument to settings where a buyer’s bid can influence the bidding decisions of subsequent

buyers.

The challenge is to provide plausible conditions under which the expected re-entry payoff does

not depend on the losing state. One possibility is to take the return rate γ to 0 while holding

the number of open auctions J fixed. The expected return time is then so far in the future that

the buyer might expect the re-entry state to come from the steady-state distribution.22 However,

there is a subtle problem with that limit: the state of the losers’ pool still matters. All buyers in

22This is the approach that the literature has taken and that we took in an earlier version of this paper.
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the losers’ pool return at the same rate, so they are likely to compete against each other when

they return. That limit is also inconsistent with the data. It implies that all the open auctions will

have closed long before the buyer returns. By contrast, in our application, many of the auctions

open when the buyer loses are still open when he returns. By the time a losing bidder returns to

bid again, on average over fifty other buyers have bid, but only six auctions have closed. The

number of open auctions is over a hundred, so a returning bidder sees mostly the same auctions

he saw last time he bid.

An alternative limit is more plausible and does make the expected re-entry payoff independent

of the losing state: fix the expected return time and number of new buyers per auction, but

thicken the market by increasing the arrival rates for sellers and new buyers, letting the interval

between seller arrivals go to zero. Because we normalized that interval as one unit of time, we

take that limit by sending the return rate γ to 0 while increasing the number of auctions, J, so

that γ · J is constant.

In this limit, the expected number of auctions that close before a loser returns (1/γ) gets large,

but the fraction of currently open auctions that close ((1/γ)/J) is constant. As a result, the

expected return state is not independent of the losing state, because most of the auctions open

when the bidder loses will still be open when he returns. However, the large numbers of auctions

that close in the meantime imply that the effect of the losing state on the bidder’s re-entry payoff

will have largely washed away. Many buyers bidding up low prices across many auctions mean

that many states have nearly the same value, so the losing state will not matter much (except in

extreme cases, as when a run of high value buyers have filled all open auctions with high bids).

That is, this limit does not imply that a returning loser expects to face the steady-state distri-

bution of states, but he does expect the steady-state distribution of re-entry payoff values.23

However, for any fixed γ a constant bidding strategy will not be exactly optimal. The effect of

the current observable state on the expected re-entry payoff is small but not quite zero, and the

losing bid and choice of auction do influence the actions of future bidders a little bit. A bidder

would thus want to “fine tune” his bid.

We show, though, that constant bidding can be an approximate best response for any level of

23An important empirical implication of this result is that our dynamic model is identified un-
der any auction format in which the static, one-shot auction is identified, not just the second-
price auction. This is a property that Bodoh-Creed et al (2020) refer to as the “plug-and-play”
property., and they show that it holds for the random matching model.
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precision. In order to capture the idea that buyers ignore those details that vanish in the limit, we

use a weaker solution concept, ϵ-equilibrium. For ϵ > 0, an ϵ-equilibrium is a strategy profile

where no buyer has a deviation that can improve his steady-state expected payoff by more than

ϵ.24 Our main result is the following.

Theorem 1 Pick any ϵ > 0. Fix a sequence {γk, Jk}∞k=1 such that limk→∞ γk = 0 and γkJk is

constant. Then there exists a sequence of ϵ-equilibria {(σ∗
k, p

∗
k)}

∞
k=1 such that for high enough

k, (i) each type of bidder x submits a single bid b∗k(x) on the equilibrium path, and (ii) b∗k(·) is

increasing.

In the proof (details in the appendix), we construct for each k a constant bidding strategy σ∗
k

in which each buyer bids in one of the L next-to-close auctions, L < Jk. We treat the choice

of auction as a sequence of binary participation decisions in static auctions with an exogenous,

type-dependent outside option set equal (by a fixed point argument) to the buyer’s ex ante ex-

pected payoff. Buyers submit a bid in the first auction where their expected payoff conditional

on the observable state exceeds their outside option. We then show that, fixing a large L and

taking k to infinity, there is a high probability of arriving at a state where σ∗
k is an approximate

best response. The idea is to make L large enough that buyer competition across auctions equal-

izes expected payoffs, while making γk small enough that a losing buyer expects all of those L

auctions to have closed before he returns.

The theorem says that we can make the cost of the “mistakes” that buyers make in best respond-

ing with a constant bidding strategy arbitrarily small. At most observable states, the constant

bid is almost but not quite optimal, so bidders may make small mistakes most of the time. At

some unlikely extreme observable states, such as when all L auctions have received multiple

high bids or when none of the auctions have received bids, bidders may make large mistakes.

Both kinds of mistakes have a small effect on the ex ante expected payoff: neither a high prob-

ability of a small mistake or a small probability of a big mistake affects the expectation much.

Furthermore, these unlikely extreme states are not states that we see in the data.

To summarize, we have shown that the constant bidding strategy is nearly optimal and is in-

creasing in type. As we shall see in the next section, these two properties are critical to making
24ϵ-equilibrium is widely used in game theory. As Mailath, Postlewaite, and Samuelson (2005) explain, the

solution concept captures the idea that a slight mis-specification of the underlying game should not cause the
modeler to rule out reasonable predicted outcomes. Similarly, ϵ-equilibrium is appropriate if players find it costly
to compute the optimal strategy, or if they believe that other players may make small mistakes.
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the model useful for empirical work.

5 Empirical model

In what follows, we assume the data are generated by an ϵ-equilibrium (σ∗, p∗) in which buyers

use a constant bidding strategy. Under this assumption, we obtain closed form solutions for the

value function and the (inverse) bid function and show that the latter can be expressed in terms

of bid distributions. We then develop and discuss several tests of the model.

5.1 Inverse bid function

Given Theorem 1, a buyer’s type x can equivalently be represented by his bid, b∗(x). We follow

Backus and Lewis (2023) and refer to b∗(x) as type x’s pseudotype.25 The constant bidding

result allows us to aggregate across states. For each m ∈ {0, .., b∗}, define

gσ∗,p∗(m|b∗) =
∑
ω̃∈Ω̃

gσ∗,p∗(m|ω̃, j∗(ω̃; b∗), b∗))π̃∗(ω̃),

as the probability that pseudotype b∗ pays m in the set of auctions in which he chooses to bid

and wins, where π̃∗(ω̃) denotes the steady state probability of observable state ω̃ under σ∗, and

j∗(ω̃; b∗) denotes the auction chosen by pseudotype b∗ at ω̃. In order to simplify notation, we

assume here that the auction choice rule j∗ is a pure strategy, but none of our results below

depend on that assumption. Similarly, define Gσ∗,p∗(m|b∗) as the probability that pseudotype b∗

wins in those auctions. Note that b∗ plays two roles here: it accounts for the set of auctions that

type x selects and the bid he submits in those auctions.

Evaluating the Bellman equation (2) at j∗ and b∗, applying Theorem 1, and taking expectations

over ω̃ we obtain

V (x;σ∗, p∗) =
∑

m∈{0,..,b∗}

(x−m)gσ∗,p∗(m|b∗) + (1− α)(1−Gσ∗,p∗(m|b∗))V (x;σ∗, p∗)

=

∑
m∈{0,..,b∗}

(x−m)gσ∗,p∗(m|b∗)

[1− (1− α)(1−Gσ∗,p∗(m|b∗))]

The numerator is the expected surplus of a buyer of type x in the set of auctions that he selects

25In what follows we use the notation b∗ in lieu of b∗(x) in order to keep the equations uncluttered.
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with positive probability. The denominator is the proportionality factor that accounts for the

possibility that he can lose and return many times.

We use this expression for V to solve for the inverse bid function, which we denote by η.

Substituting V into the constant bid function from equation (3) and solving for x yields

η(b∗) = b∗ +

(
1− α

α

) ∑
m∈{0,..,b∗}

(b∗ −m)gσ∗,p∗(m|b∗) (4)

Thus, the private values of bidders can be obtained directly from data on their bids. This extends

the structural approach developed by Elyakime, Laffont, Loisel and Vuong (1994) and Guerre,

Perrigne and Vuong (2000) for estimating static, first-price auctions to a dynamic environment.

