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The Impact of Information Technology 
on the Diffusion of New Pharmaceuticals†

By Kenneth J. Arrow, L. Kamran Bilir, and Alan Sorensen*

Do information differences across US physicians contribute to treat-
ment disparities? This paper uses a unique new dataset to evaluate 
how changes in physician access to a decision-relevant drug data-
base affect prescribing decisions. Our results indicate doctors using 
the reference have a significantly greater propensity to prescribe 
generic drugs, are faster to begin prescribing new generics, and pre-
scribe a more diverse set of products. These results are consistent 
with database users responding primarily to the increased acces-
sibility of non-clinical information such as pricing and insurance 
formulary data, and suggest improvements to physician information 
access have important implications for aggregate healthcare costs. 
(JEL D83, I11, I18, L65)

National health expenditures exceed $3 trillion annually in the United States, 
account for nearly 20 percent of US GDP, and are to a considerable extent 

publicly funded.1 Yet, research by the Dartmouth Atlas Project and Cooper et al. 
(2015) finds substantial, systematic disparities in both the extent of health spending 
and the quality of medical care across US regions, including threefold per capita 
expenditure gaps resulting from inefficient variations in care—differences con-
sistent neither with patient preferences nor with underlying medical conditions.2 
These findings imply significant gains could be achieved by improving efficiency 
in low-performing regions, but this requires first identifying the specific mecha-
nisms that cause treatment disparities. Among the many potential mechanisms that 
have been proposed—which include supply, demand, regulatory, and pricing differ-
ences—perhaps the most important and intriguing is that disparities result from a 

1 See https://www.cms.gov/nationalhealthexpenddata.
2 The Dartmouth Atlas Project has documented healthcare disparities for Medicare patients over decades 

(Wennberg and Cooper 1996; Gawande 2009; Chernew, Hirth, and Cutler 2009). Cooper et al. (2015) find related 
disparities among the privately insured population. See also Wennberg and Wennberg (2003).
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lack of uniformity in physicians’ information about available therapies.3 The possi-
bility that information problems underlie observed treatment disparities has inspired 
calls for the expanded use of medical decision aids, but the difficulties inherent to 
measuring information differences have led to a paucity of systematic evidence on 
their actual importance.4

To shed light on the question of how physicians’ information access impacts 
treatment choices, we assemble a new dataset in which treatment decisions and 
access to a decision-relevant database are directly observed at the doctor level for 
the universe of US prescribers over the decade 2000–2010.5 Our ability to observe 
both treatment decisions and database usage by individual doctors over a period 
of time is a particularly important and unique aspect of the dataset we construct; 
furthermore, these data cover Medicare patients and the privately insured as well as 
those with Medicaid or no coverage, so that the results of our analysis are represen-
tative of the full range of US patient types.6

Using these data, we provide novel evidence that physicians using the drug ref-
erence database significantly increase their likelihood of prescribing a generic drug 
relative to brand name therapies, and thus increase their generic prescription share—
one of the key efficiency metrics emphasized in the Dartmouth Atlas in documenting 
prescription drug variations.7 Database users are also significantly faster to begin 
prescribing newly released generics, an effect absent for new branded drugs. These 
findings suggest that database users may be responsive to the increased salience 
of non-clinical information in the database—including whether a particular drug 
is currently covered by a patient’s insurance plan and plan-specific pricing—as a 
generic drug and its branded equivalent share essentially identical clinical attributes. 
We find that treatment differences across doctors decline significantly more among 
database users than nonusers during the sample period, while the actual diversity of 
a user’s own prescribing increases on average following adoption. Access to detailed 
information about competing treatments thus appears to raise efficiency and reduce 
disparities, but importantly, these effects do not appear to come at the expense of 
patient-sensitive decision making.

Our empirical strategy is data intensive, requiring the combination of two unusu-
ally large proprietary datasets; therefore, we focus our analysis on a single class 
of pharmaceutical products—cholesterol drugs.8 While this drug class is already 
of immediate interest due to its exceptionally large US market, the rapid pace of 
innovation during the period relevant for doctors’ adoption of the drug database 
imply this class is ideal for studying the effects of information technology usage on 
the diffusion of new prescription drugs. Indeed, during the relevant decade, twelve 

3 For example, Skinner (2011).
4 See Phelps (2000), Wennberg and Wennberg (2003), and Arrow (1969).
5 The provider of the database is a leading US point-of-care medical applications firm that chose to remain 

unnamed in this study. For a description of all major drug references, see Ventola et al. (2014).
6 These categories are new relative to existing evidence on healthcare variations; see footnote 2.
7 See Munson et al. (2013).
8 Prescription data covering additional drug classes exist, but are not available for the current study due to the 

unusually large size of the customized data extracts involved.
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nationwide product innovations occurred.9 The differential response across physi-
cians to these repeated drug introductions is crucial to our identification strategy 
because it allows us to measure the influence of information access on treatment 
decisions while accounting for physician characteristics that simultaneously affect 
both prescribing and database adoption.

This is particularly important for our analysis because access to the drug data-
base is not randomly assigned—doctors choose whether and when to subscribe. 
Prescription patterns of subscribing doctors may therefore look different from those 
of nonsubscribers not due to any effects of the database itself, but instead due to 
differences in the types of doctors who choose to subscribe. With this challenge in 
mind, our analysis relies heavily on within-doctor variation over time: rather than 
estimating effects by comparing database users to nonusers, we focus on compari-
sons of a doctor’s own prescriptions before versus after she begins using the data-
base. In line with this strategy, much of our main analysis restricts attention to the 
sample of physicians that eventually adopts the reference database. To account for 
the possibility that dynamic prescribing determinants may be correlated with adop-
tion timing within a location, such as changes in doctor-specific drug advertising, 
our main specifications also include doctor-specific time trends and zip-code-month 
fixed effects. We further provide time-varying estimates that indicate the prescribing 
changes we find either coincide with or immediately follow database adoption.

Our empirical approach nevertheless leaves open the possibility that unobserved 
changes not accounted for by doctor-specific time trends or zip-code-month fixed 
effects both affect prescribing and coincide with database adoption. To help address 
this concern, we group doctors based on the intensity with which the drug data-
base is used to search about cholesterol drugs. In line with the idea that doctors’ 
prescribing changes are associated with use of the database, these results reveal 
a larger association between database usage and prescribing changes among rela-
tively intense database users, compared with lower-intensity users. Also consistent 
with this interpretation, the drug reference database we consider is a stand-alone 
technology, accessed by an individual rather than institutional subscription, and is 
not embedded into other health information technology systems. This is import-
ant, because if the database were part of a broader health information technology 
platform—for example, one that includes features that facilitate patient and insurer 
billing (see Agha 2014)—it would be difficult to know whether estimates corre-
sponding to database use indicate effects of drug information access or, instead, 
effects of some other technology that is part of the same health IT system that the 
doctor accesses.10

9 The Centers for Disease Control and Prevention estimates that approximately 71 million US adults suffer 
from chronic hypercholesterolemia and dyslipidemia, conditions in which abnormal levels of cholesterol or lipids 
are present in the bloodstream. These conditions are associated with heart disease, heart attack risk, and premature 
death; accordingly, sales of cholesterol therapies accounted for over $18 billion in 2011 (Ledford 2013). See also 
Mozaffarian et al. (2015). Drug introductions are described in Section IIA and listed in Table 1.

10 Relatedly, it is important to note that while other drug references exist, including the Micromedex and 
UpToDate Lexicomp databases, these are imperfect substitutes for the database we consider. In particular, these 
other databases do not contain drug price or formulary-specific coverage information and are typically accessed 
by institutional subscription. Because our data do not include information on doctors’ potential usage of these 
alternative platforms, it is also important to point out that if a doctor tends to begin using all databases around the 
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Consistent with the regional disparities documented in the Dartmouth Atlas, our 
data reveal substantial prescribing variation across the universe of individual US 
physicians, particularly with respect to generics and new drug adoption. Doctors 
differ widely in generic prescription shares (mean 56.4 percent, standard deviation 
24.3 percent) in December 2010, and span the full range from no generics (fifth per-
centile) to only generics (ninety-fifth percentile).11 We find that these generic shares 
are strongly and positively correlated within physician across patient insurance types 
(e.g., private versus Medicare), suggesting patient cost sharing is unlikely to explain 
the observed heterogeneity in prescribing patterns. Moreover, with respect to drug 
adoption, some US physicians begin prescribing a newly-approved cholesterol drug 
immediately, while others delay for a year or more before prescribing it, a pattern 
strongly evident even among new generic drugs. Six months after the introduction 
of generic lovastatin, for example, the molecular equivalent of Mevacor, the generic 
version accounted for only 83 percent of the drug’s prescriptions; by contrast, the 
generic share reached essentially 100 percent by December 2010. This delayed sub-
stitution is evident for each of the generic entrants we observe, contributing to wide 
differences across doctors in the overall prescription share of generic drugs and to 
large corresponding gaps in cost.12

Our empirical analysis indicates that some of this observed prescription hetero-
geneity is explained by differences across doctors in information access. Our most 
conservative estimates indicate that, after obtaining database access, a physician 
user increases the likelihood of prescribing a new generic drug within its first market 
year by 1.3 percent; among high-intensity database users, this rises to a 2.4 percent 
increase. Regarding diversity, database users increase the number of unique drugs 
prescribed each month by a modest but highly significant 0.035 drugs, reducing the 
prescription Herfindahl-Hirschman index by 0.003 points. In line with both results, 
users increase the monthly likelihood of prescribing new and old generic drugs by 
1.6 and 2.4 percent, respectively, after database adoption, while reducing the likeli-
hood of prescribing a new branded drug by 0.5 percent. Our back-of-the-envelope 
calculations suggest the resulting increase in users’ generic prescription shares 
contributes to substantial aggregate cost savings, which amount to approximately 
$1 billion annually for prescription drugs alone.13

This paper is related to an extensive literature documenting wide healthcare 
disparities across US regions, including the Dartmouth Atlas (e.g., Wennberg and 
Cooper 1996) and its analysis of prescription drug use among Medicare patients 
(Munson et al. 2013), and Cooper et al. (2015) for their analysis of the privately 
insured. We contribute to this work by first documenting prescription disparities 
for US prescribers and patients with all insurance types within a major therapeu-
tic area. Second, relying on the unusual level of detail and coverage in the dataset 
we have assembled, we identify a highly significant link between observed dispari-
ties and a specific mechanism—physician information differences—that we find is 

same time, our estimates would reflect the influence of information from all platforms rather than just the one we 
observe directly.

11 See Table 3.
12 See Section IID and Section VII.
13 See Section VII.
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partially responsible for these disparities. While our data are broader with respect 
to physician and patient coverage, our empirical strategy is demanding (our dataset 
includes over 200 million observations); we therefore focus on a single clinical area 
while Dartmouth Atlas and Cooper et al. (2015) cover a comprehensive set of treat-
ments. Aggregating our physician-level data to Dartmouth Atlas regions, we never-
theless find that locations with high generic prescription shares in our dataset also 
have high generic shares for Medicare overall (correlation 44.4 percent), as well as 
lower per capita medical spending for prescription drugs (correlation 23.9 percent) 
and non-drug healthcare (correlation 12.4 percent)—patterns that underscore the 
highly systematic nature of US disparities in care, and suggest the potential value of 
extending our physician-level analysis to other clinical settings.14

Our paper is also closely related to work aimed at evaluating the impact of infor-
mation technology on economic decisions and outcomes.15 Agents’ electronic infor-
mation access can affect productivity (Solow 1987) and has been specifically shown 
to improve performance in emergency healthcare delivery (Athey and Stern 2002). 
However, in routine medical contexts the evidence is less clear. Dranove et al. (2014) 
find that the adoption of electronic medical records (EMR) raised hospital costs on 
average, with an important exception—adopting locations with an abundance of 
industrial IT did in fact experience cost declines. Our results complement this latter 
finding in that the medical decision support tool we study is standardized, likely to 
a greater extent than EMR, yet we observe that both the intensity and impact of its 
use differ substantially across physicians in the data. In particular, we find that the 
efficiency impact of database use is systematically larger among adopters using the 
database intensively to search for information about the cholesterol drugs we study.

In finding that use of an information database tilts prescribing away from branded 
drugs and toward generics, our results contribute to important work highlighting the 
influence of information on tastes for generic products. Bronnenberg et al. (2015) 
find that relatively informed buyers are more likely to choose a generic version, for 
example, when purchasing an over-the-counter drug, suggesting consumer misin-
formation contributes to the brand premium for health products. Our results add 
nuance to this finding, suggesting that even among highly trained and educated US 
physicians, access to current product information including pricing increases the 
propensity to prescribe a generic version and decreases that for branded drugs. We 
find that the impact of database access is systematically larger for physicians located 
far from the information frontier, and that dynamics in the product space (drug 
entry) may be important in explaining our results, as database users are also faster 
to begin prescribing a newly-introduced generic version. In finding that physicians’ 
information access affects decisions made on behalf of patients, and that prescrib-
ing is highly correlated within a physician across patients regardless of insurance 

14 Our data do not include individual patient characteristics; this latter aspect precludes a direct extension of 
Munson et al. (2013) to non-Medicare patients, as well as a quantitative welfare analysis. It further precludes 
estimating a model featuring prescription dynamics within each patient-physician pair, as in Crawford and Shum 
(2005) or Dickstein (2018).

