
The Impact of Information Technology on
the Diffusion of New Pharmaceuticals∗

Kenneth J. Arrow
L. Kamran Bilir
Alan Sorensen

December 2018

Abstract

Do information differences across U.S. physicians contribute to treatment disparities?
This paper uses a unique new dataset to evaluate how changes in physician access to
a decision-relevant drug database affect prescribing decisions. Our results indicate
that doctors using the reference have a significantly greater propensity to prescribe
generic drugs, are faster to begin prescribing new generics, and prescribe a more
diverse set of products. Notably, physicians using the reference database are not
faster to prescribe new branded drugs. Given that a new generic drug resembles
its branded equivalent clinically, these results are consistent with database users
responding primarily to the increased accessibility of non-clinical information such
as drug price and insurance formulary data; the results also suggest improvements to
physician information access have important aggregate implications for the costs and
efficiency of medical care. We address possible selection effects in physician types by
focusing on eventual adopters and relying on within-doctor variation in the timing
of database adoption.
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1 Introduction

National health expenditures exceed three trillion dollars annually in the United States,

account for nearly twenty percent of U.S. GDP, and are to a considerable extent publicly

funded.1 Yet, research by the Dartmouth Atlas Project and Cooper et al (2015) finds sub-

stantial, systematic disparities in both the extent of health spending and the quality of

medical care across U.S. regions, including threefold per-capita expenditure gaps resulting

from inefficient variations in care—differences consistent neither with patient preferences

nor with underlying medical conditions.2 These findings imply significant gains could be

achieved by improving efficiency in low-peforming regions, but this requires first identify-

ing the specific mechanisms that cause treatment disparities. Among the many potential

mechanisms that have been proposed, which include supply, demand, regulatory, and pric-

ing differences, perhaps the most important and intriguing is that disparities result from

a lack of uniformity in physicians’ information about available therapies.3 The possibility

that information problems underlie observed treatment disparities has inspired calls for the

expanded use of medical decision aids, but the difficulties inherent to measuring information

differences have led to a paucity of systematic evidence on their actual importance.4

To shed light on the question of how physicians’ information access impacts treatment

choices, we assemble a new dataset in which treatment decisions and access to a decision-

relevant database are directly observed at the doctor level for the universe of U.S. prescribers

over the decade 2000–2010.5 Our ability to observe both treatment decisions and database

usage by individual doctor over a period of time is particularly unique and important; our

data further cover Medicare patients and the privately insured as well as those with Medicaid

or no coverage, so that the results of our analysis are representative of the diverse range of

U.S. patient types.6 Using these data, we provide novel evidence that physicians using the

drug reference database significantly increase their likelihood of prescribing a generic drug

relative to brand-name therapies, and thus increase their generic prescription share—one of

the key efficiency metrics emphasized in the Dartmouth Atlas in documenting prescription

drug variations.7 Database users are also significantly faster to begin prescribing newly re-

leased generics, an effect absent for new branded drugs. These findings suggest database users

1See https://www.cms.gov/nationalhealthexpenddata.
2The Dartmouth Atlas Project has documented healthcare disparities for Medicare patients over decades

(Wennberg et al 1996, Gawande 2009, and Chernew et al 2009); Cooper et al (2015) finds related disparities
among the privately insured population. See also Wennberg and Wennberg (2003), Dartmouth Atlas (2007).

3For example, Skinner (2012).
4See Phelps (2000), Wennberg and Wennberg (2003), and Arrow (1969).
5The provider of the database is a leading U.S. point-of-care medical applications firm that chose to

remain unnamed in this study. For a description of all major drug references, see Ventola et al (2014).
6These categories are new relative to existing evidence on healthcare variations; see note #2 above.
7See Munson et al (2013).

1



may be responsive primarily to the increased salience of non-clinical information included

in the database—including whether a particular drug is currently covered by a patient’s in-

surance plan, and plan-specific pricing—as a generic drug and its branded equivalent share

essentially identical clinical attributes. We find that treatment differences across doctors

decline significantly more among database users than non-users during the sample period,

while the actual diversity of a user’s own prescribing increases on average following adoption.

Access to detailed information about competing treatments thus appears to raise efficiency

and reduce disparities, but importantly, these effects do not appear to come at the expense

of patient-sensitive decision making.

Our empirical strategy is data intensive, requiring the combination of two unusually

large proprietary datasets, and we therefore focus our analysis on a single class of pharma-

ceutical products—cholesterol drugs.8 While this drug class is already of immediate interest

due to its exceptionally large U.S. market, the rapid pace of innovation during the period

relevant for doctors’ adoption of the drug database imply this class is ideal for a study-

ing the effects of information technology usage on the diffusion of new prescription drugs.

Indeed, during the relevant decade, 12 nationwide product innovations occurred.9 The dif-

ferential response across physicians to these repeated drug introductions is crucial to our

identification strategy, because it allows us to measure the influence of information access on

treatment decisions while accounting for physician characteristics that simultaneously affect

both prescribing and database adoption.

This is particularly important for our analysis because access to the drug database is not

randomly assigned—doctors choose whether and when to subscribe. Prescription patterns

of subscribing doctors may therefore look different from those of non-subscribers not due to

any effects of the database itself, but instead due to differences in the types of doctors who

choose to subscribe. With this challenge in mind, our analysis relies heavily on within-doctor

variation over time: rather than estimating effects by comparing database users to non-users,

we focus on comparisons of a doctor’s own prescriptions before versus after she begins using

the database. In line with this strategy, much of our main analysis restricts attention to

the sample of physicians that eventually adopts the reference database. To account for the

possibility that dynamic prescribing determinants may be correlated with adoption timing

within a location, such as changes in doctor-specific drug advertising, our main specifications

8Prescription data covering additional drug classes exist, but are not available for the current study due
to the unusually large size of the customized data extracts involved.

9The Centers for Disease Control and Prevention estimate that approximately 71 million U.S. adults suffer
from chronic hypercholesterolemia and dyslipidemia, conditions in which abnormal levels of cholesterol or
lipids are present in the bloodstream. These conditions are associated with heart disease, heart attack risk,
and premature death; accordingly, sales of cholesterol therapies accounted for over $18 billion U.S. dollars
in 2011 (Ledford 2013). See also Mozaffarian, et al (2014). Drug introductions are described in Section 2.1
and listed in Table 1.
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also include doctor-specific time trends and zipcode-month fixed effects. We further provide

time-varying estimates that indicate the prescribing changes we find either coincide with or

immediately follow database adoption.

Our empirical approach nevertheless leaves open the possibility that unobserved changes

not accounted for by doctor-specific time trends or zipcode-month fixed effects both affect

prescribing and coincide with database adoption. To help address this concern, we group

doctors based on the intensity with which the drug database is used to search about choles-

terol drugs. In line with the idea that doctors’ prescribing changes are associated with

use of the database, these results reveal a larger association between database usage and

prescribing changes among relatively intense database users, compared with lower-intensity

users. Also consistent with this interpretation, the drug reference database we consider is

a stand-alone technology, accessed by an individual rather than institutional subscription,

and is not embedded into other health information technology systems. This is important,

because if the database were part of a broader health information technology platform, for

example one that includes features that facilitate patient and insurer billing (see, for exam-

ple, Agha 2014), it would be difficult to know whether estimates corresponding to database

use indicate effects of drug information access or instead, effects of some other technology

that is part of the same health I.T. system that the doctor accesses.10

Consistent with the regional disparities documented in the Dartmouth Atlas, our data

reveal substantial prescribing variation across the universe of individual U.S. physicians, par-

ticularly with respect to generics and new drug adoption. Doctors differ widely in generic

prescription shares (mean 56.4 percent, standard deviation 24.3 percent) in December 2010,

and span the full range from no generics (5th percentile) to only generics (95th percentile).11

We find that these generic shares are strongly and positively correlated within physician

across patient insurance types (e.g. private vs. Medicare), suggesting patient cost sharing

is unlikely to explain the observed heterogeneity in prescribing patterns. Moreover, with

respect to drug adoption, some U.S. physicians begin prescribing a newly-approved choles-

terol drug immediately, while others delay for a year or more before prescribing it, a pattern

strongly evident even among new generic drugs. Six months after the introduction of generic

lovastatin, for example, the molecular equivalent of Mevacor, the generic version accounted

for only 83 percent of the drug’s prescriptions; by contrast, the generic share reached essen-

10Relatedly, it is important to note that while other drug references exist, including the Micromedex and
UpToDate Lexicomp databases, these are imperfect substitutes for the database we consider. In particular,
these other databases do not contain drug price or formulary-specific coverage information and are typically
accessed by institutional subscription. Because our data do not include information on doctors’ potential
usage of these alternative platforms, it is also important to point out that, if a doctor tends to begin using all
databases around the same time, our estimates would reflect the influence of information from all platforms
rather than just the one we observe directly.

11Table 3.
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tially 100 percent by December 2010. This delayed substitution is evident for each of the

generic entrants we observe, contributing to wide differences across doctors in the overall

prescription share of generic drugs, and to large corresponding gaps in cost.12

Our empirical analysis indicates that some of this observed prescription heterogeneity

is explained by differences across doctors in information access. Our most conservative esti-

mates indicate that, after obtaining database access, a physician user increases the likelihood

of prescribing a new generic drug within its first market year by 1.3 percent; among high-

intensity database users, this rises to a 2.4 percent increase. Regarding diversity, database

users increase the number of unique drugs prescribed each month by a modest but highly sig-

nificant 0.035 drugs, reducing the prescription Herfindahl-Hirschman index by 0.003 points.

In line with both results, users increase the monthly likelihood of prescribing new and old

generic drugs by 1.6 and 2.4 percent, respectively, after database adoption, while reducing

the likelihood of prescribing a new branded drug by 0.5 percent. Our back-of-the-envelope

calculations suggest the resulting increase in users’ generic prescription shares contributes to

substantial aggregate cost savings, which amount to approximately $1 billion annually for

prescription drugs alone.13

This paper is related to an extensive literature documenting wide healthcare disparities

across U.S. regions, including the Dartmouth Atlas (e.g. Wennberg et al 1996) and its anal-

ysis of prescription drug use among Medicare patients (Munson et al 2013), and Cooper et al

(2015) for the privately insured. We contribute to this work by first documenting prescription

disparities for the universe of U.S. prescribers and patients with all insurance types within

a major therapeutic area. Second, relying on the unusual level of detail and coverage in the

dataset we have assembled, we identify a highly significant link between observed dispari-

ties and a specific mechanism—physician information differences—that we find is partially

responsible for these disparities. While our data are broader with respect to physician and

patient coverage, our empirical strategy is demanding (our dataset includes over 200 million

observations) and we therefore focus on a single clinical area while Dartmouth Atlas and

Cooper et al (2015) cover a comprehensive set of treatments; aggregating our physician-level

data to Dartmouth Atlas regions, we nevertheless find that locations with high generic pre-

scription shares in our dataset also have high generic shares for Medicare overall (correlation

44.4 percent), as well as lower per-capita medical spending for prescription drugs (correlation

23.9 percent) and non-drug healthcare (correlation 12.4 percent)—patterns that underscore

the highly systematic nature of U.S. disparities in care, and suggest the potential value of

extending our physician-level analysis to other clinical settings.14

12See Section 2.4 and Section 7.
13See Section 7.
14Our data do not include individual patient characteristics; this latter aspect precludes a direct extension

of Munson et al (2013) to non-Medicare patients, as well as a quantitative welfare analysis; it further precludes
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Our paper is also closely related to work aimed at evaluating the impact of information

technology on economic decisions and outcomes.15 Agents’ electronic information access can

affect productivity (Solow 1987) and has been specifically shown to improve performance in

emergency healthcare delivery (Athey and Stern 2002). However, in routine medical contexts

the evidence is less clear: Dranove et al. (2014) finds that the adoption of electronic medical

records (EMR) raised hospital costs on average, with an important exception—adopting

locations with an abundance of industrial I.T. did in fact experience cost declines. Our

results complement this latter finding in that the medical decision-support tool we study is

standardized, likely to a greater extent than EMR, yet we observe that both the intensity

and impact of its use differ substantially across physicians in the data. In particular, we find

that the efficiency impact of database use is systematically larger among adopters using the

database intensively to search for information about the cholesterol drugs we study.

In finding that use of an information database tilts prescribing away from branded

drugs and toward generics, our results contribute to important work highlighting the in-

fluence of information on tastes for generic products. Bronnenberg et al (2015) find that

relatively informed buyers are more likely to choose a generic version, for example when pur-

chasing an over-the-counter drug, suggesting consumer misinformation contributes to the

brand premium for health products. Our results add nuance to this finding, suggesting that

even among highly trained and educated U.S. physicians, access to current product infor-

mation including pricing increases the propensity to prescribe a generic and decreases that

for branded drugs. We find that the impact of database access is systematically larger for

physicians located far from the information frontier, and that dynamics in the product space

(drug entry) may be important in explaining our results, as database users are also faster to

begin prescribing a newly-introduced generic version. In finding that physicians’ information

access affects decisions made on behalf of patients, and that prescribing is highly correlated

within a physician across patients regardless of insurance coverage, our results are further

aligned with Brot-Goldberg et al (2015) and Cutler et al (2015), which find evidence that

physician preferences are key in explaining treatment decisions.

Our results add to the literature examining the determinants of new medical technology

diffusion. Classic work by Coleman, Katz, and Menzel (1957, 1996) finds that new phar-

maceutical products diffuse unevenly across medical practitioners: physicians that interact

more frequently with other physicians are more likely to adopt early. Relatedly, Skinner and

Staiger (2007) provide evidence that certain U.S. states have a systematic tendency to adopt

estimating a model featuring prescription dynamics within each patient-physician pair, as in Crawford and
Shum (2005) or Dickstein (2015).

15See, for example, Attewell (1992); Bresnahan and Greenstein (1996); Black and Lynch (2001); Bresna-
han, Brynjolfsson, and Hitt (2002); Brynjolfsson and Hitt (2003); Hubbard (2003); Forman, Goldfarb, and
Greenstein (2005); Bloom et al. (2009); Bloom, Sadun, and Van Reenen (2012); Agha (2014).
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early across technology types as varied as beta blockers and hybrid corn (Griliches 1957).

We find that physician access to a digital database also speeds new drug adoption—but only

for generics; and, to account for local differences in the tendency to adopt both drugs and

the database early, which could reflect general differences in unobserved factors such as drug

advertising, we emphasize specifications that include both physician and zipcode-by-month

fixed effects.16 In focusing on individual-level drug adoption, our work is also closely re-

lated to Crawford and Shum (2005) and Dickstein (2015), who estimate models of physician

learning, and Agha and Molitor (2015), who study the diffusion of cancer drugs.17

More broadly, our analysis complements research on general theories of technology

diffusion featuring agents with imperfect information. Such theories can be shown to explain

large existing differences in productivity across locations (Solow 1956, Arrow 1969, Parente

and Prescott 1994, Comin and Hobijn 2004) as identified in Klenow and Rodriguez-Clare

(1997) and Casselli and Coleman (2006), for example.18 We introduce a unique dataset

in which a sequence of technology adoption decisions is clearly observed at the individual

level for the universe of U.S. prescribers, allowing our study to speak both to micro-level

mechanisms driving diffusion and to the aggregate consequences of these mechanisms.

The rest of the paper is organized as follows. Section 2 describes the data used in

our analysis. Section 3 describes a simple model of prescription choice and our estimation

framework. Section 4 presents the empirical results, Sections 5 and 6 discuss interpretation,

and Section 7 concludes.

2 Data and Descriptive Evidence

Evaluating the influence of information access on new pharmaceutical drug diffusion requires

detailed measures of drug innovations and individual prescribers’ treatment decisions, infor-

mation usage, and characteristics. We introduce each of these measures below and go on to

describe physicians’ prescribing of new and existing pharmaceutical drugs.

2.1 U.S. Innovations in Chronic Hypercholesterolemia and

Dyslipidemia Therapy

Our analysis considers a class of prescription drugs—cholesterol medications—that are in-

teresting both because their substantial U.S. market, and importantly, because of significant

16We also consider the influence of local differences in mandatory substitution regulations that could be
particularly important for explaining generic diffusion in the data, and find that the effects of database access
are evident among physicians practicing both within and outside states with a mandatory substitution law.

17See also Escarce (1996), who studies physicians’ decisions to adopt a surgical technology.
18The idea that underlying heterogeneity across agents could influence technology diffusion also relates our

work to neoclassical models of technology adoption, e.g. David (1966) and Manuelli and Seshadri (2014).
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drug innovations during the time period relevant to physicians’ adoption of the drug refer-

ence database. Specifically, at the start of our sample period in January 2000, HMG-CoA

reductase inhibitors (statins) were understood to be the most effective pharmaceutical ther-

apies for hypercholesterolemia, and there were five such products available: Lescol, Lipitor,

Mevacor, Pravachol, and Zocor.19 The most common non-statin used to treat high choles-

terol was Niaspan, which is also included in our sample. Thereafter, twelve new cholesterol or

lipid control therapies were introduced, including new formulations, combinations, and ver-

sions.20 These include three new molecular entities, Crestor, Lovaza, and Zetia; three generic

versions, lovastatin (Mevacor), pravastatin (Pravachol), and simvastatin (Zocor); two new

formulations, Altoprev (extended-release Mevacor) and Lescol XL (extended-release Lescol);

and four new drug combinations, Advicor (extended-release niacin and Mevacor), Pravigard

PAC (aspirin and Pravachol), Vytorin (Zetia and Zocor), Simcor (extended-release niacin

and Zocor). Each new therapy received nationwide approval by the U.S. Food and Drug

Administration (FDA) on a known, drug-specific date (Table 1). All products are described

in Appendix A.1.