5.2 Tests

Our model generates testable implications about bidding behavior. First, bid functions need

to be strictly increasing. Since this is the case if and only if η is increasing, we can test for

monotonicity by checking whether our estimates of Gσ∗,p∗(b
∗|b∗) and E[M |M < b∗, b∗] imply

that the expression on the RHS of equation (4) is increasing. Second, if buyers are using a

constant bid strategy, then returning bidders should bid the same amount as they bid in the

auction they previously lost. Since a buyer’s maximum bid may not be his pseudotype due to

incremental bidding, this test also provides information on the extent to which bid censoring is

a problem.

A second set of testable restrictions are implied by steady state. The number of buyers flowing

out of the loser’s pool must on average be equal to the flow entering the pool. This condition

implies that the expected number of returning buyers in the time between auction closings is

γn =
(1− α)(λ− q)

α
, (5)

where n denotes the steady state size of the losers’ pool and q is the probability that an auction

ends successfully with a sale. We test this condition using the data on bidder identities. Second,

and relatedly, the flow of x types out of the pool of losers must equal the flow of x types entering

the pool. Let FL denote the stationary distribution of values in the losers’ pool and let fL denote

its density. Then, on average, the flow of x types that leave the pool during the time between
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closings is γnfL(x) and the flow back into the pool over this time is on average

(1− α)[1−Gσ∗,p∗(b
∗|b∗)][γnfL(x) + λfE(x)].

Equating these two flows yields

fL(x) =
λα(1−Gσ∗,p∗(b

∗|b∗))
(λ− q)[1− (1− α)(1−Gσ∗,p∗(b∗|b∗))]

fE(x). (6)

Equation (6) shows that, in steady state, the probability distribution of values in the losers’ pool

is a rescaling of the probability distribution of values of new buyers. The relationship reflects

the censoring due to auction outcomes. The scaling factor approaches 0 for very high types

since they are almost certain to win, and it approaches λ/(λ − q) > 1 for very low types who

are almost certain to lose. As a result, fL has more density than fE at low values and less density

at high values.

6 Data details

As noted above, our primary data consist of all eBay listings for iPads posted during an 8-month

period (February-September 2013), obtained from eBay’s internal data warehouse. We focus

on the used market for a specific model: the 16GB WiFi-only iPad Mini. Since there is some

substitution between new vs. used items and between models (e.g. 16GB vs. 32GB), one might

be concerned this definition of the market is too narrow. However, most buyers did not appear to

view new and used items as substitutes. Of the buyers who lost the bidding on a used item and

returned to bid again, 79% chose to bid on another used item. Of those who bid on a new item

when they returned, only 6% won. For buyers who bid on three or more items, the modal pattern

was to bid exclusively on used items, and the next most common pattern was to bid exclusively

on new items. Substitution between used models is indeed evident in the bidding data: when

buyers return to bid on an item after having lost in a previous auction, they do not always bid

on the exact same model. However, among bidders who lost an auction for a used 16GB WiFi

model, 83% of returning bidders chose to bid again on the same model. Among those who

switched to bidding on a different model, most either bid on the 32GB WiFi version (8%) or on

the 16GB WiFi+4G version (5%). Thus, while there is obviously some substitutability between

item conditions and models, we believe it is a reasonable approximation to treat the used 16GB

WiFi market as its own separate market.
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Treating the used market as separate also avoids the issue of how to model buyers’ willingness

to pay for new vs. used items. In the empirical analysis we use normalized bids to adjust for item

characteristics like color, added extras, and seller feedback ratings—an approach that implicitly

assumes these characteristics are valued uniformly across buyers (for example, all buyers have

the same willingness to pay for an extra charger). We doubt this assumption would hold with

respect to item condition: some buyers probably care a lot more than others about whether the

item is new vs. used.26

When a seller posts an item for sale on eBay, she has the option to create a fixed price listing,

in which case the price is fixed and the listing remains active on the site for up to 30 days until

the item is sold. For the specific product and time period we are studying, auctions are the most

common form of sale: 65% of successfully sold items were sold by auction. An additional

option is to offer a “Buy it Now” (BIN) price, which allows buyers to purchase the item at the

specified price without waiting for the auction to end. However, this option disappears when a

bid below the BIN price is submitted. In the analyses below we focus on auction listings only,

meaning we drop fixed-price listings and any BIN listings that were sold at the BIN price. We

also drop auctions that received no bids, which in most cases happened because the start price

was unrealistically high.

Table 2 shows summary statistics for the 5,002 auction listings in our sample. The majority of

these listings ended successfully with a sale, and the average sale price (conditional on sale) was

$288.86 with an average shipping fee of $7.26. The retail price for a new unit of this particular

model was $329, not including tax and shipping, so the used units on eBay were selling at an

average discount of at least 10% relative to the new retail price. The average number of bidders

per auction is 10.42, but this number varies substantially across auctions.

Even though we are looking only at auctions for a specific model, sale prices exhibit consider-

able variation. Some of this variation reflects heterogeneity in item or seller characteristics, such

as color (white vs. black), included extras (like a case), and seller feedback ratings. Even after

controlling for observable characteristics, however, much of the variance in prices remains.

Our model abstracts away from intra-auction dynamics, since buyers are assumed to bid when

they arrive, and bid exactly once in whichever auction they choose. Of the various simplifying

assumptions we make, this one is perhaps the most at odds with the data, since in reality “in-
26In our analysis we only include used items that were fully functioning—i.e., we exclude items identified as

“For parts or not working.”
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Table 2: Summary statistics for auction listings (N=5,002)

Percentiles
Mean Std. Dev. 0.10 0.50 0.90

Start price 122.42 111.64 0.99 100.00 275.00
Positive reserve price (0/1) 0.10 0.29 0.00 0.00 0.00
Reserve price (if positive) 274.40 42.84 216.00 280.00 325.00
Offered BIN 0.37 0.48 0.00 0.00 1.00
Sale price (if sold) 288.86 31.32 255.60 290.00 325.00
Shipping fee 7.26 5.62 0.00 6.60 15.00
Number of bids 23.74 17.06 4.00 21.00 47.00
Number of unique bidders 10.42 5.84 3.00 10.00 18.00
Minutes since last auction 69.63 112.97 4.63 32.07 155.10
Cover included (0/1) 0.19 0.39 0.00 0.00 1.00
Seller feedback (#) 7515.94 45020.92 13.00 131.00 3327.00
Seller feedback (% positive) 99.03 5.81 98.40 100.00 100.00

cremental bidding” (submitting multiple, increasing bids within a single auction) is relatively

common. Roughly 44% of the bidders in our data submit multiple bids for the same item. How-

ever, most of the incrementing happens before the auction nears its closing time: only 7% of

bidders submit multiple bids in the last hour before the auction closes. The incremental bidding

in the data could reflect within-auction strategic behavior: some bidders may be trying to learn

about their rivals through incremental bidding, or even trying to influence the bidding decisions

of subsequent bidders. Nevertheless, in the interest of simplicity we estimate the model as

though bidders submit only one bid, which we take to be the highest bid they submitted in the

auction.

The presence of incremental bidding also raises the important question of which bids to take

seriously when estimating the model, since it complicates inference about the true intended bids

of losing bidders. For instance, a bidder whose maximum intended bid is $150 might initially

bid $50, but then lose when another bidder submits a bid of $200. This bidder’s observed bid

would then lead to a large underestimate of her true valuation. Since this censoring problem

is most severe at low bids (because bid increments tend to be larger when the posted bid is

low), and because incremental bidding appears to be most common among low-value bidders,

we address this problem by simply excluding bids below $150 when estimating fE and fL in

Section 7 below. Since $150 is well below the lowest winning bid we observe in the data,

the logic is that such bids were not serious bids: either they were initial bids submitted by
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incremental bidders, or they were submitted by bidders whose valuations were too low to have

any chance of ever winning an auction.27

Even without incremental bidding, buyers in the the real-world marketplace might arrive, ob-

serve the bidding in several auctions of interest, and then make a strategic choice about when to

submit their bids. While we cannot test for this directly, since we do not observe users’ brows-

ing behavior prior to their bid submissions, we can at least check for irregular bunching in the

timing of bids. Unlike some other studies using eBay data,28 we observe relatively little last-

minute bidding in our data. Less than five percent of bids were submitted within five minutes

of the auction’s close, and more than half of auctions were won by buyers who submitted their

bids with more than an hour remaining in the auction. More directly, our model implies that the

time between bids (across all auctions and bidders) should be exponentially distributed, and this

appears to be approximately true in the data, as shown in Figure H.1 of the online appendix.