15 See, for example, Attewell (1992); Bresnahan and Greenstein (1996); Black and Lynch (2001); Bresnahan, 
Brynjolfsson, and Hitt (2002); Brynjolfsson and Hitt (2003); Hubbard (2003); Forman, Goldfarb, and Greenstein 
(2005); Bloom et al. (2009); Bloom, Sadun, and Van Reenen (2012); Agha (2014).
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coverage, our results are further aligned with Brot-Goldberg et al. (2015) and Cutler 
et al. (2015), which find evidence that physician preferences are key in explaining 
treatment decisions.

Our results add to the literature examining the determinants of new medical tech-
nology diffusion. Classic work by Coleman, Katz, and Menzel (1957, 1966) finds 
that new pharmaceutical products diffuse unevenly across medical practitioners: 
physicians who interact more frequently with other physicians are more likely to 
adopt early. Relatedly, Skinner and Staiger (2007) provide evidence that certain 
US states have a systematic tendency to adopt early across technology types as 
varied as beta blockers and hybrid corn (Griliches 1957). We find that physician 
access to a digital database also speeds new drug adoption, but only for generics; 
further, to account for local differences in the tendency to adopt both drugs and 
the database early, which could reflect general differences in unobserved factors 
such as drug advertising, we emphasize specifications that include both physician 
and zip-code-by-month fixed effects.16 In focusing on individual-level drug adop-
tion, our work is also closely related to Crawford and Shum (2005) and Dickstein 
(2018), who estimate models of physician learning, and Agha and Molitor (2018), 
who study the diffusion of cancer drugs.17

More broadly, our analysis complements research on general theories of tech-
nology diffusion featuring agents with imperfect information. Such theories can be 
shown to explain large existing differences in productivity across locations (Solow 
1956, Arrow 1969, Parente and Prescott 1994, Comin and Hobijn 2004) as iden-
tified in Klenow and Rodríguez-Clare (1997) and Caselli and Coleman (2006), 
for example.18 We introduce a unique dataset in which a sequence of technology 
adoption decisions is clearly observed at the individual level for the universe of US 
prescribers, allowing our study to speak both to microlevel mechanisms driving dif-
fusion and to the aggregate consequences of these mechanisms.

The rest of the paper is organized as follows. Section I describes the data used 
in our analysis. Section II describes a simple model of prescription choice and our 
estimation framework. Section III presents the empirical results; Sections IV and V 
discuss interpretation; and Section VI concludes.

I.  Data and Descriptive Evidence

Evaluating the influence of information access on new pharmaceutical drug dif-
fusion requires detailed measures of drug innovations and individual prescribers’ 
treatment decisions, information usage, and characteristics. We introduce each of 
these measures below and go on to describe physicians’ prescribing of new and 
existing pharmaceutical drugs.

16 We also consider the influence of local differences in mandatory substitution regulations that could be partic-
ularly important for explaining generic diffusion in the data, and find that the effects of database access are evident 
among physicians practicing both within and outside states with a mandatory substitution law.

17 See also Escarce (1996), who studies physicians’ decisions to adopt a surgical technology.
18 The idea that underlying heterogeneity across agents could influence technology diffusion also relates our 

work to neoclassical models of technology adoption—e.g., David (1966) and Manuelli and Seshadri (2014).
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A. US Innovations in Chronic Hypercholesterolemia and Dyslipidemia Therapy

Our analysis considers a class of prescription drugs—cholesterol medications—
that are interesting both because of their substantial US market and, importantly, 
because of significant drug innovations during the time period relevant to physi-
cians’ adoption of the drug reference database. Specifically, at the start of our sample 
period in January 2000, HMG-CoA reductase inhibitors (statins) were understood 
to be the most effective pharmaceutical therapies for hypercholesterolemia, and 
there were five such products available: Lescol, Lipitor, Mevacor, Pravachol, and 
Zocor.19 The most common non-statin used to treat high cholesterol was Niaspan, 
which is also included in our sample. Thereafter, twelve new cholesterol or lipid 
control therapies were introduced, including new formulations, combinations, and 
versions.20 These include (i) three new molecular entities: Crestor, Lovaza, and 
Zetia; (ii) three generic versions: lovastatin (Mevacor), pravastatin (Pravachol), 
and simvastatin (Zocor); (iii) two new formulations: Altoprev (extended-release 
Mevacor) and Lescol XL (extended-release Lescol); and (iv) four new drug com-
binations: Advicor (extended-release niacin and Mevacor), Pravigard PAC (aspirin 
and Pravachol), Vytorin (Zetia and Zocor), Simcor (extended-release niacin and 
Zocor). Each new therapy received nationwide approval by the US Food and Drug 
Administration (FDA) on a known, drug-specific date (Table 1). All products are 
described in online Appendix A.1.

While these 18 products are therapeutic substitutes in that they aim at a simi-
lar clinical endpoint—cholesterol or trigliceride reduction—they are only imper-
fect substitutes: each product features distinctive characteristics relevant for the 
prescribing decision. First, many but not all cholesterol therapies are pure statins, 
which act to reduce cholesterol synthesis in the liver by inhibiting a specific coen-
zyme; these include Lescol (fluvastatin), Lipitor (atorvastatin), Mevacor (lovasta-
tin), Pravachol (pravastatin), Zocor (simvastatin), Crestor (rosuvastatin), Altoprev 
(extended-release lovastatin), and Lescol XL (extended-release fluvastatin). Other 
products rely on different mechanisms of action. Zetia (ezetimibe), for example, is 
distinct in that it achieves cholesterol reduction by reducing intestinal absorption 
of cholesterol. A second distinction involves therapeutic intensity. High doses of 
Lipitor and Crestor are more effective at lowering low-density lipoprotein (LDL) 
cholesterol than alternatives (Law, Wald, and Rudnicka 2003). Side effects are also 
relevant; evidence suggests, for example, that high doses of Lipitor and Crestor 
may increase the incidence of adverse reactions, while combination therapies such 
as Vytorin may in certain cases be more appropriate care for patients with severe 
cholesterol abnormalities (Kastelein et al. 2008).

More subtly, clinical evidence suggests the benefits and risks associated with 
statins are heterogeneous across patients. Randomized controlled trials (RCTs) 
indicate, for example, that the benefits of statin use are higher for patients with 

19 Cannon et al. (2004).
20 To ensure adequate coverage in the data, we consider all cholesterol therapies introduced by December 2008, 

but not those introduced after this date. For the same reason, our analysis excludes Baycol, a drug that was available 
in January 2000 but withdrawn from the market in August 2001.
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diabetes, negligible among those with prior heart failure, and vary with age; risks 
and side effects also vary with statin intensity, age, weight, comorbidities, and 
so on (Brooks et al. 2014). Adding to this, patients with “complex” attributes are 
often underrepresented in RCTs, raising clinical uncertainty and the likelihood that 
patient preferences—including willingness to suffer side effects and to pay for med-
ications—may influence the prescribing choice (Brooks et al. 2014).

Physicians’ decisions about which drugs to prescribe are further affected by 
the evolution of clinical information as new trials are completed—particularly 
head-to-head studies aimed at establishing the relative efficacy of one drug ther-
apy over another.21 These ongoing changes in clinical evidence, combined with an 
expanding set of available products and the accompanying evolution in prices and 
insurance coverage (e.g., Duggan and Scott Morton 2010), suggest that physicians 
may turn to drug references that help to ensure patient-specific prescription deci-
sions are based on accurate information.

21 For example, an RCT completed in 2004 demonstrated that for patients with severe cholesterol abnormality, 
the incrementally larger reductions achieved by Lipitor resulted in fewer deaths and major coronary events relative 
to patients taking Pravachol (Cannon et al. 2004). Another such study released in 2008 found that, while Vytorin 
achieved larger cholesterol reductions than simvastatin, the two drugs were observably identical when it came to 
the thickness of arterial plaque buildup (atherosclerosis); adding to this, a second study in 2008 found a positive 
association between Vytorin and cancer (Rossebø 2008) that was later reversed (Cannon et al. 2015).

Table 1—Descriptive Statistics, US Cholesterol Drug Introductions, January 2000–December 2008

Drug name   Release date
FDA approval 

category

Months to first prescription, 
conditional on prescription Adoption share 

December
2010Mean SD

(1) (2) (3)

Lescol XL October 2000 Dosage form 28.89 23.56 0.620
Advicor December 2001 Combination 64.77 15.38 0.295
lovastatin December 2001 Generic version 19.87 22.66 0.923
Altoprev June 2002 Dosage form 42.62 24.07 0.151
Zetia October 2002 Molecular entity 15.13 17.34 0.928
Pravigard PAC June 2003 Combination 7.30 5.94 0.037
Crestor August 2003 Molecular entity 22.67 21.83 0.923
Vytorin July 2004 Combination 13.10 13.48 0.891
Lovaza November 2004 Molecular entity 34.98 17.08 0.659
pravastatin April 2006 Generic version 7.41 12.30 0.909
simvastatin June 2006 Generic version 3.05 7.33 0.982
Simcor February 2008 Dosage form 12.33 9.18 0.230

Notes: This table summarizes the variation across individual US physicians in the initial prescription of twelve new 
pharmaceutical products, each aimed at controlling blood cholesterol or lipid levels.  Each product was approved for 
sale in the United States on the date indicated. New drug approvals are categorized by the FDA based on whether 
the product is a new molecular entity, a new drug combination, a new dosage form, or a new generic equivalent.  
The distribution of initial prescription dates across the set of US physicians that prescribe the drug at least once 
by December 2010 is described by the mean (column 1) and standard deviation (column 2) in months from initial 
FDA approval to the first prescription filled at a US pharmacy. The share of physicians that prescribe the product at 
least once by December 2010 (column 3) ranges from 3.7 percent (Pravigard PAC) to 98.2 percent (simvastatin).  

Source: Prescription data are from IMS Health (IQVIA). 
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B. Prescriptions by US Physicians

To measure physicians’ prescribing of new and existing therapies aimed at cho-
lesterol and lipid control over time, we use physician-level prescription data for the 
18 drugs described above from the IMS Health Xponent database.22 These data are 
provided at a monthly frequency by drug during the period January 2000 through 
December 2010, and cover each of the 280,622 US physicians associated with at 
least ten cholesterol-drug prescriptions during January to December 2010. This low 
threshold for inclusion implies that our dataset captures essentially the universe of 
US cholesterol drug prescriptions during this period. For each product and month, 
we observe the number of prescriptions written by each physician and filled through 
a US pharmacy. Beginning in January 2006, the data also include information on 
the method of payment used to fill each prescription (Medicaid, Medicare Part D, 
cash, or commercial third-party insurance). Importantly, each physician in the data-
set is identified by a unique medical education number, name (first name, last name, 
middle name), and location (a five-digit US zip code). These identifiers enable us to 
match individual prescribers with their observed pharmaceutical information tech-
nology use.

To ensure that our sample includes only those physicians actively prescribing cho-
lesterol drugs during the entire sample period, we restrict attention to the 128,043 
physicians that prescribe ten or more statins both during January to December 2000, 
and during January to December 2010; this allows us to abstract from potential 
differences in prescribing that may surround a physician’s entry into or exit from 
medical practice, and also ensures that we have adequate data on database adopters’ 
pre-adoption and post-adoption prescribing patterns. The final prescription dataset 
includes over 200 million observations (132 months ​×​ 128,043 physicians ​×​ up to 
18 drugs). Summary statistics appear in Table 2, and additional details regarding 
data assembly and the Xponent database appear in online Appendix A.2.

C. Drug Information Access by US Physicians

To construct an index for the extent of physicians’ pharmaceutical information 
access, we use novel physician-level data from the private firm that owns and oper-
ates a prominent electronic reference for pharmaceutical products. The data include 
a monthly indicator for whether a US physician is a registered user of the refer-
ence database, and this suggests the database is widely used: by December 2010, 
45.1 percent of sample physicians had established an individual database account 
(Table 2). The data also include information about registered physicians’ actual use 
of the reference during the sample period; we observe a lower bound on the number 
of times a physician looks up a cholesterol drug using the database. This proxy is 
3.83 on average, and the data indicate that, while 24.2 percent of physicians are 
registered database users in the average month, only 13.1 percent of physicians use 
the database to look up one of the cholesterol drugs considered in our study. It is 

22 IMS Health (IQVIA) curates data on additional drug classes; these additional data are not available for the 
current study due to the unusually large size of the customized data extracts involved.
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for this latter group of physicians that database access is likely to be relevant to the 
cholesterol-drug prescribing outcomes we consider. In Section IV, we thus consider 
whether the observed intensity of database use explains variation in its impact on 
prescribing.