While these 18 products are therapeutic substitutes, in that they aim at a similar clini-

cal endpoint—cholesterol or trigliceride reduction—they are only imperfect substitutes: each

product features distinctive characteristics relevant for the prescribing decision. First, many

but not all cholesterol therapies are pure statins, which act to reduce cholesterol synthe-

sis in the liver by inhibiting a specific coenzyme; these include Lescol (fluvastatin), Lipitor

(atorvastatin), Mevacor (lovastatin), Pravachol (pravastatin), Zocor (simvastatin), Crestor

(rosuvastatin), Altoprev (extended-release lovastatin), and Lescol XL (extended-release flu-

vastatin). Other products rely on different mechanisms of action: Zetia (ezetimibe), for

example, is distinct in that it achieves cholesterol reduction by reducing intestinal absorp-

tion of cholesterol. A second distinction involves therapeutic intensity. High doses of Lipitor

and Crestor are more effective at lowering low-density lipoprotein (LDL) cholesterol than

alternatives (Law et al 2003). Side effects are also relevant; evidence suggests, for example,

that high doses of Lipitor and Crestor may increase the incidence of adverse reactions, while

combination therapies such as Vytorin may in certain cases be more appropriate care for

patients with severe cholesterol abnormalities (Kastelein et al 2008).

More subtly, clinical evidence suggests the benefits and risks associated with statins

are heterogeneous across patients; randomized-controlled trials (RCTs) indicate, for exam-

ple, that the benefits of statin use are higher for patients with diabetes, negligible among

those with prior heart failure, and vary with age; risks and side-effects also vary with statin

19Cannon et al (2004).
20To ensure adequate coverage in the data, we consider all cholesterol therapies introduced by December

2008, but not those introduced after this date. For the same reason, our analysis excludes Baycol, a drug
that was available in January 2000 but withdrawn from the market in August 2001.
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intensity, age, weight, comorbidities, and so on (Brooks et al 2014). Adding to this, patients

with ‘complex’ attributes are often underrepresented in RCTs, raising clinical uncertainty

and, accordingly, the likelihood that patient preferences—including willingness to suffer side

effects and to pay for medications—may influence the prescribing choice (Brooks et al 2014).

Physicians’ decisions about which drugs to prescribe are further affected by the evolution

of clinical information as new trials are completed—particularly head-to-head studies aimed

at establishing the relative efficacy of one drug therapy over another.21 These ongoing

changes in clinical evidence, combined with an expanding set of available products and the

accompanying evolution in prices and insurance coverage (e.g. Duggan and Scott Morton

2010), suggest that physicians may turn to drug references that help to ensure patient-specific

prescription decisions are based on accurate information.

2.2 Prescriptions by U.S. Physicians

To measure physicians’ prescribing of new and existing therapies aimed at cholesterol and

lipid control over time, we use physician-level prescription data for the 18 drugs described

above from the IMS Health Xponent database.22 These data are provided at a monthly

frequency by drug during the period January 2000 through December 2010, and cover each

of the 280,622 U.S. physicians associated with at least ten cholesterol-drug prescriptions

during January to December 2010; this low threshold for inclusion implies that our dataset

captures essentially the universe of U.S. cholesterol drug prescriptions during this period. For

each product and month, we observe the number of prescriptions written by each physician

and filled through a U.S. pharmacy. Beginning in January 2006, the data also include

information on the method of payment used to fill each prescription (Medicaid, Medicare

Part D, Cash, or Commercial Third-Party Insurance). Importantly, each physician in the

dataset is identified by a unique medical education number, name (first name, last name,

middle name), and location (a five-digit U.S. zipcode). These identifiers enable us to match

individual prescribers with their observed pharmaceutical information technology use.

To ensure that our sample includes only those physicians actively prescribing cholesterol

drugs during the entire sample period, we restrict attention to the 128,043 physicians that

prescribe ten or more statins both during January to December 2000, and during January to

21For example, an RCT completed in 2004 demonstrated that for patients with severe cholesterol abnor-
mality, the incrementally larger reductions achieved by Lipitor resulted in fewer deaths and major coronary
events relative to patients taking Pravachol (Cannon et al 2004). Another such study released in 2008 found
that, while Vytorin achieved larger cholesterol reductions than simvastatin, the two drugs were observably
identical when it came to the thickness of arterial plaque buildup (atherosclerosis); adding to this, a second
study in 2008 found a positive association between Vytorin and cancer (Rossebo 2008) that was later reversed
(Cannon et al 2015).

22IMS Health curates data on additional drug classes; these additional data are not available for the current
study due to the unusually large size of the customized data extracts involved.
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December 2010; this allows us to abstract from potential differences in prescribing that may

surround a physician’s entry into or exit from medical practice, and also ensures that we have

adequate data on database adopters’ pre-adoption and post-adoption prescribing patterns.

The final prescription dataset includes over 200 million observations (132 months × 128,043

physicians × up to 18 drugs). Summary statistics appear in Table 2, and additional details

regarding data assembly and the Xponent database appear in Appendix A.2.

2.3 Drug Information Access by U.S. Physicians

To construct an index for the extent of physicians’ pharmaceutical information access, we

use novel physician-level data from the private firm that owns and operates a prominent

electronic reference for pharmaceutical products. The data include a monthly indicator for

whether a U.S. physician is a registered user of the reference database, and this suggests the

database is widely used: by December 2010, 45.1 percent of sample physicians had established

an individual database account (Table 2). The data also include information about registered

physicians’ actual use of the reference during the sample period: we observe a lower bound on

the number of times a physician looks up a cholesterol drug using the database. This proxy

is 3.83 on average, and the data indicate that, while 24.2 percent of physicians are registered

database users in the average month, only 13.1 percent of physicians use the database to

look up one of the cholesterol drugs considered in our study. It is for this latter group of

physicians that database access is likely to be relevant to the cholesterol-drug prescribing

outcomes we consider; in Section 5, we thus consider whether the observed intensity of

database use explains variation in its impact on prescribing.

The drug reference we study contains information that is, in principle, relevant for im-

proving the match between patient characteristics and available pharmaceutical products.

At any point in time, the drug reference contains detailed information about each available

U.S. FDA-approved medication. This information is obtained from the medical literature,

specialist recommendations, clinical guidelines, manufacturer labeling, standard medical ref-

erences, and FDA drug safety alerts and is updated continually; the results of this ongoing

research are condensed into drug-specific monographs that may be accessed through the elec-

tronic database interface. Beyond standard clinical information such as contraindications,

cautions, adverse reactions, safety, monitoring, and pharmacology, the reference monographs

also include a set of additional variables for each product that may affect prescribing deci-

sions. Specifically, the monographs include retail pricing and formulary status information

for each drug, drug interaction information, FDA warnings, and off-label and pediatric us-

age guidelines. Each physician customizes the tool with respect to formularies, selecting

those relevant to their decision needs; it is then straightforward for any drug to check co-

pay tiers, formulary alternatives, generic substitutions, criteria for prior authorizations, and

9



quantity limits, facets of a formulary that are subtle but often have significant consequences

for patient costs. The database includes separate entries for each branded product and each

generic, based on product-specific information such as available formulations, dosing, indi-

cations, manufacturer, and pricing. The database is updated to reflect both the current

set of products and formulary details, as well as the current state of knowledge regarding

drug characteristics and clinical practice. Importantly, information for new drugs becomes

available around the time the drug is released by the FDA for commercial prescription.

Because the drug reference combines available information into a single, current mono-

graph rather than contributing new or proprietary drug information, it is best viewed as a

tool that makes it convenient for physicians to quickly access condensed clinical, insurance,

and pricing information about a drug. Doctors commonly use the reference to check dosages,

contraindications, and coverage details, but rely on other sources, such as medical journals

or more encyclopedic references, for information such as a drug’s results in clinical trials.

The database provides certain forms of clinical guidance to prescribers. While it rec-

ommends statins as a first-line treatment for use in reducing LDL-C (low-density lipoprotein

cholesterol), it is important to note that guidance in terms of which among the available drugs

to prescribe is highly patient-specific. For example, the database identifies each statin as

falling into one of three groups, high-intensity, moderate-intensity, and low-intensity statins.

These groups are defined based on numeric LDL-C reduction targets that are specific to a

patient. The reference indicates that a patient in the high-intensity category (daily dosage

lowers LDL-C by over 50% on average) should receive either atorvastatin with a dosage of

40-80 mg/day (Lipitor) or rosuvastatin with a dosage of 20-40mg/day (Crestor).23

The electronic drug reference database we study is a stand-alone technology, not em-

bedded into other health information technology systems, and is accessed almost exclusively

by an individual (rather than institutional) subscription. This is important, because if the

database were part of a broader health information technology platform, for example one that

includes features that facilitate patient and insurer billing (see, for example, Agha 2014), it

would be difficult to know whether estimates corresponding to database use indicate effects

of drug information access or instead, effects of some other technology that is part of the

same health I.T. system that the doctor accesses.24

23Notice that evaluating whether doctors with database access better adhere to these guidelines than those
without access would require observing a) patient-specific LDL-C reduction goals for each doctor-month, and
ideally also b) the dosage for each dispensed prescription. Because we are unable to observe either of these
details, it is not possible in our analysis below to assess directly whether adherence to prescribing guidelines
improves with database usage.

24Relatedly, other drug references exist, including the Micromedex and UpToDate Lexicomp databases.
These are imperfect substitutes for that we consider: these databases do not contain drug price or formulary-
specific coverage information and are typically accessed by institutional subscription. Moreover, our data
do not include information on doctors’ potential usage of these alternative platforms. Thus, as a matter of
interpretation for our estimation results below, if a doctor tends to begin using all databases around the
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For our study, it is critical to understand what drives database adoption. Figure 1 indi-

cates that use of the reference database during the sample period is not random, but differs

according to observable doctor characteristics.25 Throughout the sample period, physicians

are more likely to have adopted the database if they had graduated from a top-ranked U.S.

medical school (Panel A) and had graduated recently (Panel B); males are also more likely

to adopt (Panel C). Doctors in obstetrics and gynecology (Panel E), and those practicing in

the U.S. South (Panel F) appear systematically slower to adopt the database.

Presently, new physician adopters tend to learn about the reference while in medical

school. However, because the physicians in our dataset had all completed medical school

before the database became available, their adoption decisions are more likely to have been

driven by marketing or peer effects. Documents filed along with the reference firm’s initial

public offering state that its marketing strategy was, in fact, an informal ‘word-of-mouth’

approach, and that throughout the sample period, the network of reference users grew over

time primarily through users telling friends and colleagues about its value. The filings state

that this strategy had been both highly effective and inexpensive relative to the alternative

of hiring a dedicated sales force.26 Thus, while our data indicate that physicians are visibly

idiosyncratic in their adoption timing, a doctor is much more likely a user if a high share of

other doctors in her zipcode are also users—consistent with the firm’s reported marketing

strategy. Moreover, only 16 percent of the variation in the time to adoption is explained by

zipcode fixed effects, indicating that within-zipcode dynamics are quite important.

Regarding adoption motives, the main reason doctors cite for registering is convenience:

database use reportedly yields meaningful time savings. By contrast, it is unlikely that price

was an important factor in physicians’ adoption decisions. Access was always available

through a free version of the database application, which included the core drug reference

tools (e.g. dosage lookups) that are relevant to our study. Additional features were available

with a paid subscription, but the annual fee for this version was low, never above $200.

It should also be noted that database adoption appears to be mostly an individual

decision, even for doctors in group practices. Large clinics and physician groups sometimes

purchase site licenses for institution-level access to the database as part of broader I.T.

initiatives; however, some of the benefits of using the database require individual registration,

and most doctors therefore have individual accounts even if their group or clinic has a site

license. Nevertheless, to check whether doctors practicing in groups tend to synchronize their

database adoption, which would suggest the influence of a group-level adoption decision, we

same time, our estimates would reflect the influence of information from all platforms rather than just the
one we observe directly.

25Physician characteristics were obtained from the Centers for Medicare and Medicaid Services Physician
Compare database, and were matched based on physician first name, last name, and five-digit zipcode.

26By contrast, sales force marketing is standard for new pharmaceuticals. See Datta and Dave (2016).
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used the 2014 CMS Physician Compare database to identify doctors who were likely working

in the same practice during our sample period. Among over 7,000 groups we identified, just

38 were ones in which all doctors in the group adopted the database at the same time. In

light of this, it seems unlikely that site-level access or group adoption decisions are primary

drivers of the physician-level database use we consider.

2.4 Descriptive Evidence

The data provide suggestive indications that incomplete information may affect physicians’

prescribing as well as the rate and extent of new product diffusion, depicted in Figure 2.

Consider the statistics presented in Table 3, which quantify differences in prescribing across

U.S. physicians for the class of cholesterol medications evaluated. The statistics in Panel A

provide evidence for the December 2010 cross section. It is apparent that the pronounced

variation in cholesterol-drug prescribing previously found among Medicare patients (e.g.

Munson et al 2013, Brooks et al 2014) is also present within the overall population both across

zipcodes (columns 5–8) and individual physicians (columns 1–4). The share of prescriptions

accounted for by generics ranges from zero to one in column 4; moreover, while the average

physician prescribes a generic in 56.4 percent of cases, the standard deviation is also large

(24.3 percent), and spans the full range from zero (5th percentile physician) to 100 percent

(95th percentile). The relative heterogeneity across doctors is even wider for the specific

drugs described in columns 1 through 3, and across all columns, the idiosyncratic behavior

of individual physicians appears to be important: for the vast majority of zipcodes, there is

substantial within-zipcode variation in generic shares across local physicians (Table A.1).

Even if physicians were perfectly informed, variation in prescribing could result from an

uneven distribution of patient characteristics. For example, Lipitor is a high-intensity statin

that may be preferable for patients with a severe cholesterol abnormality, the incidence of

which may cluster geographically. Similarly, risk-averse patients may prefer an established

drug over a new one—even if the new drug is simply a new generic version—if they perceive

the quality of a new product as uncertain relative to another option. Such underlying patient

heterogeneity may partially explain the slow and incomplete diffusion of new drug varieties,

which is apparent for each new drug except simvastatin (Figure 2 and Table 1, column 3).

It may also explain why a substantial fraction of the variation across doctors observed in

columns 1–4 remains even after aggregating to the zipcode level (columns 5–8).

Unobserved patient heterogeneity likely explains some of this variation in prescribing,

but columns 1, 2, and 3 indicate that additional factors are also likely present. Specifically,

these columns assess within-physician changes in the prescription of new generic products.

The advantage of focusing on these columns is that it is possible to compare prescribing of

a branded product with its molecularly-equivalent generic, two distinct drugs that have no
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relevant clinical differences. And, by examining changes over time in the generic share of

molecule-specific prescriptions—e.g the share of simvastatin plus Zocor prescriptions that

are accounted for by generic simvastatin—it is possible to determine whether stable patient

heterogeneity is likely to be the only explanation for variations in care. For each of the three

generic drug introductions (lovastatin, pravastatin, and simvastatin), the data indicate that

physicians differ in their use of generics in the short run, six months after generic entry,

and that substitution toward generics is initially incomplete at this point (Panel B). By

contrast, in the long run, physicians differ substantially less: nearly complete substitution

toward generics is observed for each of the three products (Panel C).27 This pattern of

delayed substitution between two molecularly equivalent products strongly suggests factors

other than time-invariant patient heterogeneity contribute to prescribing differences among

cholesterol drugs, and is consistent with the influence of information frictions.

Beyond cost implications, these same factors may impede the diffusion of new non-

generic therapies, with consequences for health outcomes. The data indicate that physicians

are slow to begin prescribing new molecular entities, new drug combinations, and new dosage

forms—branded products not facing generic competition. Figure 2 shows that diffusion

curves differ considerably across new drugs; Figure 3 plots the gradual diffusion of Crestor

across U.S. zipcodes; and Table 1 describes how the time lag in months between a drug’s

approval and its initial prescription varies across U.S. physicians for each drug introduction.

The average physician delays prescribing a new drug for 20.3 months among the new products

considered in our analysis; the standard deviation is even larger (22.1 months), and this

adoption lag ranges from zero to 122 months, indicating some physicians adopt immediately

and others had yet to adopt the first new drug by the end of our sample period (Table 2).

Unlike the Dartmouth Atlas and Cooper et al (2015) studies, which cover a compre-

hensive set of treatments and analyze regional differences in the cost and quality of care, we

analyze behavior at the physician level and focus on the specific clinical decision of which

cholesterol drug to prescribe. However, it is nevertheless useful to ask whether the patterns

we observe for this context are consistent with the broader treatment patterns documented

by the Atlas. Aggregating our physician-level data to Hospital Referral Regions (HRRs)

and comparing against data from the Dartmouth Atlas project, we find that locations with

high generic prescription shares in our dataset also have high generic shares for Medicare

overall (correlation 44.4 percent), as well as lower per-capita medical spending for prescrip-

tion drugs (correlation 23.9 percent) and non-drug healthcare (correlation 12.4 percent). As

noted above, these patterns underscore the highly systematic nature of U.S. disparities in

care, and suggest that the disparities in physicians’ prescribing of cholesterol drugs may

27By December 2010, physicians had broadly switched away from prescribing Mevacor, Pravachol, and
Zocor. However, six months after each respective patent expired, generic prescribing was far less prevalent
for each molecule, though the generic version was in each case already substantially less expensive.
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reflect some of the same factors that drive disparities in treatment decisions more broadly.

3 Empirical Strategy

In this section we provide a conceptual framework indicating how physician information and

prescribing outcomes may be related. We describe the model implications and restrictions

that guide our approach to estimating the treatment impact of physicians’ database access.