One of the clearest implications of our model is that buyers use constant bidding strategies: if a

buyer loses an auction and returns to bid again in a subsequent auction, we expect him to submit

the same bid. This is also approximately true in the data. Looking at bidders’ bids in successive

auctions, there is a statistically significant upward trend, but it is small. That is, losing bidders

tend to bid more aggressively when they return, but the increase in the bid is only 35 cents on

average. Regressing bids on bidder fixed effects and the number of previous auctions lost, the

bidder fixed effects explain 87% of the variance in bids. This result also suggests that, for most

buyers, the maximum bid is approximately equal to the pseudotype.

7 Identification and Estimation

In this section we first explain how we obtain estimates of new buyer arrival rates (λ), returning

buyer re-arrival rates (γ), and their exit rates (α). Next turn to our method for estimating the

distribution of bidders’ valuations, which adapts the method of Guerre, Perrigne, and Vuong

(2000) to a dynamic setting. We then use the steady state restrictions to test the validity of our

modeling assumptions and of our estimates of the model primitives.

27Note that the censoring problem described here is distinct from the one addressed by Platt (2017) and Hick-
man et al (2017), which is that we may not observe what a low-value bidder would have bid in a given auction if
he was outbid before he arrived. In our setting, while we may not observe what an arriving bidder would have bid
in some auction in which he has already been outbid, we do observe the bid he submits in whichever auction he
chooses.

28See, for example, Ockenfels and Roth (2006), Bajari and Hortacsu (2003), and Backus et al (2015).
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7.1 Estimating bidder arrival and exit rates

We assume that the number of potential buyers (i.e, buyers who visit the platform) is equal to

the number of actual buyers (i.e., buyers who submit a bid). The justification for this assumption

is that in practice there is always an auction available that has not yet received any bids, has a

zero start price, and closes within a day or so.

As noted above, sellers’ and new buyers’ arrival rates vary proportionally by time of day, so the

assumption of constant arrival rates is a harmless normalization. This also means that thinking

of time in terms of auction closures (i.e., one unit of time equals one auction closing) is approx-

imately correct. We therefore estimate λ, the arrival rate of new buyers, as the average number

of new buyers per auction closing, which is 5.47.

Conditional on losing an auction, 49.8% of bidders come back to bid again in a subsequent

auction. Our estimate of the exit rate, α, is thus 0.502.29 Return times are fairly short: condi-

tional on returning to bid again, 21% of bidders return within an hour, and 10% return within 5

minutes. The full distribution of return times is highly skewed, however, since there is a long

right tail reflecting bidders who take 24 hours or more to come back. We approximate this dis-

tribution using an exponential distribution and estimate its mean (γ) as the inverse of the mean

number of auctions before a losing buyer returns, which is .008.

Although our model can be extended to allow for endogenous exit, as shown in the online

appendix, our baseline model assumes exit is independent of the bidder’s type. Since we observe

bidders’ bids and also whether they exit, we can estimate an exit function α(b) to see if exit rates

appear to depend on bidders’ types. We find that exit rates are relatively flat with respect to

bidders’ types (see Figure H.2 in the online appendix), and since allowing for endogenous exit

makes computing counterfactuals meaningfully more difficult, we use the inverse bid function

from the simpler model with exogenous exit when we estimate the distributions of bidders’

valuations below.30

29We say a bidder returned if she comes back to bid again within three weeks. Changing the time horizon, e.g.
to two weeks or four weeks, has little impact on our estimate of α, since most bidders return relatively quickly if
they are going to return at all.

30Since we can estimate the α(b) function, estimating the model with endogenous exit is not much more difficult
than with exogenous exit. However, when simulating counterfactuals in a model with endogenous exit, we must
compute a new equilibrium in which value functions accurately reflect exit functions and exit functions are optimal
given the value functions.
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7.2 Estimating the distribution of bidders’ valuations

The primary objective of our empirical analysis is to recover FE , the distribution of buyers’

valuations. Since we can distinguish in the data between bidders who are bidding for the first

time and bidders who are returning to bid after losing in a previous auction, we can estimate FE

using the bids of new bidders. Monotonicity of the bid function b∗(x) (which we discuss below)

means we can treat a bidder’s bid as his pseudotype, and recover his true type with the inverse

bid function given by Expression (4), which we can rewrite as

η(b∗) = b∗ +

(
1− α

α

)
Gσ∗,p∗(b

∗|b∗) [b− E(M |M < b∗, b∗)] (7)

This inversion requires estimates of the exit rate, α; the probability of winning, Gσ∗,p∗(b
∗|b∗);

and the expected price conditional on winning, E(M |M < b∗, b∗). Given these estimates, we

can use the sample of bids by new buyers to compute their values and obtain a non-parametric

estimate of FE. Note that we can also use Expression (7) to derive estimates of the private values

of returning buyers and use these estimates to obtain a non-parametric estimate of FL.

The remarkable aspect of our analysis is that FE is identified without solving for the equilibrium

selection rule. This result is due to the constant bidding strategy: in equilibrium, each buyer

type submits the same bid regardless of which auction he chooses or what the observable state

is. This invariance property allows the econometrician to use each buyer’s bid to directly infer

his type, effectively conditioning on the set of auctions he chooses in the data. However, this

convenience comes at a cost: the researcher needs to observe the bids of every buyer and assume

that they are realizations of pseudotypes.

An important detail is that the items auctioned in our data are not perfectly identical. We adopt

the conventional approach in the empirical auctions literature of working with normalized bids.

We regress prices on item characteristics, Z, and then use the estimated coefficients ϕ̂ from

this regression to normalize bids as b̂ = b̄ + (b − Zϕ̂), where b̄ is the baseline bid for an item

with average characteristics. These normalized bids then reflect the bids that would have been

submitted if all auctions were for items with identical observed characteristics. Intuitively, com-

petition forces every bidder to adjust her bid by Zϕ̂ since this value is common to all bidders

in the auction. The normalizing regression includes indicators for color (white vs. black); indi-

cators for whether the auction included a cover, keyboard, screen protector, stylus, headphones,
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and/or extra charger; seller feedback ratings; shipping fee; and month dummies (to control for

a gradual downward trend in prices over time). In all that follows, when we refer to bids we

mean normalized bids.

One issue of concern is that bidders may observe auction characteristics that we do not. As is

well known, unobserved heterogeneity can lead to misleading estimates of bidder values. We

examined this issue for a different eBay sample (the product was iPads, not iPad Minis) by

contracting with MTurk workers to read product descriptions for 2,000 listings. They reported

a list of additional product characteristics, including subtleties like payment restrictions and

whether the iPad had been unlocked. These hard-to-observe characteristics explained very little

of the price variation (R2 went from 0.65 to 0.68).

Estimating Gσ∗,p∗(b
∗|b∗) is relatively straightforward, since it is simply the probability of win-

ning at a bid equal to b∗. One could estimate this function by simply running a probit or logit

regression of a win dummy on bids. To avoid the functional-form restrictions such an approach

would impose, we instead use the semi-nonparametric maximum likelihood method of Gallant

and Nychka (1987), approximating the latent density with a 6th-order Hermite polynomial.

The last component of the inverse bid function is the conditional price expectation E(M |M <

b∗, b∗). We estimate this by constructing a dataset of winning bids and the prices (second-highest

bids) associated with those winning bids, and then running a local polynomial regression of the

latter on the former. Note that by estimating the expected price conditional on winning with a

bid equal to b∗, we are again implicitly accounting for the dependence of M on b∗.