The drug reference we study contains information that is, in principle, relevant 
for improving the match between patient characteristics and available pharmaceuti-
cal products. At any point in time, the drug reference contains detailed information 
about each available US FDA-approved medication. This information is obtained 
from the medical literature, specialist recommendations, clinical guidelines, man-
ufacturer labeling, standard medical references, and FDA drug safety alerts and 
is updated continually. The results of this ongoing research are condensed into 
drug-specific monographs that may be accessed through the electronic database 

Table 2—Regression Summary Statistics

Variable Mean SD Min Max

Physician-Drug-Month level
Number of prescriptions 4.429 12.721 0 700
Indicator for positive prescriptions 0.355 0.479 0 1

Physician-Month level
Drug database indicator 0.248 0.432 0 1
Drug database and use indicator 0.133 0.340 0 1
Drug database other adoption share in ​​zip code​t−1​​​ 0.131 0.132 0 1
Proxy for intensity of database use 3.829 11.04 0 1,268
Number of unique drugs prescribed 5.304 2.775 1 16
Prescription Herfindahl-Hirschman index (HHI) 0.438 0.223 0.097 1
Generic prescription share 0.043 0.266 0 1
Prescription volume 65.79 66.31 1 2,503

Physician-Drug level
Months to first prescription 19.12 21.95 0 122
First prescription within initial year indicator 0.352 0.478 0 1

Drug-Month level
Indicator for new drug, 24 months 0.155 0.363 0 1

General
Number of physicians 128,043
Number of drugs, January 2000 6
Number of drugs, January 2000–December 2010 18

Notes: This table summarizes the data on physician-level prescriptions and database access used in the analysis.  
Statistics correspond to US physicians that prescribe a minimum of ten statin or lipid-lowering products both during 
January–December 2000 and January–December 2010 and that work in a zip code hosting three or more prescrib-
ing physicians. The "Drug database indicator" varies by physician-month and is equal to one for physicians that are 
registered users of the drug database; "Drug database and use" indicates that a physician both has database access 
and is observed using it to search for information about at least one of the 18 cholesterol drugs during the sample 
period. "Drug database other adoption share in zip code" varies by physician-month and is the fraction, in the pre-
vious month, of other physicians practicing in the same zip code for which "Drug database and use" is equal to 
one.  The intensity of use proxy is a lower-bound on the number of physician-specific database queries correspond-
ing to the cholesterol drugs considered in this analysis. Prescription diversity by physician-month is summarized 
by the number of unique drugs prescribed and the corresponding Herfindahl-Hirschman index. "First prescription 
within initial year indicator" takes a value of one for doctors that prescribe the new drug within its initial market 
year and is otherwise zero. Drugs are considered new if within 24 months of market approval by the US Food and 
Drug Administration. 

Source: Prescription variables are from IMS Health (IQVIA) and database registration data are from a leading US 
point-of-care medical applications firm. 
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interface. Beyond standard clinical information such as contraindications, cautions, 
adverse reactions, safety, monitoring, and pharmacology, the reference monographs 
also include a set of additional variables for each product that may affect prescribing 
decisions. Specifically, the monographs include retail pricing and formulary sta-
tus information for each drug, drug interaction information, FDA warnings, and 
off-label and pediatric usage guidelines. Each physician customizes the tool with 
respect to formularies, selecting those relevant to their decision needs; it is then 
straightforward, for any drug, to check copay tiers, formulary alternatives, generic 
substitutions, criteria for prior authorizations, and quantity limits—facets of a for-
mulary that are subtle but often have significant consequences for patient costs. The 
database includes separate entries for each branded product and each generic prod-
uct based on product-specific information such as available formulations, dosing, 
indications, manufacturer, and pricing. The database is updated to reflect both the 
current set of products and formulary details, as well as the current state of knowl-
edge regarding drug characteristics and clinical practice. Importantly, information 
for new drugs becomes available around the time the drug is released by the FDA 
for commercial prescription.

Because the drug reference combines available information into a single, current 
monograph rather than contributing new or proprietary drug information, it is best 
viewed as a tool that makes it convenient for physicians to quickly access condensed 
clinical, insurance, and pricing information about a drug. Doctors commonly use 
the reference to check dosages, contraindications, and coverage details, but rely on 
other sources, such as medical journals or more encyclopedic references, for infor-
mation such as a drug’s results in clinical trials.

The database provides certain forms of clinical guidance to prescribers. While it 
recommends statins as a first-line treatment for use in reducing LDL-C (low-density 
lipoprotein cholesterol), it is important to note that guidance in terms of which 
among the available drugs to prescribe is highly patient-specific. For example, the 
database identifies each statin as falling into one of three groups: high-intensity, 
moderate-intensity, and low-intensity. These groups are defined based on numeric 
LDL-C reduction targets that are specific to a patient. The reference indicates that a 
patient in the high-intensity category (daily dosage lowers LDL-C by over 50 per-
cent on average) should receive either atorvastatin with a dosage of 40–80 mg/day 
(Lipitor) or rosuvastatin with a dosage of 20–40mg/day (Crestor).23

The electronic drug reference database we study is a stand-alone technology, 
not embedded into other health information technology systems, and is accessed 
almost exclusively by an individual (rather than institutional) subscription. This is 
important because if the database were part of a broader health information tech-
nology platform—for example one that includes features that facilitate patient and 
insurer billing (see Agha 2014)—it would be difficult to know whether estimates 
corresponding to database use indicate effects of drug information access or effects 

23 Notice that evaluating whether doctors with database access better adhere to these guidelines than those with-
out access would require observing (i) patient-specific LDL-C reduction goals for each doctor-month, and ideally 
also (ii) the dosage for each dispensed prescription. Because we are unable to observe either of these details, it is 
not possible in our analysis below to assess directly whether adherence to prescribing guidelines improves with 
database usage.
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of some other technology that is part of the same health IT system that the doctor 
accesses.24

For our study, it is critical to understand what drives database adoption. Figure 1 
indicates that use of the reference database during the sample period is not random, 
but differs according to observable doctor characteristics.25 Throughout the sample 
period, physicians are more likely to have adopted the database if they had gradu-
ated from a top-ranked US medical school (panel A) and had graduated recently 
(panel B); males are also more likely to adopt (panel C). Doctors in obstetrics and 
gynecology (panel E) and those practicing in the US South (panel F) appear system-
atically slower to adopt the database.

Presently, new physician adopters tend to learn about the reference while in 
medical school. However, because the physicians in our dataset had all completed 
medical school before the database became available, their adoption decisions are 
more likely to have been driven by marketing or peer effects. Documents filed along 
with the reference firm’s initial public offering state that its marketing strategy was, 
in fact, an informal “word-of-mouth” approach, and that throughout the sample 
period, the network of reference users grew over time primarily through users telling 
friends and colleagues about its value. The filings state that this strategy had been 
both highly effective and inexpensive relative to the alternative of hiring a dedicated 
sales force.26 Thus, while our data indicate that physicians are visibly idiosyncratic 
in their adoption timing, a doctor is much more likely a user if a high share of other 
doctors in her zip code are also users; this is consistent with the firm’s reported mar-
keting strategy. Moreover, only 16 percent of the variation in the time to adoption 
is explained by zip code fixed effects, indicating that within-zip-code dynamics are 
quite important.

Regarding adoption motives, the main reason doctors cite for registering is con-
venience: database use reportedly yields meaningful time savings. By contrast, it 
is unlikely that price was an important factor in physicians’ adoption decisions. 
Access was always available through a free version of the database application, 
which included the core drug reference tools (e.g., dosage lookups) that are relevant 
to our study. Additional features were available with a paid subscription, but the 
annual fee for this version was low (never above $200).

It should also be noted that database adoption appears to be mostly an individual 
decision, even for doctors in group practices. Large clinics and physician groups 
sometimes purchase site licenses for institution-level access to the database as part 
of broader IT initiatives; however, some of the benefits of using the database require 
individual registration, and most doctors therefore have individual accounts even 
if their group or clinic has a site license. Nevertheless, in order to check whether 

24 Relatedly, other drug references exist, including the Micromedex and UpToDate Lexicomp databases. These 
are imperfect substitutes for what we consider: these databases do not contain drug price or formulary-specific 
coverage information and are typically accessed by institutional subscription. Moreover, our data do not include 
information on doctors’ potential usage of these alternative platforms. Thus, as a matter of interpretation for our 
estimation results below, if a doctor tends to begin using all databases around the same time, our estimates would 
reflect the influence of information from all platforms rather than just the one we observe directly.

25 Physician characteristics were obtained from the Centers for Medicare and Medicaid Services Physician 
Compare database and were matched based on physician first name, last name, and five-digit zip code.

26 By contrast, sales force marketing is standard for new pharmaceuticals. See Datta and Dave (2017).
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Figure 1. Drug Database Diffusion Curves, US Physicians, January 2000–December 2010

Notes: This figure plots the fraction of the approximately 67,000 sample US physicians included in the CMS 
Physician Compare database that are also registered users of the electronic drug reference database by the date 
indicated, and shows the extent to which adoption rates differ across physicians according to their observable 
characteristics. 

Sources: Database registration data are from the drug reference database firm. Medical school rank is determined 
based on data from the US News and World Report service, and all other variables are from the CMS Physician 
Compare database.
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doctors practicing in groups tend to synchronize their database adoption—which 
would suggest the influence of a group-level adoption decision—we used the 2014 
CMS Physician Compare database to identify doctors who were likely working in 
the same practice during our sample period. Among over 7,000 groups we identi-
fied, just 38 were ones in which all doctors in the group adopted the database at the 
same time. In light of this, it seems unlikely that site-level access or group adoption 
decisions are primary drivers of the physician-level database use we consider.

D. Descriptive Evidence

The data provide suggestive indications that incomplete information may affect 
physicians’ prescribing as well as the rate and extent of new product diffusion, 
depicted in Figure 2. Consider the statistics presented in Table 3, which quantify dif-
ferences in prescribing across US physicians for the class of cholesterol medications 
evaluated. The statistics in panel A provide evidence for the December 2010 cross 
section. It is apparent that the pronounced variation in cholesterol-drug prescribing 
previously found among Medicare patients (e.g., Munson et al. 2013, Brooks et al. 
2014) is also present within the overall population both across zip codes (columns 
5–8) and individual physicians (columns 1–4). The share of prescriptions accounted 
for by generics ranges from zero to one in column 4; moreover, while the average 
physician prescribes a generic in 56.4 percent of cases, the standard deviation is also 
large (24.3 percent) and spans the full range from zero (fifth percentile physician) 
to 100 percent (ninety-fifth percentile). The relative heterogeneity across doctors is 
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Figure 2. Drug Diffusion Curves by Drug, US Physicians, January 2000–December 2010

Notes: This figure plots the fraction of the 128,043 sample US physicians that are associated with at least one pre-
scription of the new drug indicated by the date marked on the horizontal axis, and shows the extent to which adop-
tion rates differ across products. Market approval dates by drug are listed in Table 1. The prescription data cover 
January 2000 through December 2010 at a monthly frequency and are from IMS Health (IQVIA).
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even wider for the specific drugs described in columns 1–3; and across all columns, 
the idiosyncratic behavior of individual physicians appears to be important: for the 
vast majority of zip codes, there is substantial within-zip-code variation in generic 
shares across local physicians (Table A.1 in online Appendix).

Even if physicians were perfectly informed, variation in prescribing could 
result from an uneven distribution of patient characteristics. For example, Lipitor 
is a high-intensity statin that may be preferable for patients with a severe choles-
terol abnormality, the incidence of which may cluster geographically. Similarly, 
risk-averse patients may prefer an established drug over a new one—even if the new 
drug is simply a new generic version—if they perceive the quality of a new product 
as uncertain relative to another option. Such underlying patient heterogeneity may 
partially explain the slow and incomplete diffusion of new drug varieties, which is 

Table 3—Descriptive Statistics

Physician level Zip code level

Product lovastatin pravastatin simvastatin generic lovastatin pravastatin simvastatin generic
Variable (1) (2) (3) (4) (5) (6) (7) (8)

Panel A Share in total Rx, by physician Share in total Rx, by zip code
Final month, December 2010
  Mean 0.059 0.091 0.414 0.564 0.065 0.098 0.427 0.591
  SD 0.116 0.135 0.238 0.243 0.083 0.094 0.159 0.161
  Fifth percentile 0 0 0 0 0 0 0.180 0.336
  Twenty-fifth percentile 0 0 0.258 0.427 0.017 0.041 0.335 0.502
  Median 0.016 0.047 0.410 0.581 0.041 0.078 0.423 0.596
  Seventy-fifth percentile 0.066 0.121 0.551 0.719 0.084 0.129 0.515 0.687
  Ninety-fifth percentile 0.271 0.338 0.858 1 0.209 0.259 0.271 0.834

Panel B Generic Rx share, by physician-molecule Generic Rx share, by zip-code-molecule

Six months after generic release
Molecule-specfic branded drug Mevacor Pravachol Zocor Mevacor Pravachol Zocor
  Mean 0.828 0.820 0.862 0.822 0.827 0.870
  SD 0.338 0.279 0.208 0.192 0.197 0.150
  Fifth percentile 0 0 0.448 0.491 0.490 0.582
  Twenty-fifth percentile 1 0.714 0.800 0.737 0.756 0.819
  Median 1 1 0.949 0.861 0.866 0.914
  Seventy-fifth percentile 1 1 1 1 1 0.977
  Ninety-fifth percentile 1 1 1 1 1 1

Panel C
Final month, December 2010
Molecule-specific branded drug Mevacor Pravachol Zocor Mevacor Pravachol Zocor
  Mean 1.000 0.993 0.997 1.000 0.995 0.998
  SD 0.019 0.059 0.028 0.005 0.030 0.011
  Fifth percentile 1 1 0.995 1 0.976 0.990
  Twenty-fifth percentile and above 1 1 1 1 1 1

Notes: This table describes prescription heterogeneity across US physicians and the US zip codes they occupy. 
Panel A describes prescribing in December 2010 across all physicians (columns 1–4), and across US zip codes 
(columns 5–8). Panels B and C describe physicians’ within-molecule substitution toward generics for lovastatin 
(column 1), pravastatin (column 2), and simvastatin (column 3); columns 5, 6, and 7 provide analogous statistics 
by US zip code. Panel B describes this substitution six months after the generic release in question, while panel C 
describes prescribing in the final sample period, December 2010. The upper-left number in panel A (mean, lovasta-
tin, 0.059) is the average, across physicians, in the fraction of cholesterol drug prescriptions in December 2010 that 
are accounted for by generic lovastatin; the upper-left number in panel B (mean, lovastatin, 0.828) is the average, 
across physicians, in the fraction of Mevacor plus generic lovastatin prescriptions that are accounted for by generic 
lovastatin in October 2002, six months after expiration of the Mevacor patent; the upper-left number in panel C is 
the analogous statistic for December 2010. 