3.1 Conceptual Framework

Consider a baseline model in which physician i faces a period-t choice over which drug to

prescribe for each of her patients n = 1, 2, ..., Nit. Like other economic studies of prescribing

decisions, suppose that physician i makes this decision for each patient by selecting the single

drug j ∈ {1, 2, ..., Jt} available at t that maximizes patient utility according to physician-i

information.28 Specifically, suppose that the true utility derived by patient n from drug j

at t is unjt ≡ θjt + Vnjt, which combines the quality of drug j that is both known at t and

common across patients (θjt) with the quality of j that is unknown and partially specific

to patient n (Vnjt). The first of these terms (θjt) thus captures the accepted wisdom at t

about the efficacy, costs, side effects, and so on of drug j for the average patient, while the

second reflects novel information that may, in part, be relevant to the match between j and

patient n. In particular, suppose that Vnjt combines two terms: Vnjt ≡ vjt + εnjt, where vjt

is a drug-specific value—a revision to accepted wisdom about the quality of drug j—and

where εnjt reflects the quality of the match between patient n and drug j. We assume the

physician is only partially informed about Vnjt, to a degree indexed by a parameter φit; she

bases her prescribing decision on a partial observation of unjt given by

ûnjt ≡ θjt + (1− e−φit)Vnjt = θjt + (1− e−φit) (vjt + εnjt). (1)

Physicians with a higher value of φit in (1) are more responsive to information about drug

quality that is not commonly known at t (vjt), and about the patient-specific match (εnjt).

In particular, (1) implies physicians with no special information (φit = 0) are insensitive

to Vnjt and thus prescribe the same drug—that with the highest θjt—for all patients, while

physicians who are fully informed (φit →∞) respond to Vnjt perfectly.

If we assume that the εnjt follow an i.i.d. Type-1 Extreme Value distribution, it is

straightforward in this simple setup to show that the probability physician i prescribes drug

j for patient n at t depends on the information index φit as follows

28See, for example, Dickstein (2015), Crawford and Shum (2006). Unlike these papers, we do not observe
patient-level information; this precludes estimating a model of learning within each patient-physician pair.
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pjt(φit) =
exp

{
θjt

1−e−φit + vjt

}
∑Jt

k=1 exp
{

θkt
1−e−φit + vkt

}
and that, accordingly, the probability Pijt that drug j is prescribed by physician i at least

once during period t is

Pijt(φit) ≡ P{Xijt > 0} = 1− P{Xijt = 0} = 1− (1− pjt(φit))Nit (2)

where Xijt is the number of physician-i prescriptions written for drug j during period t.29

Moreover, starting from the introduction date t0j of a new drug j, the expected number of

periods Tij that lapse before drug j is prescribed at least once by physician i is

E[Tij] =
∞∑
t=t0j

(t− t0j)Pijt(φit)
t−1∏
s=t0j

(1− Pijs(φis))

=
∞∑
t=t0j

(t− t0j)
(

1− (1− pjt(φit))Nit
) t−1∏
s=t0j

(1− pjs(φis))Nis (3)

which also depends on φit, as does the expected number of unique drugs Mit prescribed by

physician i during t,

Et[Mit] ≡ Et

[
Jt∑
j=1

1{Xijt > 0}

]
=

Jt∑
j=1

Pijt(φit) =
Jt∑
j=1

(
1− (1− pjt(φit))Nit

)
. (4)

Within this framework, we regard the electronic database as a technology that increases

a physician’s φit, which is otherwise unobserved. The database is continuously updated, so

users of the database are more likely aware of any new information about the drug, including

price changes, new warnings, or new results about its efficacy for different patient types.

And the database allows doctors to look up a drug’s current formulary status for a specific

patient’s insurance plan, so database users should also be more responsive to differences

in, and changes in, match quality across patient-drug pairs. From (2), if database use

indeed increases φit, it impacts the probability drug j is prescribed: whether Pijt increases

or decreases for drug j depends on the distribution of Vnjt across drugs j and patients

29Qualitatively identical results hold under more general assumptions regarding the distribution of εnjt;
the Type-1 Extreme Value assumption is thus imposed here only for expositional simplicity. A realistic
alternative would be to allow for persistence in the εnjt draws, reflecting that the chronic nature of cholesterol
and lipid disorders implies physicians often treat the same patient for multiple successive periods. In our
analysis to follow, we thus consider the possibility that the prescription outcomes we evaluate are persistent.
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n. In general, Pijt will increase for drugs with high values of vjt relative to other drugs;

alternatively, if all vjt = 0, an increase in φit raises Pijt for all drugs (due to the εnjt) except

for that with the highest θjt. Similarly, (3) implies the expected number of periods that

pass before drug j is prescribed declines in φit whenever Pijt increases in φit. That is, if a

permanent increase in φit causes a permanent increase in Pijt for drug j, then it also causes a

decrease in Tij. The impact of an increase in φit on the number of distinct drugs prescribed

depends on the sum of derivatives ∂Pijt(φit)/∂φit across drugs j in (4). If a higher φit implies

increased sensitivity to patient-specific match quality εnjt, for example, Pijt would increase

for most drugs j, and diversity of prescribing would also rise.30

It is important to note that doctors who regularly prescribe cholesterol medications

will be aware of most drugs’ clinical attributes. However, if patient-specific economic details

such as the pricing and formulary status of a drug evolve substantially over time, or if news

about negative drug interactions and other adverse reactions emerges only gradually, doctors

may prefer to look up these drug attributes prior to writing a prescription. For newer, less

familiar drugs, doctors may also be inclined to look up details like dosage, and it is for these

drugs that one may expect differences between unjt and ûnjt to be particularly relevant.

3.2 Econometric Model

One natural approach to evaluating the influence of increases in φit due to database adoption

would be to directly estimate equations derived from the conceptual model above. However,

the model indicates it is important to control not only for the number of drugs Jt and i’s

prescribing intensity Nit, but also for unobserved drug quality θjt and unobserved determi-

nants of φit. Given the size of the data set, handling the nonlinearity implied by (2) in the

presence of multiple sets of fixed effects is computationally infeasible. We therefore estimate

the effects of database use through specifications that are guided by the model, but linear.

In particular, we consider three main linear specifications corresponding to each of

the three observable outcomes discussed above: the new-drug adoption lag Tij, prescription

diversity Mit, and prescription probabilities Pijt. Our estimation approach does not impose

the restrictions that link Pijt with Tij and Mit in the model; as a result, comparing our

estimates across these outcomes is qualitatively informative regarding the fit of the model.

We first assess the time lapse Tij between the initial market release of drug j and its

first prescription by physician i as in Coleman, Katz, and Menzel (1957) using the following

equation

P{Tij ≤ 12} = ηi + ηzj + βZij + δNit(j)−1 + εij, (5)

30See also Berndt et al (2015).
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where Tij is measured in months, P{Tij ≤ 12} is the probability that j is prescribed by i

within twelve months of release, and where ηzj and ηi are zipcode-drug and physician fixed

effects, respectively.31 Zij indicates whether doctor i has database access at the time drug

j is first introduced, and Nit(j)−1 is i’s total prescription volume for cholesterol drugs in the

month preceding j’s introduction.

Both (3) and (5) are expressed at the doctor-drug level and, but for the functional-form

differences mentioned above, the two equations are connected. The estimating equation

essentially considers φit to be a function of database use (Zit), physician fixed effects (ηi),

and zipcode-month fixed effects (ηzt) reflecting local changes in access to information. We

arrive at (5) by noting that the evolution of time is, in doctor-drug space, marked by the

sequential introduction of each new drug j, and that the ηzj we therefore include take the

place of ηzt while also accounting for the drug quality effects θjt in (3). In addition, like (3),

(5) includes i’s prescription volume Nit(j)−1, and Jt is absorbed by the ηzj.

Equation (5) is estimated on the subset of drugs first introduced during the sample

period. Finding that the coefficient of interest β is positive would indicate that when a

physician obtains database access, she significantly increases her likelihood of prescribing

a new drug within its first year, relative to before access began. This would be consistent

with database use increasing φit and the probability Pijt of prescribing a new drug j at t:

∂Pijt(φit)/∂φit > 0. Notice that the inclusion of physician fixed effects implies that β is

identified using within-doctor variation over time: i may be a database user at the time

drug j is first introduced, but may not yet be a user upon the introduction of drug j′.

These effects are important if stable, unobserved physician characteristics determine both

physician-specific database use Zij and the rate of drug adoption Tij (e.g. early adopters).

Possible common unobserved random shocks that are local and correlated with database

adoption are further accounted for by clustering standard errors at the zipcode level.

Nevertheless, even with these fixed effects and clusters, there could be time-varying

factors such as local technology adoption propensities (Skinner and Staiger 2007) or phar-

maceutical advertising that jointly determine, or are correlated with, both physician i’s

database use and her rate of new drug adoption. The ηzj in (5) partially address this by

accounting for differences across zipcode-drug pairs in doctors’ average first-prescription tim-

ing, which in this context would be correlated with Zij. However, if the omitted factor is

idiosyncratic across physicians, even within a zipcode, then Cov(Zij, εij) 6= 0 and (5) will fail

to yield a consistent estimate of β. We return to this in describing our instrumental-variables

estimates in Section 5.

Second, building from (4), we consider the possibility that information access could

31With Tij as the dependent variable, it is necessary to address truncation—which is more pronounced
for drugs introduced late in the sample period. To apply a uniform truncation rule, a significant number of
observations must be omitted, hence Tij , though more direct, is not our preferred dependent variable.
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affect physician i’s knowledge about the match quality between drug j and patient n, in-

ducing better-informed physicians to prescribe a more diverse set of products than less-

informed peers. To assess this possibility, we determine the number of unique drug products

Mit ≡
∑

j∈Jt 1{Xijt > 0}, where 1{Xijt > 0} is an indicator for whether physician i writes

at least one prescription for drug j during month t, and evaluate the following specification

Mit = ηi + γi × t+ ηzt + βZit + δNit−1 + εit, (6)

where γi× t is a doctor-specific time trend and all variables are as defined above. Mit is low

when the prescriptions of physician i are concentrated within a narrow subset of products

during month t, and is high when prescribing is diverse. Finding that β is positive in (6)

would thus indicate that database access is associated with higher product diversity among

physician i’s prescriptions—this would further be consistent with an increase in the overall

quality of doctor-i prescribing whenever the common component vjt in (1) is small relative to

εnjt. Notice also that, through (4), this occurs only when the period-t prescription probability

Pijt rises more, on average, than it falls—that is, when
∑Jt

j=1 ∂Pijt(φit)/∂φit > 0. Setting

aside functional forms, the connection between (6) and (4) again rests on the idea that the

information index φit is a function of database use, physician fixed effects, and zipcode-

month fixed effects. We control for Nit−1 directly, and for Jt through ηzt. Standard errors

are clustered by zipcode to allow for local unobserved shocks correlated with Zit.

We also estimate (6) replacing Mit with the Herfindahl-Hirschman index (HHIit) as an

alternative dependent variable; an advantage of this alternative is that it simultaneously

captures both intensive- and extensive-margin effects of information on prescribing. Notice

that β in (6) is again identified using within-physician variation over time in information

access Zit. The zipcode-month fixed effects further help to account for changes over time

in unobserved, location-specific determinants of prescribing diversity; these are particularly

important if patient characteristics—such as insurance coverage, mandatory substitution

laws, patient preferences, and disease severity—or other local factors evolve in ways that

affect prescribing and are correlated with measured physician technology adoption. The

γi× t trends further account for doctor-specific linear changes over time in these unobserved

determinants of prescribing outcomes.

Finally, we evaluate directly the impact of information access on Pijt, the probability

that drug j is prescribed by doctor i at t. It is of particular interest to understand how

database users’ Pijt values across new and old drugs j change after database adoption.

Moreover, because new patent-protected products differ from new generics in both cost and

novelty, access to the database may also tilt prescribing based on the patent status of a

product. We thus evaluate whether physicians using the database are more or less likely to
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prescribe a product of a given type using the following specification

P{Xijt > 0} = ηjt + ηi + γi × t+ ηzt + δNit−1 + [β0Genj + β1(1−Genj)]× Zit ×Newτjt
+ [β2Genj + β3(1−Genj)]× Zit × (1−Newτjt) + εijt, (7)

where P{Xijt > 0} is the probability that physician i writes at least one prescription for drug

j during month t, Genj is an indicator that is equal to 1 if product j is a generic variety,

and Newτjt indicates whether drug j is within τ months of its initial approval for U.S. sale.

The main coefficients of interest β0, β1, β2, and β3 jointly capture the association between

database use Zit and prescribing propensity for both new drugs (β0, β1) and established

products (β2, β3), where finding β0 > 0 would indicate that database users are more likely

to prescribe a given drug j that is both new (within τ months of initial market release) at

t and generic, relative to other physicians. Similarly, finding that β1 > 0 would indicate

that database users are more likely to prescribe a new, branded product j. Note that the

estimates of (7) have implications for Tij and Mit through (3) and (4) above.

Equation (7) includes three sets of fixed effects, in line with (2). Drug-month effects

ηjt account for the average perceived quality of drug j across physicians at t (θjt), which

may depend on factors such as drug potency and side effects known at t, as well as the

average expected pharmacy price at t. As with our other estimating equations, we further

include physician fixed effects ηi that absorb any individual characteristics affecting φit or the

prescribing propensity such as location, patient composition, and physician age, education,

and medical specialty. The coefficients of interest β are thus identified primarily from within

doctor variation over time in information access Zit. Zipcode-month fixed effects ηzt absorb

any dynamic, location-specific determinants of φit or prescribing that may be correlated with

physicians’ database use, while including γi×t allows for doctor-specific trends in prescribing

that may be correlated with database use. Standard errors are adjusted for clustering at the

zipcode level, and we control for Nit−1 directly.

4 Main Results

4.1 Time to First Prescription

We begin by evaluating the relationship between a physician’s database use and whether

she adopts a new drug j within a year of its release. The model indicates that physician

i is faster to begin prescribing j if she is a database user, for any new drug j satisfying

∂Pijt(φit)/∂φit > 0. For these drugs, we thus expect a positive coefficient on Zij (Databaseij),

where Zij takes a value of 1 if physician i has access to the drug reference database at the
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time a new drug j receives approval for sale in the U.S. market, and is otherwise zero.32

Estimates of (5) appear in Table 4. Columns 1 and 2 support the idea that database

users are more likely, on average, to begin prescribing newly-approved drugs early, within

their first year. The estimated coefficient on Zij is positive and highly significant in both

columns, suggesting users are 2.04 percentage points more likely than non-users to write

their initial prescription for a new drug within its first year (column 1); the estimate changes

to 0.82 percentage points if we include physician fixed effects (column 2).33 The data also

confirm that doctors with large prescription volumes Nit−1 are also significantly faster to

begin prescribing a new drug, consistent with the model’s qualitative predictions.

Columns 3 and 4 assess potential differences between new brand-name and new generic

drugs. With prescriber fixed effects in column 4, we find that the estimated effect for generics

(Databaseij ×Genericj) remains positive and significant, while that on branded products is

indistinguishable from zero. Specifically, physicians using the database are 2.08 percentage

points more likely to prescribe a new generic within its initial year, but are no faster in the

case of new branded drugs.34 That database use may tilt prescribing toward faster generic

adoption has potentially significant aggregate cost implications given the size of the market

for cholesterol therapies and the chronic nature of the condition they treat.35 Moreover,

because generic drugs share identical clinical attributes with branded versions, these results

strongly suggest database users may be responding to the increased salience of non-clinical

information—in particular, price and insurance formulary data.

While the estimates in columns 1–4 rely on the full sample of U.S. physicians, these

results may be sensitive to underlying differences across database users and non-users in the

evolution of prescription outcomes. To better isolate the within-doctor impact of database

use, columns 5 and 6 restrict the physician sample, including only those that both adopt and

use the drug database during the sample period. Doctors that have yet to use the database

by December 2010 are thus omitted. With this restriction, the estimates in column 6 suggest,

as in column 4, that database users are indeed significantly faster to begin prescribing new

generics, but show no significant effects on the adoption of new branded drugs.

Across all columns in Table 4, zipcode-drug fixed effects absorb variation across loca-

tions and over time in a) access to other drug information sources (e.g. advertising), b)

32Throughout Section 4.1, Databaseij (Zij) is the Drug Database and Use Indicator described in Table 2.
33For comparison, we replicate Table 4 using lnTij as the outcome variable. Truncation in Tij is addressed

by limiting the duration of analysis to a window of 54 months following each new drug introduction and
omitting Simcor; 54 months is the time span between the release of simvastatin and December 2010. We
also consider P{Tij ≤ 6} and P{Tij ≤ 24} as alternatives. In each case, we find results that are qualitatively
identical to those in Table 4.

34Notice that the zipcode-drug fixed effects ensure that this result is not explained by differences in local
mandatory substitution laws. We nevertheless provide additional results regarding the effects of substitution
laws on prescribing outcomes in Section 5.

35See Section 7.
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physicians’ tendency to adopt new technology, c) patient characteristics affecting the price

or match quality of drug j, and d) competition. Any component of factors a) through d)

that is stable over time is further captured by physician fixed effects in columns 2, 4, and

6. Comparing columns 3 through 6, however, it is evident that failing to include physician

fixed effects and restrict the sample to eventual adopters tends to result in larger estimated

associations between prescription outcomes and database adoption. Henceforth, we therefore

present specifications that, like column 6, both include physician fixed effects and restrict

the sample to eventual adopters.36

4.2 Prescription Diversity

To evaluate the impact of physicians’ database use on the diversity of prescribing, Table

5 provides estimates of (6) for two outcome variables: the number of unique drugs Mit

prescribed by physician i at t (column 1), and the associated Herfindahl-Hirschmann index,

HHIit (column 2). The coefficient of interest is on Databaseit (Zit), which takes a value of 1

if physician i has access to the drug database at t, and is otherwise zero.

In the model, prescribing diversity increases when a physician adopts the drug database

if the prescription probability Pijt rises more, on average, than it falls—that is, if adoption

induces an increase in φit and if
∑Jt

j=1 ∂Pijt(φit)/∂φit > 0. The results in Table 5 are strongly

consistent with this. In column 1, the estimated coefficient on physician-i database access

Zit is indeed positive and highly significant, and indicates that database users prescribe,

on average, 0.035 additional unique drug varieties each month relative to a non-user.37 In

column 2, we find that HHIit is also strongly responsive to database adoption: the esti-

mate −0.003 is negative and highly significant, indicating that database users’ prescribing

is substantially less concentrated across drugs j. Given the assumptions of the model, these

diversity results are consistent with the idea that database use is associated with increased

prescribing quality, provided that the common component vjt in (1) is small relative to εnjt.