Given estimates of α and the functions Gσ∗,p∗(b|b) and E(M |M < b, b), we can compute the

bid function and directly check monotonicity. The left panel of Figure 1 shows the estimated

bid function, which is indeed monotonic. This means we can invert the observed bids and

estimate the distribution of bidders’ underlying valuations using a dynamic analogue to the

method proposed by Guerre, Perrigne, and Vuong (2000). Applying our inverse bid function to

the observed bids, we recover a set of pseudo-values; we then estimate the distributions of these

pseudo-values nonparametrically with a kernel density estimator.

The right panel of Figure 1 shows kernel density estimates of fE and fL.31 The difference

between the estimated densities is consistent with the model: the distribution of returning losers’

31We used the first bids of new bidders to estimate fE and the bids of each returning bidder for fL. We plot
the estimates for values above $200, since low value bidders have virtually zero probability of winning and are
essentially irrelevant.
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Figure 1: Estimated bid function, and estimated distributions of valuations

20
0

25
0

30
0

35
0

40
0

σ(x)

200 250 300 350 400
x

0
.0

02
.0

04
.0

06
.0

08
.0

1
D

en
si

ty

200 250 300 350 400
x

fE

fL

valuations looks like a resampling of new bidders’ valuations, with less density in the upper tail.

It is important to note that this difference is in no way imposed by our estimation procedure:

since we can distinguish between new and returning bidders in the data, we simply estimate

separate distributions for the two groups.

Before moving on to tests of the model and counterfactual analyses, we note that our estimates

imply that dynamic incentives have a quantitatively meaningful impact on bidders. For our

sample, we estimate that the winning bidder’s true value (x) is on average roughly $7.56 higher

than the bid she submitted, and in some cases (for winners with especially high values) over

$25 higher.32

7.3 Steady state restrictions

Equation (5) describes how the number of returning buyers per auction (γn̄) should depend on

the new buyer arrival rate (λ), buyer exit rate (α), and the probability of a successful sale (q)

in steady state. The average number of returning bidders per auction in the data is 4.86. Our

estimates of the exit rate α (0.50), the arrival rate of new bidders λ (5.47), and the probability of

sale q predict an average of 4.58 returning bidders per auction, which is not far off.33 This test

should fail if the model’s underlying assumption of stationarity did not hold, or if our estimates

of buyer arrival, return, and exit rates are inaccurate

Equation (6) describes a more stringent test of our modeling assumptions: not only should the

32In their sample of auctions for digital cameras, Backus and Lewis (2025) estimate the average continuation
value of winning bidders to be $15.08, which is around 6.4 percent of the average sale price.

33Our estimates of λ, α, and γ would imply the average size of the loser pool is between 550 and 600.
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numbers of bidders flowing into and out of the loser pool be equal on average, but the flows

should be equal at every type x. This puts a restriction on the relationship between the densities

fE and fL, as expressed in equation (6) above.

The left panel of Figure 2 shows a comparison between the fL we estimate directly from the data

and the fL implied by the model (as a function of the parameter estimates and the estimated fE).

The two densities are clearly not identical, but they are remarkably similar given that nothing

in the test forces them to look the same. In principle, the rescaling of fE in equation (6) could

distort the shape of the resulting fL and even cause it to not integrate to one. The test should

fail if the model is invalid or if the estimate of Gσ∗,p∗(b|b) is incorrect.

Figure 2: Test of restriction on fL
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Indeed, if we estimate the model without allowing for endogenous auction selection, this test

clearly fails. If buyers are randomly matched to auctions, then the set of auctions chosen by

type-b buyers is a random sample, and one can equivalently use the distribution of the highest

rival bid in the set of all auctions to compute the bidder’s expected re-entry payoffs. This

is the approach taken by Adachi (2016) and Bodoh-Creed et al (2020), for example.34 But,

when we use this (unconditional) distribution as our estimate of G, we find that it overestimates

the probability of winning for high value buyers, which in turn leads to an overestimate of their

values. The right panel of Figure 2 shows a comparison between the fL that we estimate directly

from the data using this estimate of G and the fL predicted by the model. The main takeaways

from using an estimate of G that ignores selection are that it leads to substantial overestimates

of high values and an obvious violation of the steady state restrictions.
34More precisely, Bodoh-Creed et al use the distribution of the winning bid, but this is equivalent to the distri-

bution of the highest rival bid under the assumption of Poisson arrivals.
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We interpret the results of these tests as both validating the simplifying assumptions of our

model and also confirming the importance of accounting for auction selection.

8 Efficiency

Our model allows us to compare the efficiency of the eBay mechanism to two benchmarks. One

benchmark is the efficient allocation. The theoretical models developed by Satterthwaite and

Shneyerov (2007, 2008) predict that a decentralized, dynamic market converges to the Walrasian

equilibrium in the limit as the market dynamically thickens—i.e., as the period length shrinks

to zero so that traders have infinitely many opportunities to trade. The natural question to ask

is whether a real-world dynamic market like eBay comes close to delivering the Walrasian

equilibrium.

To answer this question, we use the data and our estimate of FE to calculate the market-clearing

price P ∗ that would prevail if eBay were to conduct a uniform price auction for all buyers and all

sellers who arrive over a period of time. Specifically, we use the entire sample period, calculate

the total number of sellers Ns = 5, 002 and buyers Nb = 27, 380 in our data, and then compute

the market-clearing price as the
(
1− Ns

Nb

)
= 81.7th percentile of the estimated distribution FE .

Since this is the competitive equilibrium price and allocation, it serves as an efficient benchmark

against which to compare the prices and efficiency of other mechanisms.

The second benchmark is a counterfactual in which the sellers hold separate second-price auc-

tions with no reserve price, and buyers are randomly allocated to those auctions, with each buyer

getting only one chance to win an auction.35 This benchmark tells us what the price distribu-

tion would be and how inefficient the allocation would be if buyers do not have the option to

return and bid again in a future auction. We simulate outcomes under this benchmark by taking

Nb buyers, with valuations drawn randomly from our estimated FE , and randomly assigning

them to Ns auctions, taking the averages from 10,000 repetitions in order to minimize any noise

introduced by the simulation draws.

35This counterfactual is motivated by the matching that occurs in brick and mortar markets where buyers have
to buy from a local (monopoly) seller, and sellers have to sell to local buyers. Online platforms create thicker
markets by eliminating location as a factor in the matching process, but they also make the market large over time
by allowing buyers who fail to purchase to return and try again with a different seller. Although the counterfactual
doesn’t perfectly match the operation of such markets—for example, local markets aren’t purely static—online
markets are thicker by comparison in two important ways. They increase bidder participation by eliminating
location as a factor in the matching process, and they make the market large over time by allowing losing bidders
to easily return and try again with a different seller.
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Table 3 shows prices and efficiency measures for the bidding we observe in the data com-

pared to the two counterfactual benchmarks. In the uniform price auction, we calculate the

market-clearing price to be $279.45. All buyers with valuations above the market-clearing price

successfully purchase, and the average gross surplus of these buyers is $307.73. In the other

benchmark, the average price is much lower at $231.22, and efficiency is also much lower:

only 31% of the buyers who should get the item (i.e., buyers with valuations above the market-

clearing price) actually do. The outcomes we observe in the data are naturally in between these

two extremes, but they fall well short of the efficient benchmark: price dispersion is substantial

and only 59% of the highest-value buyers successfully win an auction. The eBay mechanism

achieves only 43.0% of the potential welfare gain relative to the benchmark in which bidders

can only bid once.

Table 3: Prices and efficiency compared to counterfactual benchmarks

Simultaneous auctions, Sequential auctions, Uniform price auction
static bidding dynamic bidding

(i.e., data)
Avg. price 231.22 275.39 279.45
SD of prices 70.88 26.85 0.00
Avg. gross surplus 283.39 293.84 307.73
Pr(win |x > P ∗) .305 .594 1.000

Notes: Average gross surplus is the average valuation (x) of the winning bidders. Pr(win |x > P ∗) is
the probability that a buyer whose x is greater than the market-clearing price P ∗ wins an auction
before exiting.