Sources: Generic approval dates are from the US Food and Drug Administration; all other variables are from IMS 
Health (IQVIA). 



16	 AMERICAN ECONOMIC JOURNAL: APPLIED ECONOMICS� JULY 2020

apparent for each new drug except simvastatin (Figure 2 and Table 1, column 3). It 
may also explain why a substantial fraction of the variation across doctors observed 
in columns 1–4 remains even after aggregating to the zip code level (columns 5–8).

Unobserved patient heterogeneity likely explains some of this variation in pre-
scribing, but columns 1, 2, and 3 indicate that additional factors are also likely pres-
ent. Specifically, these columns assess within-physician changes in the prescription 
of new generic products. The advantage of focusing on these columns is that it is 
possible to compare prescribing of a branded product with its molecularly equiva-
lent generic—two distinct drugs that have no relevant clinical differences. By exam-
ining changes over time in the generic share of molecule-specific prescriptions (e.g., 
the share of simvastatin plus Zocor prescriptions that are accounted for by generic 
simvastatin), it is possible to determine whether stable patient heterogeneity is likely 
to be the only explanation for variations in care. For each of the three generic drug 
introductions (lovastatin, pravastatin, and simvastatin), the data indicate that physi-
cians differ in their use of generics in the short run, six months after generic entry, 
and that substitution toward generics is initially incomplete at this point (panel B). 
By contrast, in the long run, physicians differ substantially less: nearly complete 
substitution toward generics is observed for each of the three products (panel C).27 
This pattern of delayed substitution between two molecularly equivalent products 
strongly suggests factors other than time-invariant patient heterogeneity contribute 
to prescribing differences among cholesterol drugs and is consistent with the influ-
ence of information frictions.

Beyond cost implications, these same factors may impede the diffusion of new 
non-generic therapies, with consequences for health outcomes. The data indicate 
that physicians are slow to begin prescribing new molecular entities, new drug com-
binations, and new dosage forms—branded products not facing generic competition. 
Figure 2 shows that diffusion curves differ considerably across new drugs; Figure 3 
plots the gradual diffusion of Crestor across US zip codes; and Table 1 describes 
how the time lag in months between a drug’s approval and its initial prescription var-
ies across US physicians for each drug introduction. The average physician delays 
prescribing a new drug for 20.3 months among the new products considered in our 
analysis. The standard deviation is even larger (22.1 months), and this adoption lag 
ranges from zero to 122 months, indicating some physicians adopt immediately and 
others had yet to adopt the first new drug by the end of our sample period (Table 2).

Unlike the Dartmouth Atlas and Cooper et al. (2015) studies, which cover a com-
prehensive set of treatments and analyze regional differences in the cost and quality 
of care, we analyze behavior at the physician level and focus on the specific clinical 
decision of which cholesterol drug to prescribe. However, it is nevertheless useful to 
ask whether the patterns we observe for this context are consistent with the broader 
treatment patterns documented by the Atlas. Aggregating our physician-level 
data to Hospital Referral Regions (HRRs) and comparing against data from the 
Dartmouth Atlas project, we find that locations with high generic prescription 

27 By December 2010, physicians had broadly switched away from prescribing Mevacor, Pravachol, and Zocor. 
However, six months after each respective patent expired, generic prescribing was far less prevalent for each mole-
cule, though the generic version was in each case already substantially less expensive.
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shares in our dataset also have high generic shares for Medicare overall (correlation  
44.4 percent), as well as lower per capita medical spending for prescription drugs 
(correlation 23.9 percent) and non-drug healthcare (correlation 12.4 percent). As 
noted above, these patterns underscore the highly systematic nature of US dispari-
ties in care and suggest that the disparities in physicians’ prescribing of cholesterol 
drugs may reflect some of the same factors that drive disparities in treatment deci-
sions more broadly.

II.  Empirical Strategy

In this section we provide a conceptual framework indicating how physician 
information and prescribing outcomes may be related. We describe the model impli-
cations and restrictions that guide our approach to estimating the treatment impact 
of physicians’ database access.

A. Conceptual Framework

Consider a baseline model in which physician ​i​ faces a period-​t​ choice over 
which drug to prescribe for each of her patients ​n  =  1, 2, … , ​N​it​​​. Like other eco-
nomic studies of prescribing decisions, suppose that physician ​i​ makes this deci-
sion for each patient by selecting the single drug ​j  ∈ ​ {1, 2, … , ​J​t​​}​​ available at ​t​ 

Panel A. One month after release Panel B. Three months after release

Panel C. Six months after release Panel D. Thirty-six months after release

Figure 3. Heterogeneity in the Initial Use of a New Medical Technology by US Zip Code

Notes: This figure illustrates the gradual diffusion of a new pharmaceutical drug, the statin Crestor, across zip codes 
within the continental United States. Dark shades indicate zip codes in which at least one prescription of Crestor has 
been written and filled, light shades indicate zip codes in which Crestor has not yet been prescribed; areas shaded 
white contain no data. The four panels correspond to four points in time following the initial market introduction 
of Crestor in August 2003. These four points are September 2003 (panel A), November 2003 (panel B), February 
2004 (panel C), and August 2006 (panel D). 

Source: Prescription data are from IMS Health (IQVIA).
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that maximizes patient utility according to physician-​i​ information.28 Specifically, 
suppose that the true utility derived by patient ​n​ from drug ​j​ at ​t​ is ​​u​njt​​  ≡ ​ θ​jt​​ + ​V​njt​​​, 
which combines the quality of drug ​j​ that is both known at ​t​ and common across 
patients (​​θ​jt​​​) with the quality of ​j​ that is unknown and partially specific to patient 
​n​ (​​V​njt​​​). The first of these terms (​​θ​jt​​​) thus captures the accepted wisdom at ​t​ about the 
efficacy, costs, side effects, and so on of drug ​j​ for the average patient, while the sec-
ond reflects novel information that may, in part, be relevant to the match between ​j​ 
and patient ​n​. In particular, suppose that ​​V​njt​​​ combines two terms: ​​V​njt​​  ≡ ​ v​jt​​ + ​ϵ​njt​​​, 
where ​​v​jt​​​ is a drug-specific value—a revision to accepted wisdom about the quality 
of drug ​j​—and where ​​ϵ​njt​​​ reflects the quality of the match between patient ​n​ and 
drug ​j​. We assume the physician is only partially informed about ​​V​njt​​​, to a degree 
indexed by a parameter ​​ϕ​it​​​; she bases her prescribing decision on a partial observa-
tion of ​​u​njt​​​ given by

(1)	 ​​​u ˆ ​​njt​​  ≡ ​ θ​jt​​ + ​(1 − ​e​​ −​ϕ​it​​​)​​V​njt​​  = ​ θ​jt​​ + ​(1 − ​e​​ −​ϕ​it​​​)​​(​v​jt​​ + ​ϵ​njt​​)​.​

Physicians with a higher value of ​​ϕ​it​​​ in  equation (1) are more responsive to infor-
mation about drug quality that is not commonly known at ​t​ (​​v​jt​​​), and about the 
patient-specific match (​​ϵ​njt​​​). In particular, (1) implies physicians with no special 
information (​​ϕ​it​​  =  0​) are insensitive to ​​V​njt​​​ and thus prescribe the same drug—
that with the highest ​​θ​jt​​​—for all patients, while physicians who are fully informed 
(​​ϕ​it​​  →  ∞​) respond to ​​V​njt​​​ perfectly.

If we assume that the ​​ϵ​njt​​​ follow an i.i.d. Type-1 Extreme Value distribution, it 
is straightforward in this simple setup to show that the probability physician ​i​ pre-
scribes drug ​j​ for patient ​n​ at ​t​ depends on the information index ​​ϕ​it​​​ as follows:

	​​ p​jt​​​(​ϕ​it​​)​  = ​ 
exp​{​ 

​θ​jt​​ _ 
1 − ​e​​ −​ϕ​it​​​

 ​ + ​v​jt​​}​
  _____________________  

​∑ k=1​ 
​J​t​​ ​​  exp​{​ 

​θ​kt​​ _ 
1 − ​e​​ −​ϕ​it​​​

 ​ + ​v​kt​​}​
 ​​,

and that, accordingly, the probability ​​P​ijt​​​ that drug ​j​ is prescribed by physician ​i​ at 
least once during period ​t​ is

(2)	 ​​P​ijt​​​(​ϕ​it​​)​  ≡  P​{​X​ijt​​  >  0}​  =  1 − P​{​X​ijt​​  =  0}​  =  1 − ​​(1 − ​p​jt​​​(​ϕ​it​​)​)​​​ 
​N​it​​

​​,

where ​​X​ijt​​​ is the number of physician-​i​ prescriptions written for drug ​j​ during 
period ​t​.29 Moreover, starting from the introduction date ​​t​ j​ 

0​​ of a new drug ​j​, the 

28 See, for example, Dickstein (2018), Crawford and Shum (2005). Unlike these papers, we do not observe 
patient-level information; this precludes estimating a model of learning within each patient-physician pair. 

29 Qualitatively identical results hold under more general assumptions regarding the distribution of ​​ϵ​njt​​​; the 
Type-1 Extreme Value assumption is thus imposed here only for expositional simplicity. A realistic alternative 
would be to allow for persistence in the ​​ϵ​njt​​​ draws, reflecting that the chronic nature of cholesterol and lipid disorders 
implies physicians often treat the same patient for multiple successive periods. In our analysis to follow, we thus 
consider the possibility that the prescription outcomes we evaluate are persistent.



