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This workshop focuses on graphical causal models. The graphical approach to causal inference 
using directed acyclic graphs (DAGs) is equivalent to the potential outcomes approach to causal 
inference.  
 

 Same concepts, same theorems, different notation.  
 

 
Since we are a diverse group, we’ll first spend about an hour reviewing basic counterfactual 
notation and concepts and from there motivate the use of DAGs.  
 

We will use this notation at the end of the second day. We will use the concepts 
throughout. 

 
 
 
1. The Counterfactual (Potential Outcomes/Neyman-Rubin) Framework of Causal 
Inference 
 
Protagonists: 
 
 Roots in Neyman (1923) 
 Statistics: Donald B. Rubin, Paul Holland, Paul Rosenbaum 
 Economics: James Heckman, Charles Manski 
  
 Accomplishments: 
 

1. A precise definition of causal effects 
2. A formal model of causality against which we can assess the adequacy of various 

estimators 
 
Approach: 
 
 Causal questions are “what if” questions.  
 

Extend the logic of randomized experiments to observational data. 
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2. Total Causal Effects in the Potential Outcomes Framework 
 
Example: What is the causal effect of attending catholic school vs. public school on high school 
graduation? 
 
Consider a binary treatment T = {0,1}: 
 
 T: Attending catholic school (=1) vs. attending public school (=0) 
 
Each individual has two potential outcomes, YT, one for each value of the treatment. A potential 
outcome is the outcome that would be realized if the individual received a specific value of the 
treatment. (I’m going to suppress “i” subscripts for convenience.) 
 
 Y1:  Potential outcome if attending catholic school 
 
 Y0: Potential outcome if attending public school.  
 
For each particular individual, one can generally observe only one, but not both, of the two 
potential outcomes. The unobserved outcome is called the “counterfactual” outcome. 
  

Let Y be the observed outcome (note: no subscript). Then: 
 
   Y = Y1   if t = 1 

 and 
   Y = Y0   if t = 0. 
  
 
The individual level causal effect (ICE) is defined as the difference between an individual’s two 
potential outcomes,  
 
 ICE = δ = Y1 – Y0 
 
The ICE answers the question “what would happen if the individual received treatment rather 
than control?”  
 

Y0 = Y1 = 1  δ = 0 Kid would graduate from both catholic and from public 
school. No effect.  

 
Y0 = Y1 = 0  δ = 0 Kid would neither graduate from catholic nor from public 

school. No effect. 
  
Y0 =  1, Y1 = 0  δ = –1 Kid would not graduate from catholic but would graduate 

from public school. Negative effect. 
 
Y0 =  0, Y1 = 1  δ = 1 Kid would graduate from catholic but would not graduate 

from public school. Positive effect.  
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We usually cannot rule out that the ICE differs across individuals (“effect heterogeneity”). Thus, 
we define the average causal effect (ACE) as the population average of the individual level 
causal effects, 

 
ACE = E[δ] = E[Y1] – E[Y0]. 
 

The ACE is a difference at the population level: it’s the high school graduation 
rate if all kids in a study population had attended catholic school minus the high 
school graduation rate if all kids had instead attended public school. 

 
3. Fundamental Problem of Causal Inference,  Identification, & Assumptions 
 
The so-called “fundamental problem of causal inference” (Holland 1986) is that one can never 
directly observe causal effects (ACE or ICE), because we can never observe both potential 
outcomes for any individual. We need to compare potential outcomes, but we only have 
observed outcomes 
 

  Outcome  
  Treatment Control 
Assignment Treatment (Y | T=1) = (Y1 | T=1) ??? 
 Control ??? (Y | T=0) = (Y0 | T=0) 

 
 Causal inference is a missing data problem 

 
So what’s an analyst to do? We want to estimate the ACE, 
 

ACE = E[Y1] – E[Y0],  
 
where E[.] ranges over the entire population.  

 
But we only have the so-called standard estimator (S*),  
  
 𝑆∗ = 𝐸 𝑌! 𝑇 = 1 −   𝐸[𝑌!|𝑇 = 0], 
 

where E[.] ranges over the domain of the treatment and control groups, respectively, not 
over the entire population.  

 
ACE measures causation whereas S* measures association.  
 

There’s no good reason why the ACE should automatically equal S*.  
 
  “Causation ≠ Association” 
 
The “identification problem” refers to the difficulty of separating causation from association.  
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Assumptions are unavoidable! 
 

Since the fundamental problem of causal inference is a missing data problem, we need to 
make assumptions to fill in the missing values. Assumption-free causal inference is 
impossible!  

 
 Not the existence but the quality of the assumptions is the issue. 
 Later, we’ll use DAGs to get a handle on these assumptions 

 
Specifically, we need to make assumptions (have a “theory”) about how the data were 
generated and collected.  
  

 
4. Solving the Fundamental Problem with Randomized Experiments 
 
A sufficient condition for the standard estimator (S*) to be an unbiased and consistent estimate 
of the average causal effect (ACE) is: 
 

(1)   E[Y1 |T=1] = E[Y1 |T=0] = E[Y1] 
 
The mean potential outcome under treatment for those in the treatment group equals the 
mean potential outcome under treatment for those in the control group, 

 
and 
 
 (2) E[Y0 |T=1] = E[Y0 |T=0] = E[Y0] 
 

The mean potential outcome under control for those in the treatment group equals the 
mean potential outcome under control for those in the control group. 

 
Because then 
 
 E[Y1 |T=1]  – E[Y0 |T=0]   =    E[Y1] – E[Y0] 
 
  association         =      causation 
 
Note that conditions (1) and (2) are comparability conditions: we must assume that the people in 
the treatment group on average are identical to the people in the control group with respect to 
their potential outcomes.   
 
 You might call this the “compare apples to apples principle.”   
  
This condition can be achieved by random assignment of individuals to the treatment and control 
group (in a randomized experiment). 
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5. Causal Inference in Observational Studies 
 
Often random assignment is not possible. Studies where the researcher cannot directly 
manipulate treatment assignment are called “observational studies.” 
 
Then what condition must hold for the standard estimator (S*) to be unbiased and consistent for 
the average causal effect (ACE)? 
 

“Ignorability” is sufficient (Rubin 1974): 
 
  (𝑌!,𝑌!) ⊥ 𝑇 
 

In words, the potential outcomes, Y1 and Y0, must be jointly independent (“⊥”) of 
treatment assignment. 
 
Ignorability holds in an ideal experiment.  

 
In observational studies, ignorability seldom holds on its own (i.e., without any adjustments). But 
it may hold within groups defined by some other variables, X.  
 
 “Conditional ignorability”: 
 
  𝑌!,𝑌! ⊥ 𝑇|  𝑋 
 

In words, the potential outcomes, Y1 and Y0, must be jointly independent (“⊥”) of 
treatment assignment within groups defined by the value of X (X may be a vector). 

 
If (conditional) ignorability holds, then the standard estimator (S*) will give an unbiased and 
consistent estimate of the ACE.  
 
But how would we know whether ignorability holds? 
 

 DAGs can answer this question.  
 