These results resemble those of Bodoh-Creed et al (2021), who conduct a counterfactual welfare

exercise very similar to ours. They find a larger welfare loss relative to the efficient market-

clearing benchmark (14%), but also point out that the eBay mechanism achieves three quarters

of the potential welfare gain relative to a lottery that randomly allocates items to bidders.36

The option to return and bid again after a losing bid has two effects. First, it makes the auctions

more competitive, as the presence of returning buyers increases the number of buyers per auc-

tion. Second, buyers bid less, since they shade their bids to reflect the option value of losing.

Our counterfactual simulation indicates that both effects are quantitatively meaningful, but the

former appears to have a more substantial impact — not just on allocative efficiency, but also

36If we make the same calculation for our data, we find that the eBay mechanism achieves 88% of the potential
welfare gain of market-clearing over a random lottery.
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on prices. This finding is reminiscent of the famous result of Bulow and Klemperer (1996)

that adding a bidder has more impact on revenues than changes to auction design. In our case,

the mere presence and participation of returning bidders is more impactful than the strategic

changes in bids that result from buyers’ ability to return.37

9 Posted Bid versus Sealed Bid Auctions

Should platforms like eBay provide buyers with information about the state of play in the auc-

tions? More specifically, does posting the highest losing bid in an auction deliver a more ef-

ficient allocation? There is no question that it helps individual buyers choose better matches,

since it allows them to avoid selecting auctions where they have already been outbid and to

arbitrage expected payoffs across auctions. But the equilibrium effect on outcomes is less clear.

To examine this issue, we consider a counterfactual in which the platform posts the closing

times of the auctions but does not provide any information about the state of bidding in any of

the auctions. In other words, the auctions are sealed bid auctions.

To run this counterfactual, we have to specify an auction choice rule. Our theoretical model

provides a useful benchmark. When auctions are sealed-bid, there exists an equilibrium in

which buyers always bid in the soonest-to-close auction (see section F of the online appendix

for a formal statement of the Proposition). The argument is straightforward: a buyer cannot

gain by deviating and choosing a later auction because his rivals do not observe his deviation

and, given their soonest-to-close choice strategy, the expected level of competition is the same

in every subsequent auction. As a result, each buyer is indifferent as to which auction to join, so

there is no selection effect.38 Furthermore, in this equilibrium, buyers are randomly matched to

sellers based on their arrival times. Thus, the soonest-to-close choice rule is a dynamic version

of the equilibrium of the random matching models studied in the literature.

One way to run the sealed bid auction counterfactual is to simulate the equilibrium outcomes

of our model under the soonest-to-close choice rule.39 However, our model makes strong as-

37We discuss this further in Section J of the appendix, where we examine how the equilibrium of our dynamic
model converges to the Walrasian outcome as the exit rate (α) goes to zero.

38A buyer’s continuation value (and bid) in this equilibrium is determined by the (marginal) distribution of
the highest rival bid among the new and returning buyers who arrive during the period in which the auction is
soonest-to-close. This distribution does not depend on the bidder’s choice and, in steady state, it does not vary
across auctions.

39The results of this simulation are reported in Section F.1 of the online appendix. They are qualitatively similar
to the results reported below in Table 4.
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sumptions about the arrival process of buyers and sellers, and we did not want the comparison

between the soonest-to-close choice rule and the data-generating choice rule to depend on these

assumptions. Therefore, we implement the counterfactual by simulating the entire sequence of

auctions in the data under the soonest-to-close choice rule, taking as given the observed closing

times of the auctions and the arrival times of new and returning bidders.40 That is, a bidder who

bids in auction k at time t in the data is reassigned to whichever auction j is soonest-to-close

at that time. These reassignments change who participates, who wins, and who loses in each

auction; and, in steady state, the composition of the pool of losers. We treat arrival times of

new bidders and returning bidders differently.41 If t is the arrival time of a new bidder, then the

identity of the bidder is the same as in the data. In that case, if she loses the soonest-to-close

auction, we first check what she did in the data. If she lost in the data and returned to bid again,

then in the simulation we assume she will do the same, adding her to the loser pool. If she

won in the data but lost in the simulation, then we have her exit with probability equal to the

exit rate α̂. However, if t is the arrival time of a returning bidder, then the bidder’s identity is

randomly chosen from the simulated loser pool.42 The winner of each auction is the bidder with

the highest value.43

We find that outcomes are more efficient under random matching than under endogenous match-

ing: the percentage of highest value buyers who successfully win an auction increases from 56%

to 64%. The reason for these results can be seen in Table 4, which shows the frequency with

which high-value bidders44 face competition from 0, 1, or 2 or more other high value bidders.

Disclosure increases the likelihood of two high-value bidders choosing the same seller, which

in turn makes it more likely that a high value buyer exits without winning a unit. This leads to

lower overall efficiency due to the higher rate at which high types lose (and exit).

40In this setting, however, the soonest-to-close matching rule may not be an equilibrium because the expected
level of competition may vary across auctions due to stochastic variation in the time between auction closings.

41The first three weeks of the sample are excluded from the simulation because they are needed to classify
bidders as new vs. returning.

42To initiate the loser pool, we first seed it with n = (λ̂− q)(1− α̂)/(α̂γ̂) buyers whose valuations are drawn
from FE , then simulate the sequence of auctions 50 times to let the distribution of valuations in the loser pool
“burn in.” We use this as the initial pool for the main simulations.

43The assignment of bidders to auctions and determination of who wins can be done based on their actual
values, so we conduct the simulations in type space. To compute bids (and prices), we would need to find the new
equilibrium continuation value function V induced by the counterfactual. The details of how this can be done are
explained in section I of the online appendix.

44For purposes of the table we define high bidders to be those whose values exceed the market clearing price. In
calculating the number of rival high bidders, we condition on auctions won by high bidders and count each auction
only once.
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Table 4: Prices and efficiency compared to counterfactual benchmark

Endogenous matching Random matching
(i.e., data) (simulation)

Pr(win |x > P ∗) .557 0.638
# of rival high bidders

0 40.87 45.24
1 36.23 27.99
2+ 22.90 26.77

Notes: Pr(win |x > P ∗) is the probability that a buyer whose x is greater than the
market-clearing price P ∗ wins an auction before exiting. The second column is
based on a simulation in which bidders enter the next-to-close auction when they
arrive, which means they are randomly assigned to auctions.

The surprising implication of our analysis is that providing information about the second-

highest bid does not enhance efficiency. Instead, it appears to induce too much competition

between high value bidders, which — combined with the relatively high exit rate — leads to

a less efficient outcome than would be achieved if bidders were simply randomly assigned to

auctions.

10 A Posted Price Mechanism

The results above show that the main source of inefficiency in large, decentralized dynamic

markets like eBay is the matching process. Because buyers are matched to sellers based on

their (random) arrival times instead of their values, low value buyers sometimes win units at

the expense of high value buyers. The uniform price auction solves this problem by pooling

across time and then matching buyers to sellers based on their values.45 However, buyers may

not want to wait until the platform conducts the auction to get their units. In this section, we

consider how the platform can implement the efficient allocation in real time using a posted

price mechanism. In this mechanism, the platform sets a price P and requires each seller to

post that price. We show that if P is chosen appropriately, then seller revenue, average price,

and total surplus all increase, and the average time to sale decreases. In fact, for large markets,

the dynamic posted price mechanism achieves approximately the maximum possible level of

45Bodoh-Creed et al (2020) conduct a counterfactural in which they show that that meaningful increases in
efficiency can be achieved by selling items in uniform auctions of small batches—e.g., auctioning four or eight
units at a time, instead of one at a time—without going all the way to a single uniform auction.
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both revenue and total surplus.

Formally, we adjust our theoretical model to consider the following mechanism. When she

arrives, each seller posts price P . The first buyer to accept the seller’s price offer immediately

gets the good and pays P . An available posting is one that has not yet been accepted and is

open (that is, its closing time has not been reached). A buyer who arrives when there are no

available postings is treated like a losing bidder: he exits with probability α and gets a payoff of

zero; otherwise he goes to the losers’ pool. Note that buyers with values below P are irrelevant

in this setting, so we will ignore them.