VOL. 12 NO. 3� 19ARROW ET AL.: IMPACT OF IT ON DIFFUSION OF PHARMACEUTICALS

expected number of periods ​​T​ij​​​ that lapse before drug ​j​ is prescribed at least once by 
physician ​i​ is

(3)   ​   E​[​T​ij​​]​  = ​  ∑ 
t=​t​ j​ 

0​

​ 
∞

 ​​​(t − ​t​ j​ 
0​)​ ​P​ijt​​​(​ϕ​it​​)​​ ∏ 

s=​t​ j​ 
0​
​ 

t−1
 ​​​(1 − ​P​ijs​​​(​ϕ​is​​)​)​​

	​ = ​  ∑ 
t=​t​ j​ 

0​

​ 
∞

 ​​​(t − ​t​ j​ 
0​)​​(1 − ​​(1 − ​p​jt​​​(​ϕ​it​​)​)​​​ 

​N​it​​
​)​​ ∏ 

s=​t​ j​ 
0​
​ 

t−1
 ​​ ​​(1 − ​p​js​​​(​ϕ​is​​)​)​​​ 

​N​is​​
​​,

which also depends on ​​ϕ​it​​​, as does the expected number of unique drugs ​​M​it​​​ pre-
scribed by physician ​i​ during ​t​:

(4)  ​​E​t​​​[​M​it​​]​  ≡ ​ E​t​​​[   ​ ∑ 
j=1

​ 
​J​t​​

 ​​  1​{​X​ijt​​ > 0}​]​  = ​  ∑ 
j=1

​ 
​J​t​​

 ​​ ​ P​ijt​​​(​ϕ​it​​)​  = ​  ∑ 
j=1

​ 
​J​t​​

 ​​​ (1 − ​​(1 − ​p​jt​​​(​ϕ​it​​)​)​​​ 
​N​it​​

​)​.​

Within this framework, we regard the electronic database as a technology that 
increases a physician’s ​​ϕ​it​​​, which is otherwise unobserved. The database is contin-
uously updated, so users of the database are more likely aware of any new informa-
tion about the drug, including price changes, new warnings, or new results about 
its efficacy for different patient types. The database also allows doctors to look up 
a drug’s current formulary status for a specific patient’s insurance plan, so database 
users should also be more responsive to differences in, and changes in, match qual-
ity across patient-drug pairs. From equation (2), if database use indeed increases ​​ϕ​it​​​, 
it impacts the probability drug ​j​ is prescribed: whether ​​P​ijt​​​ increases or decreases for 
drug ​j​ depends on the distribution of ​​V​njt​​​ across drugs ​j​ and patients ​n​. In general, ​​P​ijt​​​ 
will increase for drugs with high values of ​​v​jt​​​ relative to other drugs; alternatively, 
if all ​​v​jt​​ = 0​, an increase in ​​ϕ​it​​​ raises ​​P​ijt​​​ for all drugs (due to the ​​ϵ​njt​​​) except for that 
with the highest ​​θ​jt​​​. Similarly, equation (3) implies the expected number of periods 
that pass before drug ​j​ is prescribed declines in ​​ϕ​it​​​ whenever ​​P​ijt​​​ increases in ​​ϕ​it​​​. 
That is, if a permanent increase in ​​ϕ​it​​​ causes a permanent increase in ​​P​ijt​​​ for drug ​j​, 
then it also causes a decrease in ​​T​ij​​​. The impact of an increase in ​​ϕ​it​​​ on the number 
of distinct drugs prescribed depends on the sum of derivatives ​∂ ​P​ijt​​​(​ϕ​it​​)​/∂ ​ϕ​it​​​ across 
drugs ​j​ in equation (4). If a higher ​​ϕ​it​​​ implies increased sensitivity to patient-specific 
match quality ​​ϵ​njt​​​, for example, ​​P​ijt​​​ would increase for most drugs ​j​, and diversity of 
prescribing would also rise.30

It is important to note that doctors who regularly prescribe cholesterol medica-
tions will be aware of most drugs’ clinical attributes. However, if patient-specific 
economic details such as the pricing and formulary status of a drug evolve sub-
stantially over time, or if news about negative drug interactions and other adverse 
reactions emerges only gradually, doctors may prefer to look up these drug attributes 
prior to writing a prescription. For newer, less familiar drugs, doctors may also be 

30 See also Berndt et al. (2015).
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inclined to look up details like dosage, and it is for these drugs that one may expect 
differences between ​​u​njt​​​ and ​​​u ˆ ​​njt​​​ to be particularly relevant.

B. Econometric Model

One natural approach to evaluating the influence of increases in ​​ϕ​it​​​ due to data-
base adoption would be to directly estimate equations derived from the conceptual 
model above. However, the model indicates it is important to control not only for 
the number of drugs ​​J​t​​​ and ​i​’s prescribing intensity ​​N​it​​​, but also for unobserved 
drug quality ​​θ​jt​​​ and unobserved determinants of ​​ϕ​it​​​. Given the size of the dataset, 
handling the nonlinearity implied by (2) in the presence of multiple sets of fixed 
effects is computationally infeasible. We therefore estimate the effects of database 
use through specifications that are guided by the model, but linear.

In particular, we consider three main linear specifications corresponding to each 
of the three observable outcomes discussed above: the new drug adoption lag ​​T​ij​​​, pre-
scription diversity ​​M​it​​​, and prescription probabilities ​​P​ijt​​​. Our estimation approach 
does not impose the restrictions that link ​​P​ijt​​​ with ​​T​ij​​​ and ​​M​it​​​ in the model; as a result, 
comparing our estimates across these outcomes is qualitatively informative regard-
ing the fit of the model.

We first assess the time lapse ​​T​ij​​​ between the initial market release of drug ​j​ and 
its first prescription by physician ​i​ as in Coleman, Katz, and Menzel (1957) using 
the following equation:

(5)	 ​P​{​T​ij​​  ≤  12}​  = ​ η​i​​ + ​η​zj​​ + β ​Z​ij​​ + δ ​N​it​(j)​−1​​ + ​ε​ij​​,​

where ​​T​ij​​​ is measured in months, ​P​{​T​ij​​  ≤  12}​​ is the probability that ​j​ is prescribed 
by ​i​ within twelve months of release, and where ​​η​zj​​​ and ​​η​i​​​ are zip-code-drug and 
physician fixed effects, respectively.31 The variable ​​Z​ij​​​ indicates whether doctor ​i​ 
has database access at the time drug ​j​ is first introduced, and ​​N​it​(j)​−1​​​ is ​i​’s total pre-
scription volume for cholesterol drugs in the month preceding ​j​’s introduction.

Both (3) and (5) are expressed at the doctor-drug level and, but aside from the 
functional-form differences mentioned above, the two equations are connected. The 
estimating equation essentially considers ​​ϕ​it​​​ to be a function of database use (​​Z​it​​​), 
physician fixed effects (​​η​i​​​), and zip-code-month fixed effects (​​η​zt​​​) reflecting local 
changes in access to information. We arrive at equation (5) by noting that the evo-
lution of time is, in doctor-drug space, marked by the sequential introduction of 
each new drug ​j​, and that the ​​η​zj​​​ we therefore include take the place of ​​η​zt​​​ while also 
accounting for the drug quality effects ​​θ​jt​​​ in (3). In addition, like (3), (5) includes ​i​’s 
prescription volume ​​N​it​(j)​−1​​​, and ​​J​t​​​ is absorbed by the ​​η​zj​​​.

Equation (5) is estimated on the subset of drugs first introduced during the sam-
ple period. Finding that the coefficient of interest ​β​ is positive would indicate that 
when a physician obtains database access, she significantly increases her likelihood 

31 With ​​T​ij​​​ as the dependent variable, it is necessary to address truncation, which is more pronounced for drugs 
introduced late in the sample period. To apply a uniform truncation rule, a significant number of observations must 
be omitted; hence ​​T​ij​​​, though more direct, is not our preferred dependent variable.
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of prescribing a new drug within its first year, relative to before access began. This 
would be consistent with database use increasing ​​ϕ​it​​​ and the probability ​​P​ijt​​​ of pre-
scribing a new drug ​j​ at ​t​: ​∂ ​P​ijt​​​(​ϕ​it​​)​/∂ ​ϕ​it​​  >  0​. Notice that the inclusion of physician 
fixed effects implies that ​β​ is identified using within-doctor variation over time; ​i​ 
may be a database user at the time drug ​j​ is first introduced, but may not yet be a user 
upon the introduction of drug ​​j ′ ​​. These effects are important if stable, unobserved 
physician characteristics determine both physician-specific database use ​​Z​ij​​​ and the 
rate of drug adoption ​​T​ij​​​ (e.g., early adopters). Possible common unobserved random 
shocks that are local and correlated with database adoption are further accounted for 
by clustering standard errors at the zip code level.

Nevertheless, even with these fixed effects and clusters, there could be time-varying 
factors such as local technology adoption propensities (Skinner and Staiger 2007) 
or pharmaceutical advertising that jointly determine, or are correlated with, both 
physician ​i​’s database use and her rate of new drug adoption. The ​​η​zj​​​ in (5) partially 
address this by accounting for differences across zip-code-drug pairs in doctors’ 
average first-prescription timing, which in this context would be correlated with ​​Z​ij​​​. 
However, if the omitted factor is idiosyncratic across physicians, even within a zip 
code, then ​cov​(​Z​ij​​, ​ε​ij​​)​  ≠  0​ and (5) will fail to yield a consistent estimate of ​β​. We 
return to this in describing our instrumental-variables estimates in Section IV.

Second, building from (4), we consider the possibility that information access 
could affect physician ​i​’s knowledge about the match quality between drug ​j​ and 
patient ​n​, inducing better-informed physicians to prescribe a more diverse set of 
products than less-informed peers. To assess this possibility, we determine the num-
ber of unique drug products ​​M​it​​  ≡ ​ ∑ j∈​​t​​​ ​​ 1​{​X​ijt​​  >  0}​​, where ​1​{​X​ijt​​  >  0}​​ is an 
indicator for whether physician ​i​ writes at least one prescription for drug ​j​ during 
month ​t​, and evaluate the following specification:

(6)	 ​​M​it​​  = ​ η​i​​ + ​γ​i​​ × t + ​η​zt​​ + β ​Z​it​​ + δ ​N​it−1​​ + ​ε​it​​,​

where ​​γ​i​​ × t​ is a doctor-specific time trend and all variables are as defined above. 
The value of ​​M​it​​​ is low when the prescriptions of physician ​i​ are concentrated within 
a narrow subset of products during month ​t​, and is high when prescribing is diverse. 
Finding that ​β​ is positive in equation (6) would thus indicate that database access 
is associated with higher product diversity among physician ​i​’s prescriptions—this 
would further be consistent with an increase in the overall quality of doctor-​i​ pre-
scribing whenever the common component ​​v​jt​​​ in (1) is small relative to ​​ϵ​njt​​​. Notice 
also that, through (4), this occurs only when the period-​t​ prescription probability ​​P​ijt​​​ 
rises more, on average, than it falls—that is, when ​​∑ j=1​ 

​J​t​​ ​​  ∂ ​P​ijt​​​(​ϕ​it​​)​/∂ ​ϕ​it​​ > 0​. Setting 
aside functional forms, the connection between (6) and (4) again rests on the idea 
that the information index ​​ϕ​it​​​ is a function of database use, physician fixed effects, 
and zip-code-month fixed effects. We control for ​​N​it−1​​​ directly, and for ​​J​t​​​ through ​​η​zt​​​. 
Standard errors are clustered by zip code to allow for local unobserved shocks cor-
related with ​​Z​it​​​.

We also estimate (6) replacing ​​M​it​​​ with the Herfindahl-Hirschman index 
(HHI​​​​it​​​) as an alternative dependent variable; an advantage of this alternative is that it 
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simultaneously captures both intensive- and extensive-margin effects of information 
on prescribing. Notice that ​β​ in (6) is again identified using within-physician vari-
ation over time in information access ​​Z​it​​​. The zip-code-month fixed effects further 
help to account for changes over time in unobserved, location-specific determinants 
of prescribing diversity; these are particularly important if patient characteristics—
such as insurance coverage, mandatory substitution laws, patient preferences, and 
disease severity—or other local factors evolve in ways that affect prescribing and 
are correlated with measured physician technology adoption. The ​​γ​i​​ × t​ trends fur-
ther account for doctor-specific linear changes over time in these unobserved deter-
minants of prescribing outcomes.

Finally, we evaluate directly the impact of information access on ​​P​ijt​​​, the proba-
bility that drug ​j​ is prescribed by doctor ​i​ at ​t​. It is of particular interest to understand 
how database users’ ​​P​ijt​​​ values across new and old drugs ​j​ change after database 
adoption. Moreover, because new patent-protected products differ from new gener-
ics in both cost and novelty, access to the database may also tilt prescribing based 
on the patent status of a product. We thus evaluate whether physicians using the 
database are more or less likely to prescribe a product of a given type using the 
following specification:

(7)    ​P​{​X​ijt​​  >  0}​  = ​ η​jt​​ + ​η​i​​ + ​γ​i​​ × t + ​η​zt​​ + δ​N​it−1​​ 

	 + ​[​β​0​​Ge​n​j​​ + ​β​1​​​(1 − Ge​n​j​​)​]​ × ​Z​it​​ × Ne​w​ jt​ 
τ ​​

	​ + ​[​β​2​​Ge​n​j​​ + ​β​3​​​(1 − Ge​n​j​​)​]​ × ​Z​it​​ × ​(1 − Ne​w​ jt​ 
τ ​)​ + ​ε​ijt​​,​

where ​P​{​X​ijt​​  >  0}​​ is the probability that physician ​i​ writes at least one prescrip-
tion for drug ​j​ during month ​t​, ​Ge​n​j​​​ is an indicator that is equal to 1 if product ​j​ is a 
generic variety, and ​Ne​w​ jt​ 

τ ​​ indicates whether drug ​j​ is within ​τ​ months of its initial 
approval for US sale. The main coefficients of interest ​​β​0​​​, ​​β​1​​​, ​​β​2​​​, and ​​β​3​​​ jointly 
capture the association between database use ​​Z​it​​​ and prescribing propensity for both 
new drugs (​​β​0​​, ​β​1​​​) and established products (​​β​2​​, ​β​3​​​), where finding ​​β​0​​  >  0​ would 
indicate that database users are more likely to prescribe a given drug ​j​ that is both 
new (within ​τ​ months of initial market release) at ​t​ and generic, relative to other 
physicians. Similarly, finding that ​​β​1​​  >  0​ would indicate that database users are 
more likely to prescribe a new, branded product ​j​. Note that the estimates of (7) have 
implications for ​​T​ij​​​ and ​​M​it​​​ through (3) and (4) above.