Consistent with the model, we also find that prescription diversity increases significantly in

a physician’s monthly prescription volume.38

In both columns 1 and 2, physicians differ only in their respective drug reference adop-

tion dates. Moreover, both specifications include doctor and zipcode-month fixed effects, as

36All results described in this section are replicated in the Appendix for the ‘All physicians’ sample
considered in columns 1–4 of Table 4.

37Because Mit is a count variable, we re-estimate the coefficients in column 1 using a Poisson estimator,
and find qualitatively identical results.

38An interesting consideration is whether the model predicts, for any observable outcome variable, no effect
of database use. One such ‘placebo’ variable is the doctor-i prescription volume in month t. We reevaluate
(6) using the number of prescriptions by doctor i in month t as the dependent variable and a sample identical
to that in Table 5, columns 1 and 2. The estimated coefficient on database adoption Zit is 0.0170 (standard
error = 0.0301), which, in line with the model, is not statistically distinguishable from zero.
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well as doctor-specific time trends. Nevertheless, the estimated coefficients are smaller than

the corresponding full-sample estimates in appendix Table A.2, columns 1–2. This suggests

the possible influence of nonlinear dynamic unobserved factors, correlated with Zit, that

influence prescription diversity. We discuss this concern in more detail in Section 5 below.

4.3 Prescription Propensity

We report estimates of (7) in column 3 of Table 5 for eventual database users; corresponding

estimates for all physicians appear in appendix Table A.2. The outcome variable 1{Xijt > 0}
is binary, indicating whether physician i writes at least one prescription for drug j at t, and

the main coefficients of interest β0 and β1 correspond to Databaseit (Zit) and its interaction

with indicators for new generic and branded drugs, respectively.39 We define j to be new

while it is within τ = 24 months of its initial market approval.

As described above, the model predicts that the coefficients β0, β1, β2, and β3 could

be positive or negative depending on the distribution across drugs in the unobserved quality

terms vjt and εnjt about which physicians learn as φ increases. Pijt will tend to increase in

φit for drugs with high vjt values, but will generally fall if vjt is relatively low. Whether

database adoption increases or decreases prescribing for a particular drug type is thus an

empirical question. It is, however, one to which we can partially predict the answer, given

the model and results in Table 4 and columns 1 and 2 of Table 5. First, Table 4 indicates

database users are faster to begin prescribing new generics, but mildly slower to adopt new

branded drugs; if the model is correct, this suggests, through (3), that β0 > 0 and β1 < 0.

Second, prescription diversity increases with database adoption in columns 1 and 2 of Table

5; in (4), this implies that the sum across β0, β1, β2, and β3, weighted by the number of

drugs per category, is positive.

In column 3 of Table 5, it is clear that physicians with database access are substan-

tially more likely to prescribe generic products, regardless of vintage: β0 > 0 and β2 > 0.

Specifically, these estimated coefficients are positive and highly significant, indicating the

likelihood physician i prescribes a generic drug is 4.0 percentage points higher when she has

access to the database. The coefficients on branded drugs are much smaller in magnitude:

users are 0.13 percentage points more likely to prescribe an old, branded product (β3 > 0),

though the coefficient is not precisely estimated, and are 0.51 percentage points less likely

to prescribe a new, branded product (β1 < 0). Viewed through the lens of the model, the

estimated coefficients β̂0 and β̂1 are thus exactly aligned with the results in Table 4. More-

39The estimates in column 3 of Table 5 span January 2000 through December 2010. To manage the
computational burden of the sample size, we include only observations in January 2000 and each subsequent
June and December in estimating the coefficients. The results are not qualitatively or quantitatively sensitive
to this sample size reduction.
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over, the coefficients in column 3 are consistent with the diversity estimates in columns 1

and 2: accounting for the distribution of drug types in the data, the weighted sum across

the coefficients β in column 2 is always positive. The predictions of the model, in light of

the estimates in Table 4 and columns 1 and 2 of Table 5, are thus strongly consistent with

the results in column 3 of Table 5.

Importantly, these latter estimates provide additional suggestive evidence regarding the

mechanism through which database adoption may influence prescribing. That the impact of

database access is apparent not only for new, but also older products suggests that there could

be important reasons for doctors to continually reference the drugs in question—possibly to

learn about aspects of a drug that are either time-varying or patient specific. This ongoing

process of information acquisition could thus be an important factor in explaining why a

significant fraction of a new drug’s diffusion occurs beyond its first two years (Figure 2), a

general feature of technology diffusion processes that has fascinated economists for decades

(Manuelli and Seshadri 2014). Second, the estimated coefficients of interest are again consis-

tent with responsiveness to economic information—price and formulary status—the inclusion

of which is a distinctive feature of the drug database we consider. In particular, users tilt

prescribing away from new, branded products—for which prices are generally high—and

strongly toward generic products, for which prices are low. That the estimated increases

in generic propensity (β0, β2) are so large in magnitude relative to those for branded prod-

ucts further suggests the response to price information is economically important—which

is not only surprising, but also indicates database adoption could therefore have significant

implications for aggregate prescription costs.

5 Robustness and Alternative Specifications

The results in Tables 4 and 5 above indicate that physicians using the point-of-care reference

begin prescribing new generics sooner than non-users, prescribe a more diverse set of drugs

than non-users, and more often prescribe a generic drug. Because database adoption is not

randomly assigned, however, a key question that remains is whether a causal interpretation of

our results is supported by the data. Our sample restriction to eventual adopters and fixed-

effects estimation approach helps rule out certain alternative explanations including cases

in which ‘early-adopters’ or physicians facing intense local advertising exposure begin both

using the database and prescribing a new drug sooner than other physicians—for reasons

unrelated to the actual impact of database use. A limitation of this approach arises when

the timing of database adoption is either correlated with, or involves selection on, time-

varying, idiosyncratic physician characteristics that are relevant to the prescribing outcomes

we consider.
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In the case of advertising, for example, if an individual physician’s database adoption

timing were to be correlated with the idiosyncratic change in her own exposure to drug

detailing—that is, the component not accounted for by zipcode-month effects or doctor-

specific time trends—our estimates of the impact of adoption could be confounded with

the influence of drug advertising. Without granular data on detailing, it is not possible to

know whether there are meaningful shocks to detailing efforts that differ substantially across

physicians within a U.S. zipcode-month for the drugs we consider.40 It is important to note,

however, that, our results indicate database adopters are primarily quicker to prescribe new

generic drugs, which are not advertised.41

Relatedly, it is possible in Table 5 that a physician’s decision to adopt the database

is partially determined by the underlying, idiosyncratic rate of increase in her prescribing

diversity: naturally, adopting the database today could be a more attractive option for a

physician who anticipates prescribing a wider range of products in the future, than for a

physician in the opposite situation.42 In this section we describe additional results in order

to clarify the degree to which a causal interpretation is warranted and to determine which

alternative interpretations can be ruled out.

5.1 Timing the Impact of Database Adoption

For an important class of alternative explanations, physicians either adopt the reference

database in response to pre-existing changes in prescribing, or are influenced by omitted,

dynamic factors that simultaneously affect both prescribing and database adoption. A symp-

tom that would likely appear where these influences are active is adopters who exhibit a trend

toward the predicted outcomes, even before accessing the database.

While the physician-specific time trends included in (6) and (7) help to address this

possibility, Figures 4, 5, and 6 examine the timing of the relationship between reference

database adoption and changes in the (time-varying) prescription outcomes considered in

Table 5; corresponding estimates appear in appendix Table A.3. As in Table 5 and Dranove

40Historically, detailing, or drug marketing efforts directed at individual physicians through sales represen-
tatives, has been the pharmaceutical industry’s main promotional instrument (e.g. Manchanda and Honka
2013). As part of the detailing process, pharmaceutical sales representatives often provide doctors with
payments related to drug promotion. IMS Health does not curate doctor-specific data on detailing, though
Verispan did in the past (Datta and Dave 2016); however, data on drug promotion payments by doctor, drug,
and date are available from ProPublica for the period August 2013–December 2016. Although the latter
data do not overlap with our sample period, precluding a direct consideration of detailing in our analysis,
they are to our knowledge the best available information on doctor-drug specific detailing.

41The data studied by Larkin et al (2017) show that detailing is almost exclusively done for branded drugs.
42While U.S. physicians always face the same set of drugs approved for prescription, and in that sense do

not differ in changes to the range of products available, their exposure to such changes may differ due to the
potentially distinct characteristics of the specific patients they treat. To the extent that these distinctions
are time-varying and correlated with database adoption, even across doctors practicing within the same
zipcode-month, our fixed effects estimator could yield biased estimates.
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et al (2014), we focus this evaluation on the sample of doctors that eventually adopts and

uses the database, and exploit variation across doctors in the year of adoption. Specifically,

we replace our measure of database adoption Zit in (6) with dummies for three years before

adoption, two years before adoption, one year before adoption, the adoption year, one year

after adoption, two years after adoption, and three or more years after adoption. The base

period is four or more years before adoption.

The resulting estimates indicate a positive effect of database use on the number of

unique drugs prescribed, Mit, in all years following the adoption year, with no statistically

significant effects in years prior to the adoption year (Table 4). Similar patterns are shown

in Figures 5 and 6 for prescription diversity measured as HHIit and the generic prescription

share, respectively. Taken together, Figures 4 through 6 indicate there were no clear trends

in omitted variables that could have been driving the estimates in Table 5.

5.2 Intensity of Use

The model proposes a specific mechanism: physicians’ prescription outcomes are influenced

by database access because the information obtained through the database is important, yet

otherwise unknown. If this proposed mechanism is correct, then if we observe physicians

using the database to search for cholesterol drugs with different intensities, those search-

ing more intensely should have correspondingly larger prescription responses. There could

certainly be other explanations linking search intensity with the prescribing outcomes we

consider, but this evaluation is informative nevertheless: if intensity and response are not

linked in the data, it would strongly suggest the proposed mechanism is invalid.

With these considerations in mind, we make use of a key feature of the data that

allows us to observe not only a physician’s database registration date, but also a proxy for

the extent of her drug-month specific database use, conditional on adoption. The variable

is unfortunately not an exact lookup count, as the database company changed the way it

maintained lookup data over time; given this, we aggregate the lookup proxy into a coarser

measure reflecting a lower bound for each physician’s overall intensity of database use. We

then divide the sample of physicians into three groups based on this lower bound, and re-

assess the results in Tables 4 and 5 allowing different coefficients for each intensity group:

low-intensity users are database adopters for whom the lower bound on cholesterol drug

lookups is zero; the high-intensity group includes doctors whose total lookup proxy is in the

top decile. The results appear in Tables A.4 and A.5 in the Appendix.

The estimates in Table A.4, column 1, reveal that the impact of database adoption is

systematically and monotonically increasing in the intensity of usage. Low- and medium-

intensity users are not more more likely to adopt new generic drugs within a year of release,

while high-intensity users are 2.36 percentage points more likely to do so; this latter coefficient
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is strongly significant, revealing meaningful heterogeneity across database adopters in its

prescribing impact. Column 2 reveals a similar pattern of increasing impact in prescription

diversity, although the pattern weakens for the prescription HHI in column 3.

Table A.5 suggests that the highest-intensity users are the most responsive to database

access in switching away from branded drugs and toward generic products. The estimated

coefficients β0 > 0 and β2 > 0 are approximately ten times larger for physicians searching

the database intensely, relative to those with low-intensity database usage; as a result, an

intense database user is 9.0 percentage points more likely to prescribe a generic in a given

month than an adopter with low database usage. Moreover, the effects on branded varieties

suggest additional differences: intense users are 1.9 percentage points less likely to prescribe

branded varieties, while by contrast, adopters with low usage are actually one percentage

point more likely to prescribe a branded drug per month. These differential effects are

consistent with the information mechanism we propose in the model, and suggest that the

estimates in Table 5 are not simply capturing nonlinearly time-varying unobserved doctor

characteristics that are on average correlated with database adoption; specifically, adopters

in Table A.5 with the lowest levels of database usage display only a minimal association

between adoption timing and prescription outcomes. The fact that additional effort by an

adopting physician is required to obtain a large prescription impact is consistent with the

nature of the drug database, which as a searchable reference, can only impact prescribing to

the extent that it is used.

5.3 Endogenous Database Adoption

Another approach to handling the endogeneity of database adoption is to find an instrument

that generates quasi-random variation in a physician’s database adoption decision, and to

estimate the impact of information access relying on variation in this instrument. We found

that the doctor-month specific share of other local physicians that have adopted the reference

database is a robust predictor of adoption for a given doctor i at t. Since this share is plausi-

bly uncorrelated with physician-specific unobservables that influence adoption decisions, we

reassess the results in Tables 4 and 5 using this share as an instrument for database adoption.

Estimates appear in Table A.6 in the appendix; a detailed discussion of the specification,

validity, and mechanisms appears in Section A.3 in the appendix.43 If our main results were

driven by an omitted variable, instrumenting for database adoption should make its appar-

ent effect on prescriptions disappear. But if anything the instrumental-variables estimates

suggest the results in Tables 4 and 5 tend to understate the impact of database adoption.

In Table A.6, column 1, database users are 8.0 percentage points more likely to begin pre-

43First-stage estimates appear in Tables A.7 and A.8 in the appendix.
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scribing a new generic within its initial year (compared with 1.3 percentage points in column

6 of Table 4), relative to a non-user, with no significant effects among new branded drugs.

Columns 2 and 3 similarly suggest that the true impact of database adoption on diversity is

an order of magnitude larger than the estimates in Table 5, while column 4 suggests Table

5, column 3 understates the impact of the database on prescribing by a factor of four for

new generics (β0) and a factor of ten for old generics (β2). While these estimates suggest our

results are not merely reflecting the endogeneity of database adoption, it is important to note

that our leave-out mean instrument relies on variation in group composition that in many

applications leads to small-sample bias from weak instruments, and that could confound

interpretation in certain cases (Angrist 2014).

5.4 Mandatory Substitution Laws

To encourage cost savings, many U.S. states impose regulations mandating generic substitu-

tion where available; in most cases, such laws have been in force since the 1970s (Grabowski

and Vernon 1979) and were thus in effect during the sample period. This means that phar-

macists dispense the generic version of a drug even if the physician prescribed the branded

version. Since our IMS data are collected from pharmacies and are based on prescrip-

tions dispensed, a possible concern is that the patterns in our data reflect pharmacists’

behavior rather than physicians’ prescribing behavior—for example if the implementation of

mandatory substitution laws differs across states and over time in a manner correlated with

physicians’ adoption of the drug database.

On this point it is important to note that all of our baseline results include zipcode-drug

or zipcode-month fixed effects that absorb any impact of mandatory substitution laws on the

prescription outcomes we consider—even where these laws may be correlated with physicians’

database adoption choices. Nevertheless, to further check the robustness of our results to this

potential concern, we re-estimate the regressions reported in Table 4, replacing the zipcode-

drug fixed effects with a set of drug fixed effects, and splitting the sample between doctors

in states with vs. without mandatory substitution laws. We also consider triple-interacted

specifications in which the effect of database adoption is allowed to depend on whether the

doctor is in a mandatory substitution state. The results, shown in Table A.9, indicate that

database adoption is associated with mildly faster adoption of new generics for physicians

in mandatory substitution states.

While at first glance surprising, this result is consistent with the model given the esti-

mates on prescription diversity shown in Table 5, column 1. Intuitively, mandatory substi-

tution laws should reduce relative differences across doctors in generic prescribing, including

differences resulting from database use. The reason is that, even if doctors not using the

database would be more inclined to prescribe a given branded drug j, the pharmacy always
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dispenses its generic equivalent k in a state with a mandatory substitution law. There-

fore, when considering as an outcome variable the within-molecule generic prescription share

Xikt/(Xijt+Xikt), mandatory substitution laws should eliminate systematic differences across

doctors. On this basis, one would expect the database not to have a significant impact on

Xikt/(Xijt +Xikt) in states with mandatory substitution laws.

On the other hand, with multiple molecules as in Table A.9, and when the outcome

variable is an indicator for whether doctor i prescribes drug j within its first year on the

market as in that table, this reasoning leads to the opposite conclusion: mandatory sub-

stitution laws increase the apparent effect of database usage with respect to generic drug

adoption. This is because, even if the generic version k is available and every pharmacy

dispenses j as k, this substitution occurs only if doctor i actually attempts to prescribe j.

The results in Table 5 indicate database use increases prescription diversity—including along

the extensive margin (number of unique drugs prescribed per month). Thus, the likelihood

of a prescription of j occurring for doctor i within a year of the generic version k’s release is

significantly higher if doctor i is a database user; consequently, in a state with a mandatory

substitution law, where this prescription of j is dispensed as k, one should expect a higher

estimated effect of database use. This is indeed consistent with the estimates in Table A.9:

in column 3, database users in mandatory substitution states are nearly twice as likely to

adopt a new generic within its first market year.

5.5 Pharmaceutical Innovation

Physicians practicing in locations known for pharmaceutical innovation may have access to

frontier knowledge regarding pharmaceutical development and pricing, limiting the potential

for the reference database we observe to influence prescribing decisions. Within the concep-

tual framework outlined in Section 3, proximity to the frontier could imply physicians have

initially high φit parameters that are either minimally or not responsive to database use. If

so, database use has little potential to affect prescribing. The zipcode-drug or zipcode-month

fixed effects included in the baseline specifications account for the innovativeness of a physi-

cian’s local environment. To assess whether location-specific differences in innovativeness

impact the mechanism, we therefore replace these effects with either drug or month fixed

effects, and use patent data from the NBER U.S. Patent Citations Data File (Hall, Jaffe,

and Trajtenberg 2001) to measure the number of pharmaceutical patents granted between

1975 and 1999 by zipcode. We then re-evaluate the adoption-lag specifications in Table 4

separately for two samples corresponding to the top and bottom five percent across zip-

codes based on the number of pharmaceutical patents granted. We also consider interacted

specifications that account for differences in pharmaceutical patenting across locations.