The market clearing price P ∗ that would prevail in a posted price mechanism is given by

λ [1− FE (P ∗)] = 1, so that the expected number of new arriving buyers with values above

P ∗ per auction is 1.

Proposition 2 Suppose that the market clearing price P ∗ is above the static optimal reserve

price.46 Fix a sequence {Jk}∞k=1 along which the number of open auctions Jk grows without

bound. Then there is a sequence of prices {Pk}∞k=1 converging to P ∗ such that for large enough

k the posted price mechanism using price Pk yields higher average revenue, higher average

surplus, and lower average time to sell than the posted bid auction environment.

The observable information for a buyer arriving in a period t consists of the closing times of

the available postings dA(t). In this setting, it is an equilibrium for each arriving buyer (with

valuation above P ) to buy from the next-to-close seller. For any fixed parameter values, the

size and composition of the losers’ pool and number of available postings converge to a unique

invariant distribution, by arguments analogous to those from our baseline model.

That invariant distribution is continuous in the posted price P . Because buyers may also return

from the losers’ pool, for any fixed number J of open postings, there is a price P ∗∗(J) > P ∗

such that in steady state the average total number of buyers arriving per posting equals 1. As J

grows, P ∗∗(J) converges to P ∗, for the following reason: for any P > P ∗, the steady state size

of the losers’ pool shrinks to 0 as J grows. If P > P ∗, then λ [1− FE (P )] < 1, meaning that

new high-value buyers arrive less frequently than new postings, so the probability that a buyer

cannot find an available posting is very low. As a consequence, the size of the losers’ pool is

very small.
46The optimal static reserve price is the value at which the virtual valuation, ψ(x) ≡ x− (1− FE(x))/fE(x),

is 0.
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At P = P ∗∗(J), the number of available postings JA(t) follows a random walk with no drift,

bounded below by 0 and above by J . When J is large, therefore, J hits either of its bounds

very infrequently. As a consequence, the probability of a stock out, when an arriving high-value

buyer fails to find an available posting (JA(t) = 0), is close to zero. Similarly, the probability

that a seller does not find a buyer is very small. A seller who arrives at a time when there are

JA(t) ≤ J − 1 other available postings fails to sell only if fewer than JA(t) + 1 high-value

buyers arrive over the J units of time that the posting is open. With a mean of 1 buyer arriving

per unit of time, the likelihood of that event is very low when JA(t) is far from its upper bound,

as will be the case with very high probability when J is large.

Thus, as J grows, a posted price close to P ∗ achieves the maximum possible surplus per post-

ing, E [x|x ≥ P ∗]. All units are sold, and they go to the buyers who value them most. The

mechanism also maximizes revenue. We can derive an upper bound on average revenue by con-

sidering a hypothetical single seller who controls all items. That seller would maximize revenue

by using a uniform price auction with the optimal static reserve price. When the market clearing

price P ∗ is above that optimal reserve, the expected price in that auction is very close to P ∗ and

all items are sold. For large J , the posted price mechanism achieves nearly that same revenue

of P ∗ per posting.

Finally, by the same reasoning as above, the expected time to sell for a seller who arrives when

there are JA(t) other available postings will be close to the expected time it takes for JA(t) + 1

high-value buyers to arrive, which is

JA(t) + 1

λ [1− FE (P )]
.

At P = P ∗∗(J), JA(t) follows a random walk with expected value J/2. The average time to

sell, then, is close to
J

2λ [1− FE (P ∗)]
=

J

2
.

That expected selling time is half as long as in our baseline, posted bid model, where a seller

sells only when the auction closes after J units of time.

We summarize those results in the following theorem.

Theorem 2 In the limit as the number of open postings J → ∞, a posted price mechanism

using the market clearing price P ∗ has the following properties:
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1. both the probability that a seller makes a sale and the probability that a buyer with valu-

ation at least P ∗ purchases approach 1;

2. average seller revenue approaches its upper bound P ∗;

3. average surplus approaches its upper bound E [x|x ≥ P ∗];

4. the expected time for a seller to sell is half as long as under the posted bid mechanism.

To implement the optimal posted price mechanism, the platform would need to know the mar-

ket clearing price. This should not be too difficult in a stationary environment. One way is to

use the auction data to estimate FE , as we have done in this paper. An alternative pragmatic

approach would be to use a reinforcement learning algorithm that monitors the number of avail-

able postings. If the number of postings is stochastically increasing over time, then the current

price must be too high; if it is decreasing, then the price must be too low.

We simulated the optimal posted price mechanism for the sample period of our data to see if it

successfully implements the efficient allocation. As noted above, given our estimate of FE , the

market-clearing price is P ∗ = $279.45.47 We take sellers’ and bidders’ arrival times as given by

the data, and assume that every bidder whose estimated valuation exceeds $279.45 purchases

an item upon arrival if one is available. We set the initial stock of available items to 70, equal to

the expected value of JA(t) if J = 140.48 Figure H.4 in the online appendix plots the evolution

of the number of available items in the simulation. For almost all of the sample period it lies

below the upper bound of 140, and it never reaches the lower bound of 0. Thus, a very small

number of sellers fail to sell before their postings expire, but every bidder with a value above

$279.45 successfully purchases. The sellers’ average time to sell is 3.2 days. We conclude that

the posted price mechanism would have achieved the Walrasian equilibrium in our data.

11 Discussion and Conclusions

In contrast to the early literature on online auction marketplaces, recent papers have explicitly

incorporated dynamics into models of bidding behavior. We view our study as making several

contributions to this nascent literature. First, the model we propose is simple and empirically

tractable, while still capturing the important dynamic aspects of the bidding environment. The

key result is an approximation result: in thick enough markets, it is approximately optimal for

47Given our estimate of FE , the static optimal reserve price is approximately $190, which is well below the
market clearing price, so our data satisfy the condition for optimality.

48We choose J = 140 based on 20 seller arrivals per day (as in our data) and postings lasting 7 days.
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a buyer’s bid to be invariant to the choice of auction and the observed state. This is what makes

the model empirically tractable, and it is in some ways analogous to the oblivious equilibrium

concept proposed by Weintraub et al (2008), which simplifies the analysis of dynamic games

in markets with a large number of firms. Relying on this approximation result is reasonable in

thick markets like the one we study, since the large number of auctions and bidders leads to a

high rate of churn in the state. We believe this approach will likely be useful in other markets,

but we caution that it is less suitable in thin markets.

The second contribution of our analysis is to highlight the importance of accounting for buyers’

endogenous selection of which auction to bid in. On the one hand, our modeling approach

allows us to identify the model’s primitives without actually solving for equilibrium auction

selection rules. On the other hand, there is an important sense in which we must control for

auction selection. To recover the primitive distribution of buyers’ valuations we use a dynamic

version of the technique proposed by Guerre et al (2000), in which inverting the bids requires

an estimate of the distribution of maximum rival bids. When estimating this distribution, it is

critical to condition on the auctions in which buyers of a given type choose to bid. In other

words, one cannot simply use an estimate of the unconditional distribution of maximum rival

bids; it is necessary to estimate the distribution of rival bids that a buyer faces in the auctions in

which he chooses to bid.

In addition to explaining how endogenous auction selection must be accounted for in estimation,

we also show that it results in inefficient matching of buyers to sellers. Our third contribution is

to show that a simple posted price mechanism can eliminate these matching frictions, implement

the efficient allocation, and maximize seller revenue. This result extends to differentiated good

markets, although it would likely be harder for a platform (or sellers) to learn the market-

clearing prices. The key would be to obtain estimates of the joint distribution of buyer values

for the products and, of course, the arrival rates of buyers relative to sellers. Backus & Lewis

(2023) show how this can be done. One can then compute the market-clearing prices for the

different products, just as we do for the one good case.
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A Proof of Theorem 1

We construct a constant bidding strategy and show that it is an ϵ-equilibrium. The proof (in the

online appendix) that bids are increasing in type is standard.