Equation (7) includes three sets of fixed effects, in line with (2). Drug-month 
effects ​​η​jt​​​ account for the average perceived quality of drug ​j​ across physicians at 
​t​ (​​θ​jt​​​), which may depend on factors such as drug potency and side effects known 
at ​t​, as well as the average expected pharmacy price at ​t​. As with our other estimating 
equations, we further include physician fixed effects ​​η​i​​​ that absorb any individual 
characteristics affecting ​​ϕ​it​​​ or the prescribing propensity such as location, patient 
composition, and physician age, education, and medical specialty. The coefficients 
of interest β are thus identified primarily from within doctor variation over time 
in information access ​​Z​it​​​. Zip-code-month fixed effects ​​η​zt​​​ absorb any dynamic, 
location-specific determinants of ​​ϕ​it​​​ or prescribing that may be correlated with 
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physicians’ database use, while including ​​γ​i​​ × t​ allows for doctor-specific trends in 
prescribing that may be correlated with database use. Standard errors are adjusted 
for clustering at the zip code level, and we control for ​​N​it−1​​​ directly.

III.  Main Results

A. Time to First Prescription

We begin by evaluating the relationship between a physician’s database use and 
whether she adopts a new drug ​j​ within a year of its release. The model indicates 
that physician ​i​ is faster to begin prescribing ​j​ if she is a database user, for any new 
drug ​j​ satisfying ​∂ ​P​ijt​​​(​ϕ​it​​)​ / ∂ ​ϕ​it​​  >  0​. For these drugs, we thus expect a positive 
coefficient on ​​Z​ij​​​ (Database​​​​ij​​​), where ​​Z​ij​​​ takes a value of 1 if physician ​i​ has access 
to the drug reference database at the time a new drug ​j​ receives approval for sale in 
the US market, and is otherwise zero.32

Estimates of (5) appear in Table 4. Columns 1 and 2 support the idea that data-
base users are more likely, on average, to begin prescribing newly-approved drugs 
early, within their first year. The estimated coefficient on ​​Z​ij​​​ is positive and highly 

32 Throughout Section IVA, Database​​​​ij​​​ (​​Z​ij​​​) is the “Drug database and use indicator” described in Table 2.

Table 4—Time to First Prescription of a New Drug, US Physicians, 2000–2010

Dependent variable Indicator for prescription within first year of drug introduction

All physicians Eventual users

(1) (2) (3) (4) (5) (6)

Databaseij 0.0204 0.0082 0.0152 0.0010 −0.0015 −0.0029
0.0013 0.0021 0.0014 0.0022 0.0022 0.0028

Databaseij × Genericj 0.0183 0.0208 0.0136 0.0131
0.0022 0.0023 0.0039 0.0040

Prescription volumeit(j)−1 0.0073 0.0033 0.0073 0.0033 0.0066 0.0029
0.0001 0.0001 0.0001 0.0001 0.0002 0.0001

Physician fixed effects No Yes No Yes No Yes
Zip-code-drug fixed effects Yes Yes Yes Yes Yes Yes

Observations 1,510,985 1,510,985 1,510,985 1,510,985 290,898 290,898
R2 0.5133 0.6132 0.5134 0.6133 0.5976 0.6771

Notes: This table provides least-squares estimates of equation (5) for US physicians’ prescription of 12 cholesterol 
drugs first approved for US sale during January 2000–December 2008 (Table 1). The binary dependent variable 
captures the time lapse between FDA approval of drug j and physician i’s initial prescription of it, taking a value of 1 
if initial prescription occurs within a year of FDA approval; specifications are included for the full sample of physi-
cians (columns 1–4) and for the subset of physicians that eventually adopt and use the electronic reference to search 
for information about cholesterol drugs (columns 5–6). Database is the "Drug database and use indicator" variable 
described in Table 2, and takes a value of 1 for a physician user with database access at the time drug j receives FDA 
approval. Generic indicates the products pravastatin, lovastatin, and simvastatin. Regressions include zip-code-drug 
(columns 1–6) and physician (columns 2, 4, 6) fixed effects as well as the cholesterol drug prescription volume for 
physician i in the month prior to drug j’s introduction. Results are robust to logistic estimation, and are qualitatively 
identical when replacing the dependent variable with an indicator for first prescription within two years. Standard 
errors clustered by zip code appear below each point estimate; results are robust to clustering errors by physician.



24	 AMERICAN ECONOMIC JOURNAL: APPLIED ECONOMICS� JULY 2020

significant in both columns, suggesting users are 2.04 percentage points more likely 
than nonusers to write their initial prescription for a new drug within its first year 
(column 1); the estimate changes to 0.82 percentage points if we include physician 
fixed effects (column 2).33 The data also confirm that doctors with large prescription 
volumes ​​N​it−1​​​ are also significantly faster to begin prescribing a new drug, consis-
tent with the model’s qualitative predictions.

Columns 3 and 4 assess potential differences between new brand name and new 
generic drugs. With prescriber fixed effects in column 4, we find that the estimated 
effect for generics (​​Database​ij​​ × ​​​Generic​j​​​) remains positive and significant, while 
that on branded products is indistinguishable from zero. Specifically, physicians 
using the database are 2.08 percentage points more likely to prescribe a new generic 
within its initial year, but are no faster in the case of new branded drugs.34 That 
database use may tilt prescribing toward faster generic adoption has potentially sig-
nificant aggregate cost implications given the size of the market for cholesterol ther-
apies and the chronic nature of the condition they treat.35 Moreover, because generic 
drugs share identical clinical attributes with branded versions, these results strongly 
suggest database users may be responding to the increased salience of non-clinical 
information—in particular, price and insurance formulary data.

While the estimates in columns 1–4 rely on the full sample of US physi-
cians, these results may be sensitive to underlying differences across database 
users and nonusers in the evolution of prescription outcomes. To better isolate 
the within-doctor impact of database use, columns 5 and 6 restrict the physician 
sample, including only those that both adopt and use the drug database during the 
sample period. Doctors that have yet to use the database by December 2010 are 
thus omitted. With this restriction, the estimates in column 6 suggest, as in col-
umn 4, that database users are indeed significantly faster to begin prescribing new 
generics, but show no significant effects on the adoption of new branded drugs.

Across all columns in Table 4, zip-code-drug fixed effects absorb variation 
across locations and over time in (i) access to other drug information sources 
(e.g., advertising), (ii) physicians’ tendency to adopt new technology, (iii) patient 
characteristics affecting the price or match quality of drug ​j​, and (iv) competition. 
Any component of factors (i)–(iv) that is stable over time is further captured by 
physician fixed effects in columns 2, 4, and 6. Comparing columns 3–6, however, 
it is evident that failing to include physician fixed effects and restrict the sam-
ple to eventual adopters tends to result in larger estimated associations between 
prescription outcomes and database adoption. Henceforth, we therefore present 

33 For comparison, we replicate Table 4 using ​ln ​T​ij​​​ as the outcome variable. Truncation in ​​T​ij​​​ is addressed by 
limiting the duration of analysis to a window of 54 months following each new drug introduction and omitting 
Simcor; 54 months is the time span between the release of simvastatin and December 2010. We also consider 
​P​{​T​ij​​  ≤  6}​​ and ​P​{​T​ij​​  ≤  24}​​ as alternatives. In each case, we find results that are qualitatively identical to those 
in Table 4.

34 Notice that the zip-code-drug fixed effects ensure that this result is not explained by differences in local 
mandatory substitution laws. We nevertheless provide additional results regarding the effects of substitution laws 
on prescribing outcomes in Section IV.

35 See Section VII.
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specifications that, like column 6, both include physician fixed effects and restrict 
the sample to eventual adopters.36

B. Prescription Diversity

To evaluate the impact of physicians’ database use on the diversity of prescrib-
ing, Table 5 provides estimates of (6) for two outcome variables: the number of 
unique drugs ​​M​it​​​ prescribed by physician ​i​ at ​t​ (column 1), and the associated 
Herfindahl-Hirschman index, HHI​​​​it​​​ (column 2). The coefficient of interest is on 

36 All results described in this section are replicated in the online Appendix for the “All physicians” sample 
considered in columns 1–4 of Table 4.

Table 5—Prescription Diversity and Propensity, US Physicians, 2000–2010

Dependent variable Number of unique drugs Prescription HHI
1{(prescriptions of 

drug j by i at t) > 0}

Eventual users

(1) (2) (3)

Databaseit 0.0350 −0.0027
0.0094 0.0010

Databaseit

× Newjt × Genericj 0.0158
0.0025

× Newjt × Brandedj −0.0051
0.0015

× Oldjt × Genericj 0.0240
0.0029

× Oldjt × Brandedj 0.0013
0.0009

Prescription Volumeit−1 0.0187 −0.0007 0.0013
0.0002 0.0000 0.0000

Physician fixed effects Yes Yes Yes
Zip-code-month fixed effects Yes Yes Yes
Physician × t trends Yes Yes Yes
Drug-month fixed effects No No Yes

Observations 3,013,241 3,013,241 7,674,288
R2 0.8941 0.7484 0.5458

Notes: This table provides least-squares estimates of (i) equation (6) in columns 1–2, and (ii) equation (7) in col-
umn 3, for cholesterol drug prescriptions by US physicians during January 2000 through December 2010 and the 
subset of physicians that eventually adopt and use the electronic reference to search for information about choles-
terol drugs. Full-sample estimates appear in Table A.2 in the online Appendix. The dependent variable in column 
1 captures the prescription diversity of physician i as the number of unique drugs j that are prescribed by i during 
month t. The dependent variable in column 2 is the prescription Herfindahl-Hirschman index for physician i in 
month t. The dependent variable in column 3 is an indicator for whether the doctor i prescribes drug j during month 
t. Database is the "Drug database and use indicator" variable described in Table 2, and takes a value of 1 for a phy-
sician user with database access in month t; it is otherwise zero. All regressions include the cholesterol drug pre-
scription volume for physician i in month t − 1, physician-specific time trends, and physician and zip-code-month 
fixed effects; column 3 also includes drug-month fixed effects. For computational ease, the estimates in column 
3 rely only on observations in January 2000 and every subsequent June and December. Results in column 1 are 
robust to Poisson estimation; all columns are robust to including the first lag of the dependent variable. Results in 
column 3 are robust to logistic estimation, including doctor-drug fixed effects, and including zip-code-drug-month 
fixed effects. Standard errors clustered by zip code appear below each point estimate; results are robust to cluster-
ing errors by physician. 
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Database​​​​it​​​ (​​Z​it​​​), which takes a value of 1 if physician ​i​ has access to the drug data-
base at ​t​, and is otherwise zero.

In the model, prescribing diversity increases when a physician adopts the drug 
database if the prescription probability ​​P​ijt​​​ rises more, on average, than it falls—
that is, if adoption induces an increase in ​​ϕ​it​​​ and if ​​∑ j=1​ 

​J​t​​ ​​  ∂ ​P​ijt​​​(​ϕ​it​​)​ /∂ ​ϕ​it​​  >  0​. The 
results in Table 5 are strongly consistent with this. In column 1, the estimated coef-
ficient on physician-​i​ database access ​​Z​it​​​ is indeed positive and highly significant, 
and indicates that database users prescribe, on average, ​0.035​ additional unique drug 
varieties each month relative to a nonuser.37 In column 2, we find that HHI​​​​it​​​ is 
also strongly responsive to database adoption; the estimate ​− 0.003​ is negative and 
highly significant, indicating that database users’ prescribing is substantially less 
concentrated across drugs ​j​. Given the assumptions of the model, these diversity 
results are consistent with the idea that database use is associated with increased 
prescribing quality, provided that the common component ​​v​jt​​​ in (1) is small relative 
to ​​ϵ​njt​​​. Consistent with the model, we also find that prescription diversity increases 
significantly in a physician’s monthly prescription volume.38

In both columns 1 and 2, physicians differ only in their respective drug reference 
adoption dates. Moreover, both specifications include doctor and zip-code-month 
fixed effects, as well as doctor-specific time trends. Nevertheless, the estimated coef-
ficients are smaller than the corresponding full-sample estimates in online Appendix 
Table A.2, columns 1–2. This suggests the possible influence of nonlinear dynamic 
unobserved factors, correlated with ​​Z​it​​​, that influence prescription diversity. We dis-
cuss this concern in more detail in Section V below.

C. Prescription Propensity

We report estimates of (7) in column 3 of Table 5 for eventual database users; 
corresponding estimates for all physicians appear in online Appendix Table A.2. 
The outcome variable ​1​{​X​ijt​​  >  0}​​ is binary, indicating whether physician ​i​ writes 
at least one prescription for drug ​j​ at ​t​, and the main coefficients of interest ​​β​0​​​ and 
​​β​1​​​ correspond to Database​​​​it​​​ (​​Z​it​​​) and its interaction with indicators for new generic 
and branded drugs, respectively.39 We define ​j​ to be new while it is within ​τ = 24​ 
months of its initial market approval.

As described above, the model predicts that the coefficients ​​β​0​​​, ​​β​1​​​, ​​β​2​​​, and ​​β​3​​​ could 
be positive or negative depending on the distribution across drugs in the unobserved 

37 Because ​​M​it​​​ is a count variable, we reestimate the coefficients in column 1 using a Poisson estimator  
and find qualitatively identical results.