The estimates appear in Table A.10, and suggest that physicians plausibly located near
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the knowledge frontier—that is, physicians in zipcodes among the top five percent by drug

patenting—indeed respond to drug information differently than their more distant peers.

Specifically, the estimates indicate that while use of the database in the least-innovative

locations is associated with a larger impact on the likelihood of new drug adoption within

one year (column 2) it has no significant impact in the most innovative locations (column 1).

Considering the full sample, column 3 indicates that the database speeds generic adoption

on average, but has especially pronounced effects among the least-innovative locations that

are likely to be far from the information frontier. Column 4 confirms this result using a con-

tinuous measure of local patenting. Innovative areas adopt generics more quickly regardless

of database adoption, but on average, a physician using the database in these locations is

significantly less responsive to the information in terms of new generic drug adoption. The

database nevertheless has an independent effect, speeding the adoption of new generic drugs

regardless of patenting.

5.6 Other Robustness Checks

We evaluate the results involving the count variable Mit in Table 5, column 1 using a Poisson

estimator, and we estimate specifications involving the binary variables in Table 4 and column

3 of 5 using logistic fixed effects regressions. We reevaluate Table 5 column 3 including

doctor-drug fixed effects and zipcode-month-drug type fixed effects. To allow for persistence

in prescription outcomes, we also control for the first lag of each outcome in Table 5.44 Each

of these robustness checks reveals qualitatively similar results.45

Finally, a physician’s decision to prescribe a generic drug may be related to the insur-

ance coverage of her patient population. We therefore evaluate split-sample estimates based

on whether physicians receive a high or low share of Medicare and Medicaid patients, rela-

tive to the privately insured; separately, we repeat this split-sample analysis, distinguishing

physicians based on whether a high or low share of their patients pay for prescriptions with

cash. In both cases, we find negligible differences across groups.

6 Physician Heterogeneity

As a final point, we consider whether the data are broadly consistent with the idea that

incomplete information contributes to disparities in prescribing behavior across physicians.

If indeed these disparities partially reflect systematic informational differences, then physi-

cians sharing access to a common source of drug information, like the reference database in

44Structural persistence could arise in the presence of persistent patient specific match quality εnjt terms
in the model, given the chronic nature of the relevant medical condition.

45Detailed results available on request.
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our study, should tend to exhibit observable homogenization relative to other doctors. We

consider this possibility using a simple approach. We first assign each physician to one of

two groups based on her database registration status in December 2010. Then, within each

group, we measure the extent of prescribing heterogeneity across physicians: specifically, we

determine the vector of prescription shares for each prescriber i in December 2010, and then

compute the Euclidean distance between this physician-i vector and the average vector of

prescription shares among physicians in her group (database users or non-users).

These within-group similarity measures are reported in Table A.11, Panel A. The pre-

scription shares of database users are indeed more homogeneous than those of non-users.

The average Euclidean distance between the physician-i prescription vector and the group-

specific average is 0.152 for users and 0.176 for non-users, and the difference (-0.0236) is

highly statistically significant. Importantly, note that database users prescribe a signifi-

cantly more diverse set of products than non-users, as shown above in Table 5; the relative

homogeneity of database users’ prescribing patterns thus does not imply a loss of variation

in therapies generally. Rather, the result implies that physicians who are connected to the

same information source resemble each other more closely in spite of the fact that they tend

to prescribe a more diverse set of drugs.

Of course, the fact that database users’ prescribing patterns are less heterogeneous could

reflect selection rather than any causal effect of information access. Indeed, Panel B of Table

A.11 shows that eventual database users’ prescribing exhibited greater homogeneity than

non-users’ even in January 2000, before anyone was using the database. But, the changes by

group between 2000 and 2010, summarized in Panel C, indicate that while a) both groups

(users and non-users) exhibit homogenization over time, with the average Euclidean distance

declining by 0.052 for users and by 0.040 for non-users, b) the difference in differences is also

highly significant—i.e., significantly more within-group homogenization is observed among

database users than among non-users, even when controlling for physician fixed effects.46

Our data cannot definitively say whether the faster convergence for database users was

directly caused by the database: unlike the regression analyses reported in Section 4, the

results described in Table A.11 are based on across-group comparisons rather than within-

doctor comparisons, so the stronger trend toward homogenization among adopters could

reflect other characteristics that are correlated with the decision to adopt. Nevertheless, we

view these results as suggestive of the idea that database use could reduce disparities in

care—an idea that merits exploration in future research.

46For clarity, Panel C reports coefficients from a least-squares regression of the Euclidean distance to the
mean Dit for doctor i at t = {January 2000, December 2010} on an indicator I2010 for December 2010, its
interaction Z2010 × I2010 with an indicator Zi,2010 for physician-i database access in December 2010, and
physician fixed effects.
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7 Conclusion

This paper has empirically examined how physicians’ prescribing decisions are affected by

access to a drug reference database at the point of care. Using a novel dataset that includes

prescription choices and drug reference use for over 125,000 individual U.S. physicians, we

find that after adopting the database, users increase the likelihood of prescribing a generic

drug, are faster to begin prescribing a newly-released generic, and yet also significantly in-

crease the diversity of products prescribed each month. These results are consistent with the

predictions of a simple, incomplete-information model of prescription choice, and are robust

across specifications that control for physician and location-month unobserved prescribing

determinants and that treat the timing of physicians’ database adoption as endogenous.

While the magnitude of database users’ estimated shift toward generic drugs is mod-

est at the prescriber level, the implied aggregate impact on drug spending is economically

significant. U.S. pharmacies filled approximately 170 million cholesterol drug prescriptions

in 2010, for example, a year during which roughly 45 percent of sample physicians were

users of the drug reference database, and during which the average price difference between

branded and generic cholesterol-drug prescriptions was around $94.47 If 45 percent of these

prescriptions correspond to database users, and if users’ generic shares increase by even half

a percentage point—approximately the magnitude of the measured effect of database use

in our data—the implied annual cost savings of database usage would exceed $35 million

for cholesterol drugs alone.48 If effects of the same magnitude apply to all drug classes, the

implied savings would be on the order of $1 billion annually.

More importantly, our study speaks to policy debates regarding the efficiency of U.S.

healthcare provision, particularly those concerning unwarranted disparities in the observed

cost and quality of medical care (Wennberg et al 1996) including that involving prescription

drugs (Munson et al 2013). Our results provide new, systematic evidence that information

differences contribute significantly to treatment variation across U.S. physicians, and suggest

that connecting physicians to common, high-quality information sources has the potential

to meaningfully increase the efficiency of health care delivery.
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Drug  Name Release  Date FDA  Approval  Category Mean St  Dev

(1) (2) (3)

Lescol  XL October  2000 Dosage  form 28.89 23.56 0.620
Advicor December  2001 Combination 64.77 15.38 0.295
lovastatin December  2001 Generic  version 19.87 22.66 0.923
Altoprev June  2002 Dosage  form 42.62 24.07 0.151
Zetia October  2002 Molecular  entity 15.13 17.34 0.928
Pravigard  PAC June  2003 Combination 7.30 5.94 0.037
Crestor August  2003 Molecular  entity 22.67 21.83 0.923
Vytorin July  2004 Combination 13.10 13.48 0.891
Lovaza November  2004 Molecular  entity 34.98 17.08 0.659
pravastatin April  2006 Generic  version 7.41 12.30 0.909
simvastatin June  2006 Generic  version 3.05 7.33 0.982
Simcor February  2008 Dosage  form 12.33 9.18 0.230

Notes:  This  table  summarizes  the  variation  across  individual  U.S.  physicians  in  the  initial  prescription  of  twelve  new  pharmaceutical  products,  
each  aimed  at  controlling  blood  cholesterol  or  lipid  levels.    Each  product  was  approved  for  sale  in  the  United  States  on  the  date  indicated.    
New  drug  approvals  are  categorized  by  the  FDA  based  on  whether  the  product  is  a  new  molecular  entity,  a  new  drug  combination,  a  new  
dosage  form,  or  a  new  generic  equivalent.    The  distribution  of  initial  prescription  dates  across  the  set  of  U.S.  physicians  that  prescribe  the  drug  
at  least  once  by  December  2010  is  described  by  the  mean  (1)  and  standard  deviation  (2)  in  months  from  initial  FDA  approval  to  the  first  
prescription  filled  at  a  U.S.  pharmacy.    The  share  of  physicians  that  prescribe  the  product  at  least  once  by  December  2010  (3)  ranges  from  3.7  
percent  (Pravigard  PAC)  to  98.2  percent  (simvastatin).    Prescription  data  are  from  IMS  Health.  

Months  to  First  Prescription,  
Conditional  on  Prescription Adoption  Share  

December  2010

Table  1:  Descriptive  Statistics,  U.S.  Cholesterol  Drug  Introductions,  January  2000—December  2008



Variable Mean St  Dev Min Max

Physician-Drug-Month  Level:
Number  of  Prescriptions 4.429 12.721 0 700
Indicator  for  Positive  Prescriptions 0.355 0.479 0 1

Physician-Month  Level:
Drug  Database  Indicator 0.248 0.432 0 1
Drug  Database  and  Use  Indicator 0.133 0.340 0 1
Drug  Database  Other  Adoption  Share  in  Zipcode  t -1 0.131 0.132 0 1
Proxy  for  Intensity  of  Database  Use 3.829 11.04 0 1268
Number  of  Unique  Drugs  Prescribed 5.304 2.775 1 16
Prescription  Herfindahl-Hirschman  Index  (HHI) 0.438 0.223 0.097 1
Prescription  Volume 65.79 66.31 1 2503

Physician-Drug  Level:
Months  to  First  Prescription 19.12 21.95 0 122
First  Prescription  Within  Initial  Year  Indicator 0.352 0.478 0 1

Drug-Month  Level:
Indicator  for  New  Drug,  24  months 0.155 0.363 0 1

General:
Number  of  Physicians   128043
Number  of  Drugs,  January  2000 6
Number  of  Drugs,  January  2000  -  December  2010 18

Table  2:  Regression  Summary  Statistics

Notes:  This  table  summarizes  the  data  on  physician-level  prescriptions  and  database  access  used  in  the  analysis.    
Statistics  correspond  to  U.S.  physicians  that  prescribe  a  minimum  of  ten  statin  or  lipid-lowering  products  both  during  
January-December  2000  and  January-December  2010  and  that  work  in  a  zipcode  hosting  three  or  more  prescribing  
physicians.    The  Drug  Database  indicator  varies  by  physician-month  and  is  equal  to  one  for  physicians  that  are  registered  
users  of  the  drug  database;;  Drug  Database  and  Use  indicates  that  a  physician  both  has  database  access  and  is  observed  
using  it  to  search  for  information  about  at  least  one  of  the  18  cholesterol  drugs  during  the  sample  period.    Drug  Database  
Other  Adoption  Share  in  Zipcode  varies  by  physician-month  and  is  the  fraction,  in  the  previous  month,  of  other   physicians  
practicing  in  the  same  zipcode  for  which  Drug  Database  and  Use  is  equal  to  one.    The  intensity  of  use  proxy  is  a  lower-
bound  on  the  number  of  physician-specific  database  queries  corresponding  to  the  cholesterol  drugs  considered  in  this  
analysis.    Prescription  diversity  by  physician-month  is  summarized  by  the  number  of  unique  drugs  prescribed  and  the  
corresponding  Herfindahl-Hirschman  index.    First  Prescription  Within  Initial  Year  Indicator  takes  a  value  of  one  for  doctors  
that  prescribe  the  new  drug  within  its  initial  market  year  and  is  otherwise  zero.    Drugs  are  considered  New  if  within  24  
months  of  market  approval  by  the  U.S.  Food  and  Drug  Administration.    Prescription  variables  are  from  IMS  Health  and  
database  registration  data  are  from  a  leading  U.S.  point-of-care  medical  applications  firm.  



Product:     lovastatin pravastatin simvastatin Generic lovastatin pravastatin simvastatin Generic
Variable (1) (2) (3) (4) (5) (6) (7) (8)

Panel  A
Final  month,  December  2010

Mean 0.059 0.091 0.414 0.564 0.065 0.098 0.427 0.591
St  Dev 0.116 0.135 0.238 0.243 0.083 0.094 0.159 0.161
5th  Percentile 0 0 0 0 0 0 0.180 0.336
25th  Percentile 0 0 0.258 0.427 0.017 0.041 0.335 0.502
Median 0.016 0.047 0.410 0.581 0.041 0.078 0.423 0.596
75th  Percentile 0.066 0.121 0.551 0.719 0.084 0.129 0.515 0.687
95th  Percentile 0.271 0.338 0.858 1 0.209 0.259 0.271 0.834

Panel  B
Six  months  after  generic  release
Molecule-specfic  branded  drug Mevacor Pravachol Zocor Mevacor Pravachol Zocor

Mean 0.828 0.820 0.862 0.822 0.827 0.870
St  Dev 0.338 0.279 0.208 0.192 0.197 0.150
5th  Percentile 0 0 0.448 0.491 0.490 0.582
25th  Percentile 1 0.714 0.800 0.737 0.756 0.819
Median 1 1 0.949 0.861 0.866 0.914
75th  Percentile 1 1 1 1 1 0.977
95th  Percentile 1 1 1 1 1 1

Panel  C
Final  month,  December  2010
Molecule-specfic  branded  drug Mevacor Pravachol Zocor Mevacor Pravachol Zocor

Mean 1.000 0.993 0.997 1.000 0.995 0.998
St  Dev 0.019 0.059 0.028 0.005 0.030 0.011
5th  Percentile 1 1 0.995 1 0.976 0.990
25th  Percentile  and  above 1 1 1 1 1 1

Generic  Rx  Share,  by  Zipcode-Molecule

Generic  Rx  Share,  by  Zipcode-Molecule

Zipcode  Level
Table  3:  Descriptive  Statistics

Notes:  This  table  describes  prescription  heterogeneity  across  U.S.  physicians  and  the  U.S.  zipcodes  they  occupy.  Panel  A  describes  prescribing  in  December  2010  
across  all  physicians  (columns  1-4),  and  across  U.S.  zipcodes  (columns  5-8).    Panels  B  and  C  describe  physicians'  within-molecule  substitution  toward  generics  for  
lovastatin  (column  1),  pravastatin  (column  2),  and  simvastatin  (column  3);;  columns  5,  6,  and  7  provide  analogous  statistics  by  U.S.  zipcode.    Panel  B  describes  this  
substitution  six  months  after  the  generic  release  in  question,  while  Panel  C  describes  prescribing  in  the  final  sample  period,  December  2010.    The  upper-left  number  in  
Panel  A  (mean,  lovastatin,  0.059)  is  the  average,  across  physicians,  in  the  fraction  of  cholesterol  drug  prescriptions  prescriptions  in  December  2010  that  are  accounted  
for  by  generic  lovastatin;;  the  upper-left  number  in  Panel  B  (mean,  lovastatin,  0.828)  is  the  average,  across  physicians,  in  the  fraction  of  Mevacor  plus  generic  lovastatin  
prescriptions  that  are  accounted  for  by  generic  lovastatin  in  October  2002,  six  months  after  expiration  of  the  Mevacor  patent;;    the  upper-left  number  in  Panel  C  is  the  
analogous  statistic  for  December  2010.  Generic  approval  dates  are  from  the  U.S.  Food  and  Drug  Administration;;  all  other  variables  are  from  IMS  Health.    

Physician  Level

Share  in  Total  Rx,  by  Physician

Generic  Rx  Share,  by  Physician-Molecule

Generic  Rx  Share,  by  Physician-Molecule

Share  in  Total  Rx,  by  Zipcode



Dependent  Variable:    

(1) (2) (3) (4) (5) (6)

Database  ij 0.0204*** 0.0082*** 0.0152*** 0.0010 -0.0015 -0.0029
0.0013 0.0021 0.0014 0.0022 0.0022 0.0028

Database  ij   x  Generic  j 0.0183*** 0.0208*** 0.0136*** 0.0131***
0.0022 0.0023 0.0039 0.0040

Prescription  Volume  it(j)-1   0.0073*** 0.0033*** 0.0073*** 0.0033*** 0.0066*** 0.0029***
0.0001 0.0001 0.0001 0.0001 0.0002 0.0001

Physician  FE N Y N Y N Y
Zipcode-Drug  FE Y Y Y Y Y Y

Observations 1510985 1510985 1510985 1510985 290898 290898
R2 0.5133 0.6132 0.5134 0.6133 0.5976 0.6771

Table  4:  Time  to  First  Prescription  of  a  New  Drug,  U.S.  Physicians,  2000—2010

Indicator  for  prescription  within  first  year  of  drug  introduction

                                                                    All  physicians                                                                                       Eventual  users                  

Notes:  *  p  <  0.10,  **  p  <  0.05,  ***  p  <  0.01.  This  table  provides  least-squares  estimates  of  equation  (5)  for  U.S.  physicians'  
prescription  of  twelve  cholesterol  drugs  first  approved  for  U.S.  sale  during  January  2000—December  2008  (Table  1).    The  binary  
dependent  variable  captures  the  time  lapse  between  FDA  approval  of  drug  j  and  physician  i 's  initial  prescription  of  it,  taking  a  value  
of  1  if  initial  prescription  occurs  within  a  year  of  FDA  approval;;  specifications  are  included  for  the  full  sample  of  physicians  (columns  
1-4)  and  for  the  subset  of  physicians  that  eventually  adopt  and  use  the  electronic  reference  to  search  for  information  about  
cholesterol  drugs  (columns  5-6).    Database  is  the  Drug  Database  and  Use  indicator  variable  described  in  Table  2,  and  takes  a  
value  of  1  for  a  physician  user  with  database  access  at  the  time  drug  j   receives  FDA  approval.    Generic  indicates  the  products  
pravastatin,  lovastatin,  and  simvastatin.    Regressions  include  zipcode-drug  (columns  1-6)  and  physician  (columns  2,  4,  6)  fixed  
effects  as  well  as  the  cholesterol  drug  prescription  volume  for  physician  i   in  the  month  prior  to  drug  j's  introduction.    Results  are  
robust  to  logistic  estimation,  and  are  qualitatively  identical  when  replacing  the  dependent  variable  with  an  indicator  for  first  
prescription  within  two  years.  Standard  errors  clustered  by  zipcode  appear  below  each  point  estimate;;  results  are  robust  to  
clustering  errors  by  physician.  
                    