A.1 Constructing the strategy σ∗
L,J

For any integer L, define an L-horizon strategy as one where each type of bidder at each state

1) submits a bid in one of the L next-to-close auctions, and 2) bases his choice of auction and

bid only on the observable state of those L auctions.
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Pick an L, and let J be greater than L. We construct an L-horizon constant bidding strategy σ∗
L,J

by looking for a fixed point: a payoff function together with a strategy profile for other types

and beliefs about bids will determine the strategy for each type, which will in turn determine

steady-state payoffs and beliefs.

Fix an arbitrary payoff function v0 : X → (0, x̄], and define the net value xnet (x, v0) ≡ x −
(1− α) v0 (x); the bid that a buyer of type x will submit, b (x, v0), is the closest feasible bid

to xnet (x, v0). Next, fix an arbitrary conditional belief system p0 with the property that beliefs

about the vector of highest bids w in the L next-to-close auctions depend only on the vector of

posted bids r in those auctions. (When players use L-horizon strategies, later auctions will not

have any bids yet.) Finally, fix a one-period-ahead belief function r0 : BL×{1, . . . , T} → △BL,

which specifies beliefs about next period’s vector of L posted bids as a function of this period’s

vector.

Given v0, p0, and r0, we construct the corresponding L-horizon strategy σL,J (v0, p0, r0) recur-

sively. We start with the next-to-close auction (j = 1), first when it has one period remaining

(d = 1) and then for higher d’s. For each d we specify behavior as the equilibrium of a hy-

pothetical static game where the (random) set of players equals the buyers who arrive in that

period, and a player of type x can either 1) submit a bid of b (x, v0) in auction 1, or 2) not bid

and get a payoff of v0 (x) instead.

• Step j = 1, d = 1: Arriving buyers have beliefs given by p0 (r, d = 1) about the highest

standing bid, w1. The payoff of the hypothetical game to a type-x player who submits a

bid is as follows: if b (x, v0) is higher than any competing bid (the bids by other players

arriving that period, plus the realized w1 drawn from p0 (r, d = 1)), then he gets x minus

the highest competing bid m. If b (x, v0) < m, then he gets payoff (1− α) v0 (x). Ties

are broken as in the Model section. A Nash equilibrium of that hypothetical game exists –

use it to define for each type of buyer the probability of bidding in auction 1 when d = 1

under σL,J (v0, p0, r0). (If the equilibrium is not unique, select one arbitrarily.)

• Step j = 1, d = 2: Beliefs about w1 are given by p0 (r, d = 2). The difference from

the previous step is the function mapping bids to payoffs in the hypothetical static game:

because auction 1 will still be open next period, bidders arriving then will affect payoffs.

Specify that next period’s buyers will submit bids according to the strategies in Step

j = 1, d = 1. Players in this period then need beliefs about next period’s posted bids.
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The new posted bid in auction 1 will be determined by the actions of the current bidders,

together with w1. Beliefs about the new posted bids in other auctions are given by the

one-period-ahead belief function r0 (r, d = 2). After next period’s bids are submitted,

auction 1 closes, and this period’s bidders get the resulting payoffs: the winning bidder’s

payoff equals his type x minus the highest competing bid, and a losing bidder of type x

gets (1− α) v0 (x). Use an equilibrium of this game to define the probabilities of bidding

in auction 1 when d = 2 under σL,J (v0, p0, r0).

• Steps j = 1, d = 3 through d = T : We iterate the process above. Beliefs about w1

are given by p0 (r, d). Buyers arriving in the remaining periods of auction 1 will submit

bids according to the strategies in the previous steps. Next period’s posted bid in auction

1 will be determined by w1 and the actions of the current bidders. Beliefs about next

period’s posted bids in other auctions are given by r0 (r, d). The actions of next period’s

buyers then determine the new posted bid in auction 1 in the period after that, and beliefs

about that period’s new posted bids in other auctions are given by applying r0 (r
′, d− 1)

to next period’s vector of posted bids r′. Continue that process to predict future bids in

auction 1 until the auction closes, and this period’s bidders get the resulting payoffs. Use

an equilibrium of this game to define the probabilities of bidding in auction 1 for each d

between 3 and T under σL,J (v0, p0, r0).

For auction j = 2, the second in line to close, the set of players in the hypothetical static game

for each d are those who 1) arrive this period and 2) in the equilibrium of Step 1, d choose not

to bid in auction 1.

• Step j = 2, d = 1: When auction 1 has one period remaining, beliefs about the highest

standing bid in auction 2, w2, are given by p0 (r, d = 1). Next period, this auction will

become the next-to-close with d = T , so we can determine the expected payoffs of the hy-

pothetical game as in Steps j = 1, d = 3 through d = T . Use an equilibrium of this game

to define the probabilities of bidding in auction 2 when d = 1 under σL,J (v0, p0, r0).

• Steps j = 2, d = 2 through d = T : When auction 1 has d periods remaining, beliefs

about w2 are given by p0 (r, d = 2). Buyers arriving in the remaining periods of this

auction will submit bids in this auction according to the strategies in the previous steps.

Next period’s new posted bids in auctions 1 and 2 will be determined by w1, w2, and the
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actions of the current bidders. Beliefs about next period’s posted bids in the other auctions

are given by r0 (r, d). The actions of next period’s buyers then determine the new posted

bids in auction 1 (until it closes) and auction 2 in the period after that, and beliefs about

that period’s new posted bids in the other auctions are given by applying r0 (r
′, d− 1)

to next period’s vector of posted bids, r′. Continue that process to predict future bids in

auction 2 until the auction closes, and this period’s bidders get the resulting payoffs. Use

an equilibrium of this game to define the probabilities of bidding in auction 2 for each d

between 2 and T under σL,J (v0, p0, r0).

We iterate that process to construct the probabilities of bidding in each auction 3 through L− 1

for each d from 1 to T under σL,J (v0, p0, r0). Lastly, specify that any buyer who does not

submit a bid in one of the first L− 1 bids in auction L.

Having constructed σL,J (v0, p0, r0) given v0, p0, and r0, we next look for a fixed point. Given

a strategy σL,J , Bayes’ rule pins down on-path steady-state conditional beliefs, and off-path

beliefs can be specified in a consistent way so that 1) beliefs about the vector of highest bids

in the L next-to-close auctions depend only on the posted bids in those auctions, and 2) beliefs

assign probability 1 to an off-path bid being the minimal feasible bid compatible with the ob-

servable state. Given a σL,J and conditional beliefs pL,J , the one-period-ahead belief function

is pinned down at each observable state; call the result r (σL,J , pL,J). Strategy σL,J also deter-

mines the steady-state expected payoff to each type of bidder; call that function v (σL,J). Then a

fixed point argument paralleling the proof of Proposition 1 (in the online appendix) establishes

that for any L and J there exists σ∗
L,J that satisfies the following: we can find v∗L,J , p∗L,J , and

r∗L,J such that σ∗
L,J = σL,J

(
v∗L,J , p

∗
L,J , r0

)
; v∗L,J = v

(
σ∗
L,J

)
; p∗L,J is consistent with σ∗

L,J ; and

r∗L,J = r
(
σ∗
L,J , p

∗
L,J

)
.

A.2 Showing that σ∗
L,J is an ϵ-equilibrium

We now show that if L is large given ϵ > 0, and k is large given ϵ and L (so that γk is close

to 0 and Jk is large), then the σ∗
L,Jk

above is an ϵ-equilibrium, with value function v∗L,Jk and

conditional belief system p∗L,Jk . Lemma 1 shows that conditional on choosing one of the next

L auctions, bid b
(
x, v∗L,Jk

)
is nearly optimal for a type-x buyer. Lemma 2 completes the proof

by showing that under the steady state distribution, choosing one of those L auctions is nearly

always nearly optimal.
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We can assume without loss of generality that along the sequences

{
σ∗
L,Jk

, p∗L,Jk , v
∗
L,Jk

}∞
k=1

the transition probabilities over the state of the next L auctions (bids and high bidders’ types)

converge. The set of L-horizon constant bidding strategies is compact, as is the set of beliefs

over the state of the L auctions; any sequence of those strategies and beliefs thus has a con-

vergent subsequence. Along that subsequence the behavior of buyers converges. To show that

transition probabilities converge, we also need to show that the arrival rates of each buyer type

converge. The arrival rates of new buyers are fixed with respect to k by assumption, and for

returning buyers we get convergence (along a subsequence) if we normalize the numbers of

each type in the losers’ pool, n(x), to γkn(x). Let n̄k denote the steady-state size of the pool.