38 An interesting consideration is whether the model predicts, for any observable outcome variable, no effect of 
database use. One such “placebo” variable is the doctor-​i​ prescription volume in month ​t​. We reevaluate (6) using 
the number of prescriptions by doctor ​i​ in month ​t​ as the dependent variable and a sample identical to that in Table 5, 
columns 1 and 2. The estimated coefficient on database adoption ​​Z​it​​​ is 0.0170 (standard error = 0.0301), which, in 
line with the model, is not statistically distinguishable from zero.

39 The estimates in column 3 of Table 5 span January 2000 through December 2010. To manage the compu-
tational burden of the sample size, we include only observations in January 2000 and each subsequent June and 
December in estimating the coefficients. The results are not qualitatively or quantitatively sensitive to this sample 
size reduction.
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quality terms ​​v​jt​​​ and ​​ϵ​njt​​​ about which physicians learn as ​ϕ​ increases. Note that ​​P​ijt​​​ 
will tend to increase in ​​ϕ​it​​​ for drugs with high ​​v​jt​​​ values, but will generally fall if ​​v​jt​​​ 
is relatively low. Whether database adoption increases or decreases, prescribing for 
a particular drug type is thus an empirical question. It is, however, one to which we 
can partially predict the answer, given the model and results in Table 4 and columns 
1 and 2 of Table 5. First, Table 4 indicates database users are faster to begin pre-
scribing new generics, but mildly slower to adopt new branded drugs; if the model 
is correct, this suggests, through (3), that ​​β​0​​  >  0​ and ​​β​1​​  <  0​. Second, prescription 
diversity increases with database adoption in columns 1 and 2 of Table 5; in (4), this 
implies that the sum across ​​β​0​​​, ​​β​1​​​, ​​β​2​​​, and ​​β​3​​​, weighted by the number of drugs per 
category, is positive.

In column 3 of Table 5, it is clear that physicians with database access are sub-
stantially more likely to prescribe generic products, regardless of vintage: ​​β​0​​ > 0​ 
and ​​β​2​​ > 0​. Specifically, these estimated coefficients are positive and highly sig-
nificant, indicating the likelihood physician ​i​ prescribes a generic drug is 4.0 per-
centage points higher when she has access to the database. The coefficients on 
branded drugs are much smaller in magnitude; users are 0.13 percentage points 
more likely to prescribe an old, branded product (​​β​3​​  >  0​), though the coeffi-
cient is not precisely estimated, and are 0.51 percentage points less likely to pre-
scribe a new, branded product (​​β​1​​  <  0​). Viewed through the lens of the model, 
the estimated coefficients ​​​β ˆ ​​0​​​ and ​​​β ˆ ​​1​​​ are thus exactly aligned with the results in 
Table 4. Moreover, the coefficients in column 3 are consistent with the diversity 
estimates in columns 1 and 2. Accounting for the distribution of drug types in the 
data, the weighted sum across the coefficients β in column 2 is always positive. 
The predictions of the model, in light of the estimates in Table 4 and columns 
1 and 2 of Table 5, are thus strongly consistent with the results in column 3 of  
Table 5.

Importantly, these latter estimates provide additional suggestive evidence regard-
ing the mechanism through which database adoption may influence prescribing. 
That the impact of database access is apparent not only for new, but also older 
products suggests that there could be important reasons for doctors to continually 
reference the drugs in question—possibly to learn about aspects of a drug that are 
either time-varying or patient-specific. This ongoing process of information acqui-
sition could thus be an important factor in explaining why a significant fraction of 
a new drug’s diffusion occurs beyond its first two years (Figure 2), a general fea-
ture of technology diffusion processes that has fascinated economists for decades 
(Manuelli and Seshadri 2014). Second, the estimated coefficients of interest are 
again consistent with responsiveness to economic information—price and formu-
lary status—the inclusion of which is a distinctive feature of the drug database we 
consider. In particular, users tilt prescribing away from new, branded products—for 
which prices are generally high—and strongly toward generic products, for which 
prices are low. That the estimated increases in generic propensity (​​β​0​​, ​β​2​​​) are so large 
in magnitude relative to those for branded products further suggests the response to 
price information is economically important. This is not only surprising, but also 
indicates database adoption could therefore have significant implications for aggre-
gate prescription costs.
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IV.  Robustness and Alternative Specifications

The results in Tables 4 and 5 above indicate that physicians using the point-of-care 
reference begin prescribing new generics sooner than nonusers, prescribe a more 
diverse set of drugs than nonusers, and more often prescribe a generic drug. Because 
database adoption is not randomly assigned, however, a key question that remains is 
whether a causal interpretation of our results is supported by the data. Our sample 
restriction to eventual adopters and fixed-effects estimation approach helps rule out 
certain alternative explanations including cases in which “early-adopters” or phy-
sicians facing intense local advertising exposure begin both using the database and 
prescribing a new drug sooner than other physicians—for reasons unrelated to the 
actual impact of database use. A limitation of this approach arises when the timing 
of database adoption is either correlated with or involves selection on time-varying, 
idiosyncratic physician characteristics that are relevant to the prescribing outcomes 
we consider.

In the case of advertising, for example, if an individual physician’s database adop-
tion timing were to be correlated with the idiosyncratic change in her own expo-
sure to drug detailing—that is, the component not accounted for by zip-code-month 
effects or doctor-specific time trends—our estimates of the impact of adoption could 
be confounded with the influence of drug advertising. Without granular data on 
detailing, it is not possible to know whether there are meaningful shocks to detailing 
efforts that differ substantially across physicians within a US zip-code-month for 
the drugs we consider.40 It is important to note, however, that our results indicate 
database adopters are primarily quicker to prescribe new generic drugs, which are 
not advertised.41

Relatedly, it is possible in Table 5 that a physician’s decision to adopt the database 
is partially determined by the underlying, idiosyncratic rate of increase in her pre-
scribing diversity. Naturally, adopting the database today could be a more attractive 
option for a physician who anticipates prescribing a wider range of products in the 
future than for a physician in the opposite situation.42 In this section, we describe 
additional results in order to clarify the degree to which a causal interpretation is 
warranted and to determine which alternative interpretations can be ruled out.

40 Historically, detailing, or drug marketing efforts directed at individual physicians through sales representa-
tives, has been the pharmaceutical industry’s main promotional instrument (e.g., Manchanda and Honka 2013). As 
part of the detailing process, pharmaceutical sales representatives often provide doctors with payments related to 
drug promotion. IMS Health (IQVIA) does not curate doctor-specific data on detailing, though Verispan did in the 
past (Datta and Dave 2017); however, data on drug promotion payments by doctor, drug, and date are available from 
ProPublica for the period August 2013–December 2016. Although the latter data do not overlap with our sample 
period, precluding a direct consideration of detailing in our analysis, they are to our knowledge the best available 
information on doctor-drug specific detailing.

41 The data studied by Larkin et al. (2017) show that detailing is almost exclusively done for branded drugs.
42 While US physicians always face the same set of drugs approved for prescription, and in that sense do not 

differ in changes to the range of products available, their exposure to such changes may differ due to the potentially 
distinct characteristics of the specific patients they treat. To the extent that these distinctions are time-varying and 
correlated with database adoption, even across doctors practicing within the same zip-code-month, our fixed effects 
estimator could yield biased estimates.
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A. Timing the Impact of Database Adoption

For an important class of alternative explanations, physicians either adopt the 
reference database in response to pre-existing changes in prescribing, or are influ-
enced by omitted, dynamic factors that simultaneously affect both prescribing and 
database adoption. A symptom that would likely appear where these influences are 
active is adopters who exhibit a trend toward the predicted outcomes, even before 
accessing the database.

While the physician-specific time trends included in (6) and (7) help to address 
this possibility, Figures 4, 5, and 6 examine the timing of the relationship between 
reference database adoption and changes in the (time-varying) prescription out-
comes considered in Table 5; corresponding estimates appear in online Appendix 
Table A.3. As in Table 5 and Dranove et al. (2014), we focus this evaluation on the 
sample of doctors that eventually adopts and uses the database, and exploit varia-
tion across doctors in the year of adoption. Specifically, we replace our measure 
of database adoption ​​Z​it​​​ in (6) with dummies for three years before adoption, two 
years before adoption, one year before adoption, the adoption year, one year after 
adoption, two years after adoption, and three or more years after adoption. The base 
period is four or more years before adoption.

The resulting estimates indicate a positive effect of database use on the num-
ber of unique drugs prescribed, ​​M​it​​​, in all years following the adoption year, with 
no statistically significant effects in years prior to the adoption year (Table 4). 
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Similar patterns are shown in Figures 5 and 6 for prescription diversity measured as 
HHI​​​​it​​​ and the generic prescription share, respectively. Taken together, Figures 4 
through 6 indicate there were no clear trends in omitted variables that could have 
been driving the estimates in Table 5.

B. Intensity of Use

The model proposes a specific mechanism: physicians’ prescription outcomes are 
influenced by database access because the information obtained through the data-
base is important, yet otherwise unknown. If this proposed mechanism is correct, 
then for physicians using the database to search for cholesterol drugs with differ-
ent intensities, those searching more intensely should have correspondingly larger 
prescription responses. There could certainly be other explanations linking search 
intensity with the prescribing outcomes we consider, but this evaluation is infor-
mative nevertheless: if intensity and response are not linked in the data, it would 
strongly suggest the proposed mechanism is invalid.

With these considerations in mind, we make use of a key feature of the data that 
allows us to observe not only a physician’s database registration date, but also a 
proxy for the extent of her drug-month-specific database use, conditional on adop-
tion. The variable is unfortunately not an exact lookup count, as the database com-
pany changed the way it maintained lookup data over time; given this, we aggregate 
the lookup proxy into a coarser measure reflecting a lower bound for each physi-
cian’s overall intensity of database use. We then divide the sample of physicians into 
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Notes: This figure plots coefficients from a version of equation (6) that replaces the Database indicator with dum-
mies corresponding to years before and after database adoption. Error bars show 95 percent confidence intervals. 
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three groups based on this lower bound, and reassess the results in Tables 4 and 5 
allowing different coefficients for each intensity group: low-intensity users are data-
base adopters for whom the lower bound on cholesterol drug lookups is zero; the 
high-intensity group includes doctors whose total lookup proxy is in the top decile. 
The results appear in Tables A.4 and A.5 in the online Appendix.

The estimates in online Appendix Table A.4, column 1, reveal that the impact of 
database adoption is systematically and monotonically increasing in the intensity of 
usage. Low- and medium-intensity users are not more likely to adopt new generic 
drugs within a year of release, while high-intensity users are 2.36 percentage points 
more likely to do so; this latter coefficient is strongly significant, revealing mean-
ingful heterogeneity across database adopters in its prescribing impact. Column 2 
reveals a similar pattern of increasing impact in prescription diversity, although the 
pattern weakens for the prescription HHI in column 3.

Online Appendix Table A.5 suggests that the highest-intensity users are the 
most responsive to database access in switching away from branded drugs and 
toward generic products. The estimated coefficients ​​β​0​​  >  0​ and ​​β​2​​  >  0​ are 
approximately ten times larger for physicians searching the database intensely, 
relative to those with low-intensity database usage; as a result, an intense database 
user is 9.0 percentage points more likely to prescribe a generic in a given month 
than an adopter with low database usage. Moreover, the effects on branded vari-
eties suggest additional differences: intense users are 1.9 percentage points less 
likely to prescribe branded varieties, while by contrast, adopters with low usage 
are actually 1 percentage point more likely to prescribe a branded drug per month. 
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These differential effects are consistent with the information mechanism we pro-
pose in the model, and suggest that the estimates in Table 5 are not simply captur-
ing nonlinearly time-varying unobserved doctor characteristics that are on average 
correlated with database adoption; specifically, adopters in online Appendix Table 
A.5 with the lowest levels of database usage display only a minimal association 
between adoption timing and prescription outcomes. The fact that additional effort 
by an adopting physician is required to obtain a large prescription impact is con-
sistent with the nature of the drug database, which as a searchable reference, can 
only impact prescribing to the extent that it is used.

C. Endogenous Database Adoption

Another approach to handling the endogeneity of database adoption is to find an 
instrument that generates quasi-random variation in a physician’s database adop-
tion decision, and to estimate the impact of information access relying on vari-
ation in this instrument. We found that the doctor-month specific share of other 
local physicians that have adopted the reference database is a robust predictor of 
adoption for a given doctor ​i​ at ​t​. Since this share is plausibly uncorrelated with 
physician-specific unobservables that influence adoption decisions, we reassess 
the results in Tables 4 and 5 using this share as an instrument for database adop-
tion. Estimates appear in Table A.6 in the online Appendix; a detailed discussion 
of the specification, validity, and mechanisms appears in Section A.3 of the online 
Appendix.43 If our main results were driven by an omitted variable, instrumenting 
for database adoption should make its apparent effect on prescriptions disappear. 
But if anything the instrumental-variables estimates suggest the results in Tables 4 
and 5 tend to understate the impact of database adoption. In online Appendix 
Table A.6, column 1, database users are 8.0 percentage points more likely to begin 
prescribing a new generic within its initial year (compared with 1.3 percentage 
points in column 6 of Table 4), relative to a nonuser, with no significant effects 
among new branded drugs. Columns 2 and 3 similarly suggest that the true impact 
of database adoption on diversity is an order of magnitude larger than the esti-
mates in Table 5, while column 4 suggests Table 5, column 3 understates the 
impact of the database on prescribing by a factor of four for new generics (​​β​0​​​) and 
a factor of ten for old generics (​​β​2​​​). While these estimates suggest our results are 
not merely reflecting the endogeneity of database adoption, it is important to note 
that our leave-out mean instrument relies on variation in group composition that 
in many applications leads to small-sample bias from weak instruments, and that 
could confound interpretation in certain cases (Angrist 2014).