                    



Dependent  Variable:    
Number  of              
Unique  Drugs

Prescription                        
HHI

1{(prescriptions  of  
drug  j  by  i  at  t )  >  0}

(1) (2) (3)

Database  it 0.0350*** -0.0027***
0.0094 0.0010

Database  it
x  New  jt  x  Generic  j 0.0158***

0.0025
x  New  jt   x  Branded  j -0.0051***

0.0015
x  Old  jt   x  Generic  j 0.0240***

0.0029
x  Old  jt   x  Branded  j 0.0013

0.0009

Prescription  Volume  it-1 0.0187*** -0.0007*** 0.0013***
0.0002 0.0000 0.0000

Physician  FE Y Y Y
Zipcode-Month  FE Y Y Y
Physician  x  t   trends Y Y Y
Drug-Month  FE N N Y

Observations 3013241 3013241 7674288
R2 0.8941 0.7484 0.5458

Table  5:  Prescription  Diversity  and  Propensity,  U.S.  Physicians,  2000—2010

Notes:  *  p  <  0.10,  **  p  <  0.05,  ***  p  <  0.01  and  ª  p  <  0.11.  This  table  provides  least-squares  estimates  of  a)  
equation  (6)  in  columns  1-2,  and  b)  equation  (7)  in  column  3,  for  cholesterol  drug  prescriptions  by  U.S.  
physicians  during  January  2000  through  December  2010  and  the  subset  of  physicians  that  eventually  adopt  
and  use  the  electronic  reference  to  search  for  information  about  cholesterol  drugs.  Full-sample  estimates  
appear  in  Table  A.2  in  the  appendix.    The  dependent  variable  in  column  1  captures  the  prescription  diversity  
of  physician  i   as  the  number  of  unique  drugs  j   that  are  prescribed  by  i   during  month  t .  The  dependent  
variable  in  column  2  is  the  prescription  Herfindahl-Hirschman  index  for  physician  i   in  month  t .    The  
dependent  variable  in  column  3  is  an  indicator  for  whether  the  doctor  i  prescribes  drug  j  during  month  t.    
Database  is  the  Drug  Database  and  Use  indicator  variable  described  in  Table  2,  and  takes  a  value  of  1  for  a  
physician  user  with  database  access  in  month  t ;;  it  is  otherwise  zero.    All  regressions  include  the  cholesterol  
drug  prescription  volume  for  physician  i  in  month  t-1,  physician-specific  time  trends,  and  physician  and  
zipcode-month  fixed  effects;;  column  3  also  includes  drug-month  fixed  effects.      For  computational  ease,  the  
estimates  in  column  3  rely  only  on  observations  in  January  2000  and  every  subsequent  June  and  December.  
Results  in  column  1  are  robust  to  Poisson  estimation;;  all  columns  are  robust  to  including  the  first  lag  of  the  
dependent  variable.  Results  in  column  3  are  robust  to  logistic  estimation,  including  doctor-drug  fixed  effects,  
and  including  zipcode-drug-month  fixed  effects.  Standard  errors  clustered  by  zipcode  appear  below  each  
point  estimate;;  results  are  robust  to  clustering  errors  by  physician.  
                    

                            Eventual  users                                



Panel  A   —  By  school  rank Panel  B   —  By  graduation  year

Panel  C   —  By  sex Panel  D   —  By  monthly  prescription  volume  

Panel  E   —  By  medical  specialty Panel  F   —  By  U.S.  region

Notes:    This  figure  plots  the  fraction  of  the  approximately  67,000  sample  U.S.  physicians  included  in  the  CMS  Physician  
Compare  database  that  are  also  registered  users  of  the  electronic  drug  reference  database  by  the  date  indicated,  and  shows  
the  extent  to  which  adoption  rates  differ  across  physicians  according  their  observable  characteristics.    Database  registration  
data  are  from  the  drug  reference  database  firm.    Medical  school  rank  is  determined  based  on  data  from  the  U.S.  News  and  
World  Report  service,  and  all  other  variables  are  from  the  CMS  Physician  Compare  database.
                    

Figure  1:  Drug  Database  Diffusion  Curves,  U.S.  Physicians,  January  2000—December  2010



Figure  2:  Drug  Diffusion  Curves,  by  Drug,  U.S.  Physicians,  January  2000—December  2010

Notes:    This  figure  plots  the  fraction  of  the  128,043  sample  U.S.  physicians  that  are  associated  with  at  least  one  prescription  of  the  new  drug  
indicated  by  the  date  marked  on  the  horizontal  axis,  and  shows  the  extent  to  which  adoption  rates  differ  across  products.    Market  approval  dates  
by  drug  are  listed  in  Table  1.  The  prescription  data  cover  January  2000  through  December  2010  at  a  monthly  frequency  and  are  from  IMS  Health.  
                    



Panel  A   —  One  Month  After  Release Panel  B   —  Three  Months  After  Release

Panel  C   —  Six  Months  After  Release Panel  D   —  Thirty-Six  Months  After  Release

Notes:  This  figure  illustrates  the  gradual  diffusion  of  a  new  pharmaceutical  drug,  the  statin  Crestor,  across  zipcodes  within  the  continental  United  States.    Dark  
shades  indicate  zipcodes  in  which  at  least  one  prescription  of  Crestor  has  been  written  and  filled,  light  shades  indicate  zipcodes  in  which  Crestor  has  not  yet  
been  prescribed;;  areas  shaded  white  contain  no  data.    The  four  panels  correspond  to  four  points  in  time  following  the  initial  market  introduction  of  Crestor  in  
August  2003.    These  four  points  are  September  2003  (Panel  A),  November  2003  (Panel  B),  February  2004  (Panel  C),  and  August  2006  (Panel  D).    
Prescription  data  are  from  IMS  Health.
                    

Figure  3:  Heterogeneity  in  the  Initial  Use  of  a  New  Medical  Technology,  by  U.S.  Zipcode



Figure  4:  Coefficients  by  Year  from  Database  Adoption—Number  of  Unique  Drugs

Figure  5:  Coefficients  by  Year  from  Database  Adoption—Prescription  HHI

Notes:  This  figure  plots  coefficients  from  a  version  of  (6)  that  replaces  the  Database  indicator  with  dummies  
corresponding  to  years  before  and  after  database  adoption.    Error  bars  show  95  percent  confidence  intervals.    
The  full  set  of  coefficients  is  shown  in  the  online  Appendix.    
                    

Notes:  This  figure  plots  coefficients  from  a  version  of  (6)  that  replaces  the  Database  indicator  with  dummies  
corresponding  to  years  before  and  after  database  adoption.    Error  bars  show  95  percent  confidence  intervals.    
The  full  set  of  coefficients  is  shown  in  the  online  Appendix.    
                    



Figure  6:  Coefficients  by  Year  from  Database  Adoption—Generic  Prescription  Share

Notes:  This  figure  plots  coefficients  from  a  version  of  (6)  that  replaces  the  Database  indicator  with  dummies  corresponding  
to  years  before  and  after  database  adoption.    Error  bars  show  95  percent  confidence  intervals.    The  full  set  of  coefficients  is  
shown  in  the  online  Appendix.    
                    



Appendix

A.1 Medical Innovation

Innovation in hypercholesterolemia and dyslipidemia therapy: Information about the
evolving set of pharmaceutical therapies available for prescription was obtained from the U.S. Food
and Drug Administration (FDA) for the period January 2000 through December 2010. Twelve
new statin or lipid-lowering drugs, including new formulations, combinations, and versions, intro-
duced during this period and are described below. These include three new molecular entities
Crestor, Lovaza, and Zetia; three generic versions lovastatin (Mevacor), pravastatin (Pravachol),
and simvastatin (Zocor); two new formulations Altoprev (extended-release Mevacor) and Lescol XL
(extended-release Lescol); and four new drug combinations Advicor (extended-release niacin and
Mevacor), Pravigard PAC (aspirin and Pravachol), Vytorin (Zetia and Zocor), Simcor (extended-
release niacin and Zocor). A description of each drug innovation appears below based on publicly
available data including approval letters and administrative, medical, and pharmacological review.
Baycol was withdrawn early in the sample period in August 2001 and is thus omitted.

Existing therapies available in January 2000:
1. Lescol (fluvastatin) is a statin marketed by Novartis since its FDA approval as a new molecular
entity on December 31, 1993; its patent protection expired in 2012. Like other statins, its mechanism
of action is to limit a specific enzyme in the liver, preventing cholesterol synthesis.
2. Lipitor (atorvastatin) is a statin marketed by Pfizer. Its mechanism of action is similar to that
of fluvastatin, but unlike other statins, atorvastatin is a synthetic compound. The therapy was
approved by the FDA as a new molecular entity on December 17, 1996. Between 1996 and 2012,
Lipitor was the best-selling drug globally; its patent expired in November 2011.
3. Mevacor (lovastatin) is the first statin to receive FDA approval. The drug was approved as a
new molecular entity on August 31, 1987 for sale in the United States by Merck. The therapy was
protected by patents through June 2001.
4. Niaspan (extended-release niacin) is vitamin B3, or nicotinic acid, and is marketed by Abbott
Laboratories. Extended-release niacin was approved for sale in the United States on July 28, 1997.
5. Pravachol (pravastatin) is a statin marketed by Bristol Myers Squibb since its FDA approval on
October 31, 1991. In addition to inhibiting cholesterol synthesis, Pravachol also inhibits low-density
lipoprotein synthesis. Two clinical trials, each completed in November 2003, suggest Pravachol is
outperformed by both Zocor and Lipitor. Patent protection expired in June 2006.
6. Zocor (simvastatin) is a statin marketed by Merck since its FDA approval as a new molecu-
lar entity on December 23, 1991. Zocor outperformed Pravachol in its prevention of cholesterol
synthesis in a clinical trial completed in November 2003. Patent protection expired in April 2006.

New chemical entities, January 2000–December 2010:
1. Crestor (rosuvastatin calcium) is a new molecular entity approved by the FDA for sale in the
United States by Astra Zeneca Pharmaceuticals on August 12, 2003. The molecule acts by reducing
intestinal absorption of cholesterol and related phytosterols, and is thereby distinct relative to
other statin therapies. The drug was approved for use in treating primary hypercholesterolemia
and mixed dyslipidemia (by reducing total-C, LDL-C, and Apo B), and as an adjunct to other
lipid-lowering treatments. It was thus approved for use alone or with other statins. A 2008 clinical
trial revealed additional evidence supporting the superior performance of Crestor compared with a
placebo treatment. Patent protection expires in January 2016.
2. Lovaza (omega-3-acid ethyl esters) is a new molecular entity introduced by Abbott labs and
approved by the FDA on November 10, 2004. It was initially introduced under the trade name
Omacor. Unlike statins, Lovaza is aimed at reducing tricylerides rather than low-density lipopro-



teins and may thus be combined with a statin as an adjunct therapy. Patent protection expired in
September 2012.
3. Zetia (ezetimibe) is a new molecular entity introduced by Schering and approved by the FDA on
October 25, 2002 for sale in the United States. The molecule acts by reducing intestinal absorption
of cholesterol and related phytosterols, and is thus distinct from statins. The drug was initially
approved for use in treating hypercholesterolemia for use alone or with other statins. In January
2008, a clinical trial found Zetia performed poorly compared with other therapies, and it was at
that time recommended that Zetia not be prescribed except in cases for which all other cholesterol
drugs had previously failed. Patent protection expires in April 2017.

New generic versions, January 2000–December 2010:
1. Lovastatin is the generic equivalent of Mevacor, and was initially approved by the FDA for sale
in the United States by Geneva Pharmaceuticals applied on December 17, 2001.
2. Pravastatin is the generic equivalent of Pravachol, and was initially approved by the FDA for
sale in the United States by Teva Pharmaceuticals on April 24, 2006.
3. Simvastatin is the generic equivalent of Zocor, and was initially approved by the FDA for sale
in the United States by Teva Pharmaceuticals on June 23, 2006.

New dosage forms, January 2000–December 2010:
1. Altoprev (extended-release lovastatin) is a new dosage form and was approved by the FDA
on June 26, 2002 for sale in the United States, following a new drug application by Aura Phar-
maceuticals, Inc. of March 30, 2001. The approval is for use of Altoprev for lowering cholesterol
and LDL-C to target levels along with diet and exercise, to slow the progression of atherosclerosis
in patients with coronary heart disease, and to reduce total-C, LDL-C, Apo B, and triclycerides
and to increase HDL-C in patients with dyslipoproteinemia. The drug was found to outperform
Mevacor (lovastatin). Altoprev is protected by patents though at least December 2017.
2. Lescol XL (extended-release Lescol) is a new dosage form and was approved by the FDA for sale
in the United States by Novartis on October 6, 2000. Patent protection expired in 2012.

New drug combinations, January 2000–December 2010:
1. Advicor (Mevacor and extended-release Niacin) is a new drug combination approved by the
FDA on December 17, 2001 for sale in the United States by Kos Pharmaceuticals. Advicor was
approved for use in treating primary hypercholesterolemia and mixed dyslipidemia in two types of
patients: a) those treated with lovastatin who require further triglyceride lowering or HDL raising
who may benefit from adding niacin to their regimen, and b) patients previously treated with niacin
who require further LDL lowering and may benefit from having lovastatin added to their regimen.
Thus, Advicor was not approved as an initial therapy for lowering LDL levels. Moreover, in clinical
trials, Advicor was found to perform no better than Mevacor as a first-line agent.
2. Pravigard PAC (Pravachol and aspirin) is a new drug combination approved by the FDA on
June 24, 2003 for sale in the United States by Bristol Myers Squibb.
3. Vytorin (Zetia and Zocor) is a new drug combination approved by the FDA for use, along
with diet or with other lipid-lowering treatments to reduce total C, LDL-C and raise HDL-C, on
July 23, 2004 by MSP Singapore company, LLC. The drug combination was more effective at
lowering lipids, but was also associated with more adverse events (both serious and leading to
discontinuation) than either monotherapy. In January 2008, a completed clinical trial revealed
Zetia, a component of Vytorin, performed poorly relative to other therapies.
4. Simcor (simvastatin and extended-release niacin) is a new drug combination approved by the
FDA on February 15, 2008 for sale in the United States by Abbott Laboratories. Like Advicor,
Simcor is approved only as a second-line treatment for cases in which the monotherapy is considered
to be inadequate.



A.2 Data

U.S. Prescriptions for Hypercholesterolemia and Dyslipidemia Therapies: Prescription
data for U.S. medical practitioners and each of the products described above were obtained from the
IMS Health Xponent database. IMS Health draws its prescription data from a large but non-random
sample of over 70 percent of U.S. pharmacies. As of the time our data were assembled, Xponent
included direct information from over 38,000 retail stores, including approximately 119 mail-service
pharmacies and 820 long-term care facilities; this compares with a universe of approximately 57,000
retail pharmacies, 327 mail-service outlets, and 3,000 long-term care facilities. In addition to
observing directly dispensed prescription volumes (or “sell-out”) for each sample pharmacy, IMS
Health observes prescription drug purchase volumes (or “sell-in”) for the universe of U.S. pharmacies
and drugs—that is, including both sample and non-sample stores. To correct for sampling error
and to ensure the data are representative, IMS Health has applied a proprietary procedure that
a) combines sell-in and sell-out data for sample pharmacies to determine what ratio of purchased
product is actually dispensed for each drug and store, b) uses this ratio (or “projection factor”),
appropriately weighted by store type and proximity, to estimate the dispensed volume by drug for
any store reporting sell-in but not sell-out volumes. Importantly, this projection and weighting
procedure applies only to strictly positive prescription levels, but does not apply to zeros, enabling
us to accurately track the initial adoption of new products over time for each physician.

The data IMS Health provided include prescriptions by 280,622 unique U.S. physicians for
each product in each month during January 2000 through December 2010. To avoid studying
physicians specialized outside cardiovascular care, we restrict analysis to physicians that prescribe
at least some cholesterol products. Specifically, for a physician to be included in the dataset, he
or she needs to have written at least ten filled prescriptions for cholesterol therapies during the
calendar year 2010. The data provide precise identifying information for each prescribing physi-
cian, including the unique, 11-digit American Medical Association Medical Education Number, the
first name, last name, and middle name, and the five-digit zipcode corresponding to the medical
practice of the physician. From January 2006 through December 2010, the data provide additional
detail regarding prescriptions: for each drug, a separate prescription count is observed for each
of four payment methods, including Medicare Part D, Fee-for-Service Medicaid, cash, and com-
mercial insurance. In the data, approximately half of dispensed prescriptions for cholesterol drugs
correspond to individuals with commercial insurance; 34 percent obtain products through Medicare
Part D, ten percent purchase medications with cash, and the remaining six percent are covered by
Medicaid.