The steady-state expected number of returning losers each period n̄kγk△ is bounded above

by λ△ (1− α) /α: flow into the pool comes from new buyers who lose and do not exit (rate

bounded above by λ (1− α)), while the outflow comes from losers who return and either win

or lose and exit (rate at least nγkα). Given that normalization, conditional beliefs at on-path

observable states converge as well.

We now state and prove the two lemmas. Given (σ, p), for each type x define v̂ (x, j, b; ω̃, σ, p)

as the expected payoff from bid b in auction j at observable state ω̃.

Lemma 1 Fix L, and pick any observable state ω̃ such that only the L next-to-close auctions

have received bids. Then for any type x and auction j ≤ L,

lim
k→∞

∣∣∣∣max
b∈B

v̂
(
x, j, b; ω̃, σ∗

L,Jk
, p∗L,Jk

)
− v̂

(
x, j, b

(
x, v∗L,Jk

)
; ω̃, σ∗

L,Jk
, p∗L,Jk

)∣∣∣∣ = 0.

Proof. We first show that at such an ω̃, in the limit the expected re-entry value is independent

of b, j, and ω̃. It therefore equals the unconditional expectation, v∗L,Jk (x). That is, we show that

for any type x, bid b, and auction j ≤ L, we have

lim
k→∞

∣∣EV
(
x, ω̃;σ∗

L,Jk
, p∗L,Jk , j, b

)
− v∗L,Jk (x)

∣∣ = 0,
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where

EV (x, ω̃;σ, p, j, b) ≡

∑
ωl∈Ω

V (x, ωl;σ, p)hσ,p(ω
l; ω̃, j, b)∑

ωl∈Ω
hσ,p(ωl; ω̃, j, b)

is the expectation of the re-entry payoff conditional on having submitted bid b in auction j at

observable state ω̃, losing, and entering the losers’ pool.

As γk → 0, the probability of the event that no buyers arrive as L consecutive auctions go by

before the buyer returns goes to 1. That event implies that the choice of b and j ≤ L have no

further effect on the observable state (no active bid has been placed by a bidder who saw b and

j, or by a bidder who saw a bid placed by a bidder who saw b and j, and so on) and thus have

no effect on the actions of other buyers.

As noted above, when k grows conditional beliefs at on-path observable states and transition

probabilities over bids and high bidders’ types in the next L auctions converge. Because that

limit process is ergodic and the number of on-path observable states is finite, if the number

of periods before the buyer re-enters is high, then beliefs over re-entry state are close to the

stationary distribution, conditional on any observable state when the buyer enters the losers’

pool. As γk → 0, the re-entry time is very high with very high probability. Therefore, in

the limit the expected re-entry payoff is independent of the observable state ω̃ when the buyer

chooses b and j.

Because the expected continuation value after losing for a type-x buyer is close to (1− α) v∗L,Jk(x),

regardless of which bid or which of the next L auctions the buyer chooses, the arguments of

Proposition 3 imply that b
(
x, v∗L,Jk

)
≈ x − (1− α) v∗L,Jk (x) is a nearly optimal bid in any of

the next L auctions.

Lemma 1 establishes that because a buyer who has chosen one of the first L auctions faces an

approximately constant continuation value after losing, an approximately optimal bid in any of

those auctions is his value minus his continuation value. In Lemma 2, we show that one of those

L auctions is nearly always a nearly optimal choice. By construction of σ∗
L,Jk

, a type-x buyer

who chooses one of the first L − 1 auctions expects to get at least v∗L,Jk (x). The only way to

get less is if he turns down all of the first L − 1 auctions; in that event, under σ∗
L,Jk

he bids in

auction L even if it yields a low expected payoff. That event, though, is very unlikely for large

L.
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Given scalar η > 0 and L-horizon constant bidding strategy σ with corresponding payoff func-

tion v, let Ωη (σ, v) be the set of states at which for each buyer type x, 1) playing according to σ

gives an expected payoff no lower than v(x)−η, and 2) submitting a bid in auction L+1 or later

gives an expected payoff no higher than v(x) + η. Let π (Ωη (σ, v) |σ) denote the steady-state

probability of Ωη (σ, v) under σ.

Lemma 2 For any η > 0, lim
L→∞

lim
k→∞

π
(
Ωη
(
σ∗
L,Jk

, v∗L,Jk
)
|σ∗

L,Jk

)
= 1.

Proof. The hypothetical static game in Step 1, 1, where at observable state ω̃ a type-x buyer

decides between submitting a bid of b
(
x, v∗L,Jk

)
≈ x−(1− α) v∗L,Jk (x) in an auction that closes

at the end of the period or taking payoff of v∗L,Jk (x), corresponds to the following second-price

auction: the same random set of bidders, but a bidder of type x has value xnet
(
x, v∗L,Jk

)
=

x−(1− α) v∗L,Jk (x) and an outside option of αv∗L,Jk (x). (That is, the payoffs from winning and

from not participating are both measured as surplus over continuation value (1− α) v∗L,Jk (x).)

There is a hidden reserve price equal to the standing high bid w1, distributed according to

p∗L,Jk (ω̃).

Equilibrium in the hypothetical game is equivalent to the outcome of that auction: bidders

choose whether or not to bid, and if they do they bid their value. From Myerson (1981), we

know that the expected auction payoff to a bidder with value v equals the integral up to v of the

probability of winning for each bid, P (xnet). In the hypothetical game, then, the payoff to a

type-x player who chooses to bid is

(1− α) v∗L,Jk (x) +

xnet
(
x,v∗L,Jk

)∫
0

P (xnet)dxnet.

In the auction, the probability that a bidder wins equals the probability that his net value exceeds

the standing high bid w1 and that no other bidder with a higher net value participates (with a

small adjustment for the possibility of a tie).

The hypothetical static games in the other steps of defining σ∗
L,Jk

are similarly equivalent to

auctions, even when auction j will not close until a later period, so that in principle the buyer’s

bid could affect the entry choices of future buyers. Because only the highest losing bid is

observed, his bid can influence future behavior only when he has already lost. Thus, the set of
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competing bidders is effectively exogenous. The expected payoff from submitting a bid in any

of the first L − 1 auctions is an integral of the probability that a bid exceeds both the standing

high bid and the net values of bidders who enter that auction.

We can now show that for each type x, σ∗
L,Jk

(x) gives an expected payoff, conditional on the

observable state at arrival, of at least (close to) the average payoff v∗L,Jk (x) with high probability

in the limit. Under σ∗
L,Jk

(x) , a buyer bids with positive probability in the earliest auction j that

gives him expected payoff at least v∗L,Jk (x) (if there is one among the next L auctions). Bidding

in auction j lowers j’s expected value for future buyers, all else equal, and so lowers their

equilibrium probability of participating in auction j and pushes them toward later auctions. The

type-x buyer can get less only if all L auctions yield an expected payoff below v∗L,Jk (x) – that

is, if the expected distribution of the numbers and types of bidders is worse than average in all

L auctions. When L is large, the probability of so many deviations from long-run averages of

arrival rates and mixed strategy auction choices is low.

Similarly, as L grows and the number of potential bidders in each of the L auctions becomes

large, the same type of competition implies that a buyer i of type x would be unlikely to get a

payoff much above v∗L,Jk (x) by submitting a bid in an auction later than specified by σ∗
L,Jk

(x).

If buyer i participates in an auction that should not under σ∗
L,Jk

receive a bid, then buyers in the

next period see that a bid has been placed but do not observe the amount. The conditional belief

system p∗L,Jk assigns probability 1 to that unknown bid being the lowest amount feasible, and so

the off-path bid does not deter subsequent buyers from participating in that auction.
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