43 First-stage estimates appear in Tables A.7 and A.8 in the online Appendix.
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D. Mandatory Substitution Laws

To encourage cost savings, many US states impose regulations mandating generic 
substitution where available; in most cases, such laws have been in force since the 
1970s (Grabowski and Vernon 1979) and were thus in effect during the sample 
period. This means that pharmacists dispense the generic version of a drug even 
if the physician prescribed the branded version. Since our data are collected from 
pharmacies and are based on prescriptions dispensed, a possible concern is that the 
patterns in our data reflect pharmacists’ behavior rather than physicians’ prescribing 
behavior—for example, if the implementation of mandatory substitution laws dif-
fers across states and over time in a manner correlated with physicians’ adoption of 
the drug database.

On this point, it is important to note that all of our baseline results include 
zip-code-drug or zip-code-month fixed effects that absorb any impact of mandatory 
substitution laws on the prescription outcomes we consider—even where these laws 
may be correlated with physicians’ database adoption choices. Nevertheless, to fur-
ther check the robustness of our results to this potential concern, we reestimate the 
regressions reported in Table 4, replacing the zip-code-drug fixed effects with a set 
of drug fixed effects, and splitting the sample between doctors in states with ver-
sus without mandatory substitution laws. We also consider triple-interacted specifi-
cations in which the effect of database adoption is allowed to depend on whether the 
doctor is in a mandatory substitution state. The results, shown in online Appendix 
Table A.9, indicate that database adoption is associated with mildly faster adoption 
of new generics for physicians in mandatory substitution states.

While at first glance surprising, this result is consistent with the model given 
the estimates on prescription diversity shown in Table 5, column 1. Intuitively, 
mandatory substitution laws should reduce relative differences across doctors in 
generic prescribing, including differences resulting from database use. Even if doc-
tors not using the database would be more inclined to prescribe a given branded 
drug ​j​, the pharmacy always dispenses its generic equivalent ​k​ in a state with a 
mandatory substitution law. Therefore, when considering as an outcome variable 
the within-molecule generic prescription share ​​X​ikt​​ / ​(​X​ijt​​ + ​X​ikt​​)​​, mandatory substi-
tution laws should eliminate systematic differences across doctors. On this basis, 
one would expect the database not to have a significant impact on ​​X​ikt​​ / ​(​X​ijt​​ + ​X​ikt​​)​​ 
in states with mandatory substitution laws.

On the other hand, with multiple molecules as in online Appendix Table A.9, and 
when the outcome variable is an indicator for whether doctor ​i​ prescribes drug ​j​ 
within its first year on the market, this reasoning leads to the opposite conclusion: 
mandatory substitution laws increase the apparent effect of database usage with 
respect to generic drug adoption. Even if the generic version ​k​ is available and every 
pharmacy dispenses ​j​ as ​k​, this substitution occurs only if doctor ​i​ actually attempts 
to prescribe ​j​. The results in Table 5 indicate database use increases prescription 
diversity, including along the extensive margin (number of unique drugs prescribed 
per month). Thus, the likelihood of a prescription of ​j​ occurring for doctor ​i​ within 
a year of the generic version ​k​’s release is significantly higher if doctor ​i​ is a data-
base user; consequently, in a state with a mandatory substitution law, where this 



34	 AMERICAN ECONOMIC JOURNAL: APPLIED ECONOMICS� JULY 2020

prescription of ​j​ is dispensed as ​k​, one should expect a higher estimated effect of 
database use. This is indeed consistent with the estimates in online Appendix Table 
A.9; in column 3, database users in mandatory substitution states are nearly twice as 
likely to adopt a new generic within its first market year.

E. Pharmaceutical Innovation

Physicians practicing in locations known for pharmaceutical innovation may have 
access to frontier knowledge regarding pharmaceutical development and pricing, 
limiting the potential for the reference database we observe to influence prescribing 
decisions. Within the conceptual framework outlined in Section III, proximity to 
the frontier could imply physicians have initially high ​​ϕ​it​​​ parameters that are either 
minimally or not responsive to database use. If so, database use has little potential 
to affect prescribing. The zip-code-drug or zip-code-month fixed effects included 
in the baseline specifications account for the innovativeness of a physician’s local 
environment. To assess whether location-specific differences in innovativeness 
impact the mechanism, we therefore replace these effects with either drug or month 
fixed effects, and use patent data from the NBER US Patent Citations Data File 
(Hall, Jaffe, and Trajtenberg 2001) to measure the number of pharmaceutical patents 
granted between 1975 and 1999 by zip code. We then reevaluate the adoption-lag 
specifications in Table 4 separately for two samples corresponding to the top and 
bottom 5 percent across zip codes based on the number of pharmaceutical patents 
granted. We also consider interacted specifications that account for differences in 
pharmaceutical patenting across locations.

The estimates appear in online Appendix Table A.10, and suggest that physi-
cians plausibly located near the knowledge frontier—that is, physicians in zip codes 
among the top 5 percent by drug patenting—indeed respond to drug information 
differently than their more distant peers. Specifically, the estimates indicate that 
while use of the database in the least-innovative locations is associated with a larger 
impact on the likelihood of new drug adoption within one year (column 2) it has 
no significant impact in the most innovative locations (column 1). Considering the 
full sample, column 3 indicates that the database speeds generic adoption on aver-
age, but has especially pronounced effects among the least-innovative locations that 
are likely to be far from the information frontier. Column 4 confirms this result 
using a continuous measure of local patenting. Innovative areas adopt generics more 
quickly regardless of database adoption, but on average, a physician using the data-
base in these locations is significantly less responsive to the information in terms 
of new generic drug adoption. The database nevertheless has an independent effect, 
speeding the adoption of new generic drugs regardless of patenting.

F. Other Robustness Checks

We evaluate the results involving the count variable ​​M​it​​​ in Table 5, column 1 
using a Poisson estimator. We estimate specifications involving the binary vari-
ables in Table 4 and column 3 of Table 5 using logistic fixed effects regressions. We 
reevaluate Table 5, column 3 including doctor-drug fixed effects and zip-code-month 
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drug-type fixed effects. To allow for persistence in prescription outcomes, we also 
control for the first lag of each outcome in Table 5.44 Each of these robustness 
checks reveals qualitatively similar results.45

Finally, a physician’s decision to prescribe a generic drug may be related to the 
insurance coverage of her patient population. We therefore evaluate split-sample 
estimates based on whether physicians receive a high or low share of Medicare 
and Medicaid patients, relative to the privately insured; separately, we repeat this 
split-sample analysis, distinguishing physicians based on whether a high or low 
share of their patients pay for prescriptions with cash. In both cases, we find negli-
gible differences across groups.

V.  Physician Heterogeneity

As a final point, we consider whether the data are broadly consistent with the 
idea that incomplete information contributes to disparities in prescribing behavior 
across physicians. If indeed these disparities partially reflect systematic informa-
tional differences, then physicians sharing access to a common source of drug infor-
mation, like the reference database in our study, should tend to exhibit observable 
homogenization relative to other doctors. We consider this possibility using a simple 
approach. We first assign each physician to one of two groups based on her database 
registration status in December 2010. Then, within each group, we measure the 
extent of prescribing heterogeneity across physicians: specifically, we determine the 
vector of prescription shares for each prescriber ​i​ in December 2010, and then com-
pute the Euclidean distance between this physician-​i​ vector and the average vector 
of prescription shares among physicians in her group (database users or nonusers).

These within-group similarity measures are reported in online Appendix 
Table A.11, panel A. The prescription shares of database users are indeed more 
homogeneous than those of nonusers. The average Euclidean distance between the 
physician-​i​ prescription vector and the group-specific average is 0.152 for users and 
0.176 for nonusers, and the difference (−0.0236) is highly statistically significant. 
Importantly, note that database users prescribe a significantly more diverse set of 
products than nonusers, as shown above in Table 5; the relative homogeneity of 
database users’ prescribing patterns thus does not imply a loss of variation in ther-
apies generally. Rather, the result implies that physicians who are connected to the 
same information source resemble each other more closely in spite of the fact that 
they tend to prescribe a more diverse set of drugs.

Of course, the fact that database users’ prescribing patterns are less heteroge-
neous could reflect selection rather than any causal effect of information access. 
Indeed, panel B of online Appendix Table A.11 shows that eventual database users’ 
prescribing exhibited greater homogeneity than nonusers’ even in January 2000, 
before anyone was using the database. But the changes by group between 2000 
and 2010, summarized in panel C, indicate that while (i) both groups (users and 

44 Structural persistence could arise in the presence of persistent patient-specific match quality ​​ϵ​njt​​​ terms in the 
model, given the chronic nature of the relevant medical condition.

45 Detailed results available on request.
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nonusers) exhibit homogenization over time, with the average Euclidean distance 
declining by 0.052 for users and by 0.040 for nonusers, (ii) the difference in differ-
ences is also highly significant—i.e., significantly more within-group homogeniza-
tion is observed among database users than among nonusers, even when controlling 
for physician fixed effects.46

Our data cannot definitively say whether the faster convergence for database 
users was directly caused by the database; unlike the regression analyses reported 
in Section IV, the results described in online Appendix Table A.11 are based on 
across-group comparisons rather than within-doctor comparisons, so the stronger 
trend toward homogenization among adopters could reflect other characteristics that 
are correlated with the decision to adopt. Nevertheless, we view these results as sug-
gestive of the idea that database use could reduce disparities in care—an idea that 
merits exploration in future research.

VI.  Conclusion

This paper has empirically examined how physicians’ prescribing decisions 
are affected by access to a drug reference database at the point of care. Using a 
novel dataset that includes prescription choices and drug reference use for over 
125,000 individual US physicians, we find that after adopting the database, users 
increase the likelihood of prescribing a generic drug, are faster to begin prescribing 
a newly-released generic, and yet also significantly increase the diversity of prod-
ucts prescribed each month. These results are consistent with the predictions of a 
simple, incomplete-information model of prescription choice, and are robust across 
specifications that control for physician and location-month unobserved prescribing 
determinants and treat the timing of physicians’ database adoption as endogenous.

While the magnitude of database users’ estimated shift toward generic drugs is 
modest at the prescriber level, the implied aggregate impact on drug spending is 
economically significant. US pharmacies filled approximately 170 million choles-
terol drug prescriptions in 2010, for example, a year during which roughly 45 per-
cent of sample physicians were users of the drug reference database, and during 
which the average price difference between branded and generic cholesterol-drug 
prescriptions was around $94.47 If 45 percent of these prescriptions correspond 
to database users, and if users’ generic shares increase by even half a percentage 
point—approximately the magnitude of the measured effect of database use in our 
data—the implied annual cost savings of database usage would exceed $35 million 
for cholesterol drugs alone.48 If effects of the same magnitude apply to all drug 
classes, the implied savings would be on the order of $1 billion annually.

46 For clarity, panel C reports coefficients from a least-squares regression of the Euclidean distance to the mean ​​D​it​​​ 
for doctor ​i​ at ​t  =  {​January 2000, December ​2010}​ on an indicator ​​I​2010​​​ for December 2010, its interaction ​​Z​2010​​ × ​I​2010​​​ 
with an indicator ​​Z​i,2010​​​ for physician-​i​ database access in December 2010, and physician fixed effects.

47 Assuming each prescription is for a standard 30-day supply, this estimated price difference based on 
Marketscan data for December 2009 is conservative; CMS data indicate the price gap corresponding to Medicare 
and Medicaid patients is substantially wider.

48 To determine the relationship between physicians’ generic prescription share and database use, we estimate 
a version of equation (6) that replaces ​​M​it​​​ with the share of physician-​i​ prescriptions in month ​t​ that are accounted 
for by generics. The estimated coefficient on ​​Z​it​​​ is 0.0061 (standard error 0.00021).
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More importantly, our study speaks to policy debates regarding the efficiency of 
US healthcare provision, particularly those concerning unwarranted disparities in the 
observed cost and quality of medical care (Wennberg and Cooper 1996) including 
that involving prescription drugs (Munson et al. 2013). Our results provide new, sys-
tematic evidence that information differences contribute significantly to treatment 
variation across US physicians, and suggest that connecting physicians to common, 
high-quality information sources has the potential to meaningfully increase the effi-
ciency of health care delivery.
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