To prepare the data for analysis, we reshaped the files provided so that each row corresponds
to a doctor-drug-month triplet. With guidance from IMS Health, zeros were explicitly introduced in
this step for missing observations corresponding to existing products not associated with positive
prescriptions in the IMS data. Starting in 2006, we aggregated prescriptions across methods of
payment to arrive at a single number of prescriptions written by physician, drug, and month. We
combined prescriptions for “Pravastatin” and “Pravastatin SOD”, which are the same product, and
did likewise for “Lovaza” and “Omacor”, which are the same product. We dropped Baycol from the
dataset. For some years, due to the projection calculation described above, the prescription variable
was not a whole number; with guidance from IMS Health, we rounded the number of prescriptions
to the nearest whole number. To abstract from physician entry during the sample period, we impose
a sample restriction in addition to that described above: specifically, each physician included must
prescribe at least ten cholesterol drugs during the calendar year 2000. Finally, we used information
from the U.S. FDA to determine the approval date for each therapy. The first month after this
date was determined to be the first month of a drug’s market life in the United States. We created
indicator variables for drugs that are new corresponding to the first six months of the drug’s market



life in the United States, and separately, to the first 24 months of the drug’s market life in the United
States. We created indicator variables for generic products lovastatin, pravastatin, and simvastatin.

Electronic Database Use for Hypercholesterolemia and Dyslipidemia Therapies, by
U.S. Physicians: We obtained data on individual physicians’ information access from the leading
U.S. point-of-care medical applications firm. For each physician, we observe the corresponding
initial database registration date; this is used to construct the indicator variable Zit that takes
on a value of one for registered users, and that is otherwise zero. For each physician-product-
month triplet, we also observe a proxy for the number of lookups completed. We use this proxy
to construct a physician-specific indicator for database use that is equal to 1 if the doctor records
at least one cholesterol drug lookup during the sample period, and that is otherwise zero. During
January 2000 through December 2010, the share of sample physicians registered as database users
rose from 0.003 to 0.451. Our analysis is thus based on a sample combining a) physicians that first
registered during or before the sample period, and b) physicians that registered before the sample
period, and c) physicians that never registered. Each physician is identified in the data by a unique,
11-digit American Medical Association Medical Education Number, first name, last name, middle
name, and five-digit zipcode. These characteristics form the basis for a merge with the prescription
information described above.

A.3 Endogenous Database Adoption: Instrumental Variables Re-
sults

One approach to handling the endogeneity of database adoption is to find an instrument that
generates quasi-random variation in a physician’s database adoption decision, and to estimate the
impact of information access relying on variation in this instrument. We have considered three such
instruments: 1) a measure of location-year specific hospital I.T. use from Dranove et al (2014), and
2) a measure of location-year specific high-speed internet penetration, and 3) the doctor-month
specific share of other local physicians that have adopted the reference database; all three are
factors that could influence doctors’ database adoption decisions while being plausibly unrelated to
choices over which anti-cholesterol drugs to prescribe. While we find that the first two instruments
are only weak predictors of database adoption, resulting in second-stage estimates highly sensitive
to small specification changes, the third instrument is a robust predictor of database adoption.

We therefore reassess the results in Tables 4, 5, and 6 using this third instrument. Estimates
appear in Tables 7, 8, and 9, respectively. The logic underlying the first stage is identical across
all three specifications. Consider Table 5: the first stage corresponding to a version of (6) that
replaces ηzt with ηt is

Zit = αSz(i)t−1 + νi + νt + ξNit−1 + uit,

where Sz(i)t−1 is the share of physicians, excluding i, that are located in i’s zipcode z(i) and are
database users at t − 1.49 The identification restriction is that the instrument is conditionally
uncorrelated with the error term in (6): Cov(Sz(i)t−1, εit|ηi, ηt, Nit−1) = 0.

Most explanations linking neighbors’ database adoption decisions would suggest α > 0 in the
first-stage specification above. One possible mechanism is that neighboring physicians are likely to
share information about tools and techniques that improve professional performance; alternatively,

49Notice that this instrument is not valid in the presence of zipcode-month fixed effects ηzt. With ηzt,
identification through the instrument comes from comparing two doctors i and i′ in the same zipcode and
month that have different adoption shares Sz(i)t−1 and Sz(i′)t−1. However, such a difference arises only when
exactly one of the two has adopted the database. But in this case, the instrument for i directly reflects
Zit−1, which is correlated with Zit and thus also with the prescription outcome Mit. We therefore replace
the ηzt (or ηzj) with ηt (or ηj) in the instrumented specifications.
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physicians interacting locally may simply observe a peer accessing the database, and may decide to
adopt on that basis. As discussed above, the reference firm’s public statements indicate that such
informal peer effects were the most important driver of database adoption among doctors during
the sample period. Regarding excludability, it does not seem likely that the database adoption
decisions of physicians neighboring i would directly affect i’s own prescription decisions, as patient
medical information is privacy-protected by law.50

Whether the bias in our baseline estimates is upward or downward hinges on the relationship
between the omitted factor and database adoption (Zit). One possibility is that a physician makes
an unobserved decision to move closer to the efficiency frontier by adopting new generic drugs
quickly, prescribing them more often in place of a branded drug, and increasing the influence of
patients’ diverse characteristics on prescription choice—and that as a result of this unobserved
decision, the doctor now finds it profitable to begin using the database to assist her increasingly
complex prescription choices. This would suggest Cov(Zit, εit) ≥ 0 in (6) and a corresponding
upward bias in our baseline estimate of β. On the other hand, if time-constrained physicians
choose among multiple sources of drug information, those adopting the reference we consider (with
Zit = 1) may do so at the expense of relying on a substitute resource that could affect prescribing
similarly.51 This would tend to result in Cov(Zit, εit) ≤ 0 in (6), placing downward pressure on the
estimate of β.

The estimates in Table A.6 are largely in line with the latter interpretation. Based on our
preferred second-stage estimates in column 1, database users are 8.0 percentage points more likely
to begin prescribing a new generic within its initial year, relative to a non-user, with no significant
effects among new branded drugs. The magnitude of the effect for generics is larger than in
Table 4, suggesting a bias toward zero for this coefficient; the coefficients for branded products are
statistically indistinguishable. Columns 2 and 3 similarly suggest that the true impact of database
adoption on diversity is an order of magnitude larger than in Table 5. Column 4 likewise suggests
that column 3 of Table 5 understates the impact of the database on generic prescribing by a factor
of four for new generics (β0) and a factor of ten for old generics (β2).

52 However, database adopters
are less likely to prescribe old branded drugs (β3 < 0). Each table includes the first-stage estimates
and reports the F statistic, which in every case is substantially higher than its weak-instrument
threshold value.

Overall, the IV estimates reported in Table A.6 confirm a pattern of database impacts that
is similar to the corresponding OLS estimates, but with larger estimated magnitudes. We view
these as a set of robustness checks, with results that lend credibility both to the qualitative effects
estimated above, and to a causal interpretation of these effects. Nevertheless, it is worth noting
that our leave-out mean instrument relies on variation in group composition that in many appli-
cations leads to small-sample bias from weak instruments, and that could confound interpretation
in certain cases (Angrist 2014). Regarding the former, we have confirmed the strength of the in-
strument, aided by the fact that the instrument varies over 13,000 zipcodes × 131 months = 1.7
million observations, across which there is sufficient heterogeneity for identification. Regarding the
latter concern, that groups with high database adoption rates could also have different prescribing
tendencies due to factors other than actual database access, three observations are useful. First,

50There are channels through which Sz(i)t−1 could be correlated εit in the second-stage equation. Changes
in neighbors’ database adoption could reflect changes in the proximity of their location to the technology
frontier, possibly due to advertising; this could manifest itself not only in a high early rate of database
adoption but also a high early rate of new drug adoption. Neighboring physicians that share information
about database use could also share information about new drugs, affecting prescribing even if patient-
specific details are not discussed. Such cases are better addressed by the baseline specification (6), which
includes zipcode-month fixed effects that absorb local changes of these types.

51For example, relevant alternatives include the Micromedex and UpToDate Lexicomp databases.
52First-stage estimates for Table A.6 appear in Tables A.7 and A.8.
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such an unobserved factor would need to cause a correlation between zipcodes’ database adoption
timing and increased generic prescribing in the absence of effects on brand-name drug adoption;
second, provided this unobserved factor varies by zipcode-month, then it is reassuring that the
baseline estimates including these fixed effects are qualitatively similar (Tables 4 and 5); third,
we find that the results in Table A.6 are essentially unchanged when defining the instrument at a
broader geographic unit (three digit zipcodes).



Table  A.1:  Descriptive  Statistics,  Within-Zipcode  Prescribing  Variation  Across  Physicians

Product:     lovastatin pravastatin simvastatin Generic
Variable (1) (2) (3) (4)

Panel  A
Final  month,  December  2010

Mean 0.079 0.103 0.196 0.191
St  Dev 0.077 0.082 0.094 0.096
5th  Percentile 0.003 0.011 0.046 0.043
25th  Percentile 0.027 0.049 0.133 0.122
Median 0.057 0.085 0.196 0.191
75th  Percentile 0.107 0.134 0.248 0.249
95th  Percentile 0.225 0.249 0.349 0.349

Panel  B
Six  months  after  generic  release
Molecule-specfic  branded  drug Mevacor Pravachol Zocor

Mean 0.276 0.225 0.142
St  Dev 0.186 0.157 0.115
5th  Percentile 0 0 0
25th  Percentile 0.112 0.115 0.059
Median 0.315 0.219 0.118
75th  Percentile 0.417 0.326 0.202
95th  Percentile 0.535 0.500 0.355

Panel  C
Final  month,  December  2010
Molecule-specfic  branded  drug Mevacor Pravachol Zocor

Mean 0.001 0.014 0.006
St  Dev 0.014 0.051 0.022
5th  Percentile 0 0 0
25th  Percentile 0 0 0
Median 0 0 0
75th  Percentile 0 0 0.004
95th  Percentile 0 0.260 0.029

Notes:  This  table  describes  the  distribution  across  U.S.  zipcodes  of  within-zipcode  prescribing  variation  across  
local  physicians.  As  in  Table  3,  Panel  A  describes  within-zipcode  prescribing  variation  in  December  2010;;  
Panels  B  and  C  describe  the  local  variation  in  physicians'  within-molecule  substitution  toward  generics  for  
lovastatin  (column  1),  pravastatin  (column  2),  and  simvastatin  (column  3).    Panel  B  describes  this  variation  in  
substitution  six  months  after  the  generic  release  in  question,  while  Panel  C  describes  variation  in  prescribing  in  
the  final  sample  period,  December  2010.    The  upper-left  number  in  Panel  A  (mean,  lovastatin,  0.079)  is  the  
average,  across  zipcodes,  of  the  standard  deviation  across  local  physicians  in  the  fraction  of  their  total  
December  2010  prescriptions  that  are  accounted  for  by  generic  lovastatin;;  the  upper-left  number  in  Panel  B  
(mean,  lovastatin,  0.276)  is  the  average,  across  zipcodes,  of  the  standard  deviation  across  local  physicians  in  
the  fraction  of  their  total  Mevacor  plus  generic  lovastatin  prescriptions  that  are  accounted  for  by  generic  
lovastatin  in  October  2002,  six  months  after  expiration  of  the  Mevacor  patent;;    the  upper-left  number  in  Panel  C  
is  the  analogous  statistic  for  December  2010.  Generic  approval  dates  are  from  the  U.S.  Food  and  Drug  
Administration;;  all  other  variables  are  from  IMS  Health.    

St  Dev  of  Generic  Rx  Share,  by  Zipcode

St  Dev  of  Generic  Rx  Share,  by  Zipcode

Within-Zipcode  Variation,  Zipcode  Level

St  Dev  of  Share  in  Total  Rx,  by  Zipcode



Dependent  Variable:    
Number  of            

Unique  Drugs                                
Prescription                  

HHI                                  
1{(prescriptions  of  
drug  j  by  i  at  t )  >  0}

(1) (2) (3)

Database  it 0.0426*** -0.0037***
0.0081 0.0009

Databaseit
x  New  jt  x  Generic  j 0.0266***

0.0016
x  New  jt   x  Branded  j -0.0089***

0.0011
x  Old  jt   x  Generic  j 0.0351***

0.0017
x  Old  jt   x  Branded  j 0.0019***

0.0007

Prescription  Volume  it-1 0.0192*** -0.0008*** -0.0007***
0.0001 0.0000 0.0000

Physician  FE Y Y Y
Zipcode-Month  FE Y Y Y
Physician  x  t   trends Y Y Y

Observations 15510386 15510386 36238793
R2 0.8785 0.7114 0.5277

Table  A.2:  Prescription  Diversity  and  Propensity,  All  U.S.  Physicians,  2000—2010

All  Physicians

Notes:  *  p  <  0.10,  **  p  <  0.05,  ***  p  <  0.01  and  ª  p  <  0.11.  This  table  provides  least-squares  estimates  of  a)  
equation  (6)  in  columns  1-2,  and  b)  equation  (7)  in  column  3,  for  cholesterol  drug  prescriptions  by  U.S.  
physicians  during  January  2000  through  December  2010  for  all  physicians.    The  dependent  variable  in  
column  1  captures  the  prescription  diversity  of  physician  i   as  the  number  of  unique  drugs  j   that  are  
prescribed  by  i   during  month  t .  The  dependent  variable  in  column  2  is  the  prescription  Herfindahl-Hirschman  
index  for  physician  i   in  month  t .    The  dependent  variable  in  column  3  is  an  indicator  for  whether  the  doctor  i  
prescribes  drug  j  during  month  t.    Database  is  the  Drug  Database  and  Use  indicator  variable  described  in  
Table  2,  and  takes  a  value  of  1  for  a  physician  user  with  database  access  in  month  t ;;  it  is  otherwise  zero.    All  
regressions  include  the  cholesterol  drug  prescription  volume  for  physician  i  in  month  t-1,  physician-specific  
time  trends,  and  physician  and  zipcode-month  fixed  effects;;  column  3  also  includes  drug-month  fixed  effects.    
Standard  errors  clustered  by  zipcode  appear  below  each  point  estimate.  
                    
                    



Dependent  Variable:    
Number  of        

Unique  Drugs         Prescription  HHI     Generic  Share

(1) (2) (3)

3  Years  Before  Adoption  it 0.0097 -0.0012 0.0014
0.0112 0.0012 0.0010

2  Years  Before  Adoption  it 0.0174 -0.0010 0.0020
0.0154 0.0017 0.0014

1  Year  Before  Adoption  it 0.0227 -0.0008 0.0023
0.0188 0.0020 0.0017

Database  Adoption  Year  it 0.0437** -0.0024 0.0030
0.0210 0.0023 0.0019

1  Year  After  Adoption  it 0.0692*** -0.0055** 0.0049*
0.0232 0.0025 0.0022

2  Years  After  Adoption  it 0.0851*** -0.0068** 0.0061**
0.0258 0.0028 0.0024

3  Or  More  Years  After  Adoption  it 0.0818*** -0.0082*** 0.0069**
0.0291 0.0031 0.0027

Physician  FE Y Y Y
Zipcode-Month  FE Y Y Y
Prescription  Volume  it-1 Y Y Y
Physician  x  t   trends Y Y Y

Observations 3013241 3013241 3013241
R2 0.8941 0.7484 0.7484

Table  A.3:  Event  Study  Estimates,  U.S.  Physicians,  Eventual  Users,  2000—2010

Notes:  *  p  <  0.10,  **  p  <  0.05,  ***  p  <  0.01.  This  table  provides  least-squares  estimates  for  a  variant  of  (6)  for  
cholesterol  drug  prescriptions  by  U.S.  physicians  during  January  2000  to  December  2010,  and  for  the  subset  of  
physicians  that  eventually  adopt  and  use  the  electronic  reference  to  search  for  information  about  cholesterol  
drugs.    The  dependent  variable  in  column  1  captures  the  prescription  diversity  of  physician  i   as  the  number  of  
unique  drugs  j  that  are  prescribed  by  i   during  month  t .  The  dependent  variable  in  column  2  is  the  prescription  
Herfindahl-Hirschman  index  for  physician  i   in  month  t .  The  dependent  variable  in  column  3  is  the  generic  share  
in  prescriptions  by  physician  i   in  month  t .    The  specification  replaces  the  Drug  Database  and  Use  indicator  
variable  described  in  Table  2  with  dummies  for  three  years  before  adoption,  two  years  before  adoption,  one  
year  before  adoption,  the  adoption  year,  one  year  after  adoption,  two  years  after  adoption,  and  three  or  more  
years  after  adoption.    All  regressions  include    physician-specific  time  trends,  physician  and  zipcode-month  fixed  
effects,  and  the  cholesterol  drug  prescription  volume  for  physician  i   in  month  t -1.    Standard  errors  clustered  by  
zipcode  appear  below  each  point  estimate.  
                    

Eventual  users



Dependent  Variable:    
1{(prescriptions  of  drug  j  by  
i  in  drug  j 's  initial  year)  >  0}

Number  of                          
Unique  Drugs                                

Prescription                                  
HHI                                  

(1) (2) (3)

Database  x  Low  Usage  i 0.0025 0.0246*** 0.0019***
0.0025 0.0082 0.0009

Database  x  Medium  Usage  i   -0.0044 0.0404*** -0.0040***
0.0033 0.0110 0.0012

Database  x  Intense  Usage  i 0.0038 0.0414*** -0.0023
0.0036 0.0129 0.0014

Database  x  Low  i   x  Generic  j -0.0069
0.0043

Database  x  Medium  i   x  Generic  j 0.0074
0.0046

Database  x  Intense  i   x  Generic  j 0.0236***
0.0047

Physician  FE Y Y Y
Zipcode-Drug  FE Y N N
Zipcode-Month  FE N Y Y
Prescription  Volume  it(j)-1   Y Y Y
Physician  x  t   trends N Y Y

Observations 461653 6727828 6727828
Panel  R2 0.6571 0.8859 0.7283

Table  A.4:  Prescription  Outcomes,  Intensity  of  Use,  U.S.  Physicians,  2000—2010

Eventual  adopters

Notes:  *  p  <  0.10,  **  p  <  0.05,  ***  p  <  0.01.  This  table  provides  least-squares  estimates  of  a  variant  of  a)  equation  (5)  for  
U.S.  physicians'  prescription  of  twelve  cholesterol  drugs  first  approved  for  U.S.  sale  during  January  2000—December  
2008  (Table  1)  in  column  1,  and  b)  equation  (6)  for  cholesterol  drug  prescriptions  by  U.S.  physicians  during  January  2000  
through  December  2010  in  columns  2-3.    Doctors  are  included  if  they  eventually  adopt  the  electronic  reference;;  they  need  
not  have  used  it  to  search  for  information  about  cholesterol  drugs.    The  dependent  variable  in  column  1  captures  the  time  
lapse  between  FDA  approval  of  drug  j  and  physician  i 's  initial  prescription  of  it,  taking  a  value  of  1  if  initial  prescription  
occurs  within  a  year  of  FDA  approval.    The  dependent  variable  in  column  2  captures  the  prescription  diversity  of  physician  
i  as  the  number  of  unique  drugs  j  that  are  prescribed  by  i  during  month  t.  The  dependent  variable  in  column  3  is  the  
prescription  Herfindahl-Hirschman  index  for  physician  i  in  month  t.    Database  is  the  Drug  Database  and  Use  indicator  
variable  described  in  Table  2,  and  takes  a  value  of  1  for  a  physician  user  with  database  access  at  the  time  drug  j   receives  
FDA  approval.    Generic  indicates  the  products  pravastatin,  lovastatin,  and  simvastatin.  Low,  medium,  and  intense  usage  
denote  non-overlapping  categories  of  physicians  who,  conditional  on  adoption,  use  the  database  to  look  up  cholesterol  
drugs  to  differing  extents;;  the  usage  proxy  is  zero  for  low-intensity  users,  between  zero  and  14  for  medium-intensity  users,  
and  above  14  for  high-intensity  users.    All  regressions  include  physician  fixed  effects  the  cholesterol  drug  prescription  
volume  for  physician  i   in  the  month  prior  to  drug  j's  introduction;;  column  1  includes  zipcode-drug  fixed  effects  and  columns  
2-3  include  zipcode-month  fixed  effects  and  doctor-specific  time  trends.    Standard  errors  clustered  by  zipcode  appear  



Table  A.5:  Prescription  Propensity,  Intensity  of  Use,  U.S.  Physicians,  2000—2010

Dependent  Variable:    
1{(prescriptions  of  drug  j              

by  i  at  t )  >  0}

Eventual  adopters

(1)

Database  it  x  New  jt  x  Generic  j
x  Low  Usage  i 0.0038*

0.0022
x  Medium  Usage  i   0.0118***

0.0026
x  Intense  Usage  i 0.0392***

0.0029
Database  it   x  New  jt   x  Branded  j

x  Low  Usage  i 0.0036***
0.0013

x  Medium  Usage  i   -0.0026
0.0017

x  Intense  Usage  i -0.0178***
0.0020

Database  it   x  Old  jt   x  Generic  j
x  Low  Usage  i 0.0070***

0.0023
x  Medium  Usage  i   0.0109***

0.0027
x  Intense  Usage  i 0.0613***

0.0032
Databaseit   x  Old  jt   x  Branded  j

x  Low  Usage  i 0.0012
0.0007

x  Medium  Usage  i   0.0016
0.0011

x  Intense  Usage  i -0.0015
0.0015

Physician  FE,  Zipcode  x  Month  FE,  and  Drug  x  Month  FE Y
Prescription  Volume  it-1 Y
Physician  x  t   trends Y

Observations 12623365
R2 0.5350

Notes:  *  p  <  0.10,  **  p  <  0.05,  ***  p  <  0.01.  This  table  provides  least-squares  estimates  for  
a  variant  of  (7)  for  the  subset  of  physicians  that  eventually  adopt  the  drug  reference;;  the  
specification  is  as  described  in  Table  5,  column  3,  but  considers  differences  in  the  intensity  
of  database  use.    Low,  medium,  and  intense  usage  denote  non-overlapping  categories  of  
physicians  who,  conditional  on  adoption,  use  the  database  to  look  up  cholesterol  drugs  to  
differing  extents;;  the  usage  proxy  is  zero  for  low-intensity  users,  between  zero  and  14  for  
medium-intensity  users,  and  above  14  for  high-intensity  users.  



Dependent  Variable:  
1{Prescription  
in  1st  Year}

Number  of  
Unique  Drugs

Prescription  
HHI

Prescription  
Indicator

(1) (2) (3) (4)

Database  ij -0.0110
0.0121

Database  ij   x  Generic  j 0.0804***
0.0196

Database  it 0.2848*** -0.0376***
0.0603 0.0071

x  New  jt   x  Generic  j 0.0516***
0.0069

x  New  jt   x  Branded  j -0.0343***
0.0036

x  Old  jt   x  Generic  j 0.2401***
0.0133

x  Old  jt   x  Branded  j -0.0165***
0.0019

Prescription  Volume  it(j)-1 Y Y Y Y
Physician  FE Y Y Y Y
Drug  FE Y N N N
Month  FE N Y Y N
Drug  x  Month  FE N N N Y
Physician  x  t   trends N Y Y Y

Observations 290898 3013241 3013241 7674288
R2 0.5697 0.8610 0.6747 0.5357
First-Stage  F   Statistic 577 2716 2716 810

Notes:  *  p  <  0.10,  **  p  <  0.05,  ***  p  <  0.01.  This  table  provides  two-stage  least  squares  of  a)  equation  (5)  for  U.S.  
physicians'  prescription  of  cholesterol  drugs  first  approved  for  U.S.  sale  during  January  2000—December  2008  (Table  
1) in  column  1,  b)  equation  (6)  in  columns  2-3,  and  c)  equation  (7)  in  column  4.    Dependent  and  independent
variables  are  as  described  in  Table  4  (column  1)  and  Table  5  (columns  2-4).    The  instrument  for  Database  at  drug  j 's
introduction  is  the  share  of  physicians  other  than  i   that  are  located  in  i's  zipcode  and  have  adopted  the  database  by  or
before  the  month  immediately  preceding  drug  j 's  introduction.    Generic  indicates  the  products  pravastatin,  lovastatin,
and  simvastatin.    All  regressions  include  physician  fixed  effects  and  the  cholesterol  drug  prescription  volume  for
physician  i  in  the  month  prior  to  drug  j 's  introduction;;  other  controls  are  as  indicated  above.    First-stage  estimates  for
columns  1-3  are  in  Table  A.7  and  for  column  4  are  in  Table  A.8.    Standard  errors  clustered  by  zipcode  appear  below
each  point  estimate.

Table  A.6:  Two-Stage  Least  Squares,  Prescription  Outcomes,  U.S.  Physicians,  2000—2010

  Eventual  users  



Dependent  Variable:  
1{Prescription  
in  1st  Year}

Number  of  
Unique  Drugs

Prescription  
HHI

(1) (2) (3)

Panel  A

Adoption  Share  in  Zipcode  it -1 1.0621***
0.0091

Adoption  Share  in  Zipcode  it(j)-1   x  Generic  j   -0.1249***
0.0095

Panel  B

Adoption  Share  in  Zipcode  it(j) -1 -0.0641***
0.0074

Adoption  Share  in  Zipcode  it(j)-1   x  Generic  j   0.7308***
0.0077

Panel  C

Adoption  Share  in  Zipcode  it -1 0.1294*** 0.1294***
0.0007 0.0007

Drug  FE Y N N
Physician  FE Y Y Y
Month  FE N Y Y
Physician  x  t   trends N Y Y
Prescription  Volume  it(j)-1 Y Y Y

Observations 290898 3013241 3013241
First-Stage  F   Statistic 577 2716 2716

First  stage  for  Database  ij   x  Generic  j

First  stage  for  Database  it

Notes:  *  p  <  0.10,  **  p  <  0.05,  ***  p  <  0.01.  This  table  provides  first-stage  estimates  corresponding  
to  equation  (5)  (column  1)  and  equation  (6)  (columns  2-3);;  second-stage  estimates  appear  in  Table  
A.6,  columns  1-3.    All  regressions  include  physician  fixed  effects  as  well  as  the  cholesterol  drug
prescription  volum  for  physician  i   in  month  t -1.    Standard  errors  appear  below  each  point  estimate.

Table  A.7:  First-Stage  Estimates,  U.S.  Physicians,  2000—2010

  Eventual  users  

First  stage  for  Database  ij



Table  A.8:  First-Stage  Estimates,  U.S.  Physicians,  2000—2010

(1) (2)

Panel  A First  stage  for  Database  it  x  New  jt  x  Generic  j First  stage  for  Database  it  x  Old  jt  x  Generic  j

Adoption  Share  in  Zipcode  it -1   x  New  jt  x  Generic  j 0.9921*** 0.0970***
0.0013 0.0015

Adoption  Share  in  Zipcode  it -1   x  New  jt  x  Branded  j 0.0390*** 0.0820***
0.0009 0.0011

Adoption  Share  in  Zipcode  it -1   x  Old  jt  x  Generic  j 0.0583*** 0.6574***
0.0009 0.0011

Adoption  Share  in  Zipcode  it -1   x  Old  jt  x  Branded  j 0.0519*** 0.1199***
0.0007 0.0008

Panel  B First  stage  for  Database  it  x  New  jt  x  Branded  j First  stage  for  Database  it  x  Old  jt  x  Branded  j

Adoption  Share  in  Zipcode  it -1   x  New  jt  x  Generic  j 0.1214*** 0.8576***
0.0021 0.0036

Adoption  Share  in  Zipcode  it -1   x  New  jt  x  Branded  j 1.2427*** 0.6763***
0.0015 0.0026

Adoption  Share  in  Zipcode  it -1   x  Old  jt  x  Generic  j 0.14300*** 1.2164***
0.0016 0.0027

Adoption  Share  in  Zipcode  it -1   x  Old  jt  x  Branded  j 0.1297*** 1.7685***
0.0011 0.0019

Physician  FE Y Y
Physician  x  t   trends Y Y
Drug  x  Month  FE Y Y
Prescription  Volume  it -1 Y Y

Observations 7674288 7674288
First-Stage  F  statistic 810 810

Eventual  users

Notes:  *  p  <  0.10,  **  p  <  0.05,  ***  p  <  0.01.  This  table  provides  first-stage  estimates  corresponding  to  equation  (7)  and  the  second-stage  estimates  in  Table  A.6,  column  4.    
All  regressions  include  physician  and  drug-month  fixed  effects,  as  well  as  the  cholesterol  drug  prescription  volume  for  physician  i   in  month  t -1.  Standard  errors  appear  
below  each  point  estimate.    
                    



Dependent  Variable:    

Yes No All
(1) (2) (3)

Database  ij -0.0021 -0.0062** -0.0045
0.0044 0.0031 0.0030

Database  ij   x  Mandatory  Substitution  i -0.0008
0.0050

Database  ij   x  Generic  j 0.0274*** 0.0184*** 0.0173***
0.0065 0.0045 0.0044

Database  ij   x  Generic  j  x  Mandatory  i 0.0125*
0.0075

Generic  j  x  Mandatory  i 0.0084
0.0067

Drug  FE Y Y Y
Physician  FE Y Y Y
Prescription  Volume  it(j)-1   Y Y Y

Observations 93902 196957 290874
R2 0.5730 0.5694 0.5703

Eventual  users

Notes:  *  p  <  0.10,  **  p  <  0.05,  ***  p  <  0.01.  This  table  provides  least-squares  estimates  for  (5)  and  a  variant  thereof.    
The  binary  dependent  variable  captures  the  time  lapse  between  FDA  approval  of  drug  j  and  physician  i 's  initial  
prescription  of  it,  taking  a  value  of  1  if  initial  prescription  occurs  within  a  year  of  FDA  approval;;  specification  are  
included  for  the  subset  of  physicians  that  eventually  adopt  and  use  the  electronic  reference  to  search  for  
information  about  cholesterol  drugs.    Database  is  the  Drug  Database  and  Use  indicator  variable  described  in  Table  
2,  and  takes  a  value  of  1  for  a  physician  user  with  database  access  at  the  time  drug  j  receives  FDA  approval.    
Generic  indicates  the  products  pravastatin,  lovastatin,  and  simvastatin.  Estimates  are  presented  for  two  
subsamples:  physicians  located  in  states  with  active  mandatory  substitution  laws  (column  1)  in  the  initial  period  
and  those  without  such  laws  (column  2);;  the  full-sample  results  in  column  3  include  interactions  with  an  indicator  
for  whether  physician  i 's  state  has  an  active  mandatory  substitution  law.    Regressions  include  drug  and  physician  
fixed  effects,  as  well  as  the  cholesterol  drug  prescription  volume  for  doctor  i   in  the  month  prior  to  drug  j 's  
introduction.    Standard  errors  clustered  by  zipcode  appear  below  each  point  estimate.  
                    

Mandatory  Substitution  Law

Indicator  for  prescription  within  first  year  of  drug  introduction

Table  A.9:  Time  to  First  Prescription,  Mandatory  Substitution  Laws,  U.S.  Physicians,  2000—2010



Dependent  Variable:    

High Low All All
(1) (2) (3) (4)

Database  ij   -0.0087 -0.0092 -0.0050* 0.0010
0.0107 0.0099 0.0027 0.0058

Database  ij     x  High  Patents  i -0.0022
0.0109

Database  ij     x  Low  Patents  i 0.0074
0.0108

Database  ij     x  Patents  i -0.0012
0.0011

Database  ij     x  Generic  j 0.0252 0.0385** 0.0205*** 0.0415***
0.0159 0.0161 0.0039 0.0091

Database  ij     x  Generic  j     x  High  Patents  i -0.0147
0.0168

Database  ij     x  Generic  j     x  Low  Patents  i 0.0323**
0.0164

Database  ij     x  Generic  j     x  Patents  i -0.0042**
0.0017

Generic  j    x  High  Patents  i 0.0284*
0.0156

Generic  j    x  Low  Patents  i -0.0268*
0.0138

Generic  j    x  Patents  i 0.0056***
0.0015

Drug  FE,  Physician  FE Y Y Y Y
Prescription  Volume  it(j)-1   Y Y Y Y
Observations 16017 16932 290898 290898
R 2 0.5772 0.5650 0.5703 0.5703

Table  A.10:  Time  to  First  Prescription,  Pharmaceutical  Innovation,  U.S.  Physicians,  2000—2010

Notes:  *  p  <  0.10,  **  p  <  0.05,  ***  p  <  0.01.  This  table  provides  least-squares  estimates  for  (5)  and  a  variant  thereof.    The  binary  dependent  
variable  captures  the  time  lapse  between  FDA  approval  of  drug  j  and  physician  i 's  initial  prescription  of  it,  taking  a  value  of  1  if  initial  
prescription  occurs  within  a  year  of  FDA  approval;;  specification  are  included  for  the  subset  of  physicians  that  eventually  adopt  and  use  the  
electronic  reference  to  search  for  information  about  cholesterol  drugs.    Database  is  the  Drug  Database  and  Use  indicator  variable  described  in  
Table  2,  and  takes  a  value  of  1  for  a  physician  user  with  database  access  at  the  time  drug  j  receives  FDA  approval.    Generic  indicates  the  
products  pravastatin,  lovastatin,  and  simvastatin.  Estimates  in  columns  1  and  2  are  for  subsamples:  High  includes  all  physicians  in  U.S.  4-digit  
zipcodes  that  are  in  the  top  five  percent  based  on  the  number  of  USPTO  medical  patents  granted  (column  1),  Low  includes  those  in  the  bottom  
five  percent  (column  2).  Full-sample  results  include  interactions  with  indicators  for  High  and  Low  medical  patenting  (column  3  )  and  the  log  
number  of  medical  patents  (column  4).    All  regressions  include  drug  and  physician  fixed  effects,  as  well  as  the  cholesterol  drug  prescription  
volume  for  doctor  i   in  the  month  prior  to  drug  j 's  introduction.    Standard  errors  clustered  by  zipcode  appear  below  each  point  estimate.  
                    

Medical  Patents

Indicator  for  prescription  within  first  year  of  drug  introduction
Eventual  users



Database  i   =  0         Database  i   =  1         All

(1) (2) (3)

Panel  A

Mean 0.1762 0.1522
Estimated  difference  in  means     -0.0236***
Standard  error 0.0014

Panel  B

Mean 0.2162 0.2037
Estimated  difference  in  means     -0.0093***
Standard  error 0.0015

Panel  C

Difference  in  means   -0.0400 -0.0515
Estimated  difference  in  differences   -0.0107***
Standard  error   0.0017
Estimated  average  change   -0.0447***
Standard  error   0.0011

Notes:  *  p  <  0.10,  **  p  <  0.05,  ***  p  <  0.01.  This  table  summarizes  prescription  heterogeneity  across  U.S.  physicians  and  
over  time.    Columns  1  and  2  indicate  the  average  Euclidean  distance  (norm)  between  a)  the  vector  of  physician-i  
prescription  shares  across  drugs  j  and  b)  the  vector  of  average  prescription  shares,  in  December  2010  (Panel  A)  and  in  
January  2000  (Panel  B)  for  physicians  without  access  to  the  electronic  database  in  December  2010  (column  1)  and  for  
physicians  with  access  in  December  2010  (column  2).    Column  3  presents  estimates  from  two  cross-section  regressions  
in  which  the  mean  Euclidean  distance  between  physician  i  and  his  group  average  is  the  dependent  variable,  regressed  
on  an  indicator  for  database  access  in  December  2010  and  zipcode  fixed  effects.    Panel  C  provides  difference-in-
differences  estimates  with  two  time  periods  (January  2000  and  December  2010);;  the  dependent  variable  is  as  in  Panels  
A  and  B,  and  is  regressed  on  an  indicator  for  December  2010,  its  interaction  with  the  indicator  for  database  access,  and  
physician  fixed  effects.    Standard  errors  appear  below  each  point  estimate.      

Table  A.11:  Prescribing  Heterogeneity,  U.S.  Physicians,  January  2000  and  December  2010

Euclidean  Distance  Between  i's  Prescriptions  and  the  Average

December  2010

January  2000

December  2010  and  January  2